The following relates to the field of door closers, in particular a door closer capable of adjusting its closing speed.
The closing speed of a door closer is usually controlled by controlling the flow velocity of oil therein. However, the viscosity of oil varies upon changing temperature, to affect the closing speed of door closers greatly in the regions having big diurnal temperature amplitude, e.g. North America and the North China. It can be known from the experiments, the closing time of a hydraulic door closer is about 8 seconds at 25° C., the closing time is increased to about 2 minutes, which is 15 times the former. A much longer closing time can cause many problems, for example, the cold air in winter can enter the house easily, or a security flaw will appear. Moreover, it is difficult for users to adjust the door closer, the above flaws should increase the maintenance service cost and may incur a risk of oil spilling.
Accordingly, a primary objective of the present invention is the provision of an improved door closer.
Another objective of the present invention is the provision of a door closer having both a pneumatic cylinder and a hydraulic cylinder.
Another objective of the present invention is the provision of a door closer having dual hydraulic and pneumatic functions.
A further objective of the present invention is the provision of an improved door closer, which overcomes the problems of the prior art.
Yes another objective of the present invention is the provision of a door closer which is economical to manufacture, and durable and safe in use.
These and other objectives have become apparent from the following description of the invention.
A door closer according to the present invention has an adjustable closing speed, which is less influenced by temperature, and has a constant closing speed.
The door closer according to embodiments of the invention, comprises a pneumatic cylinder on the door frame, a hydraulic cylinder on the door, and a lever; one end of the lever is movably connected to the pneumatic cylinder, and the other end is connected to the hydraulic cylinder.
The pneumatic cylinder comprises a housing arranged on the door frame, and a sliding member within the housing. A hermetic chamber is formed at one end of the housing. An adjustable valve, for adjusting the exhaust of the hermetic chamber, is provided on the hermetic chamber. The lever is pivotally attached to the sliding member.
The hydraulic cylinder comprises a housing on the door, a spring in the housing, a piston and 9 cam follower or roller connected to the spring, and a rotatable cam for transferring the spring energy to the roller. The lever is fixedly connected to the cam.
Furthermore, the sliding member comprises a sliding block, a piston and a joint rod for connecting the sliding block and the piston.
Furthermore, the sliding member includes a piston having a periphery groove, a seal ring movably configured in the groove, and an air intake or passageway through the sliding member.
More particularly, the piston has a first side wall and a second side wall are formed at the groove, wherein the first side wall is adjacent to the hermetic chamber while the second side wall is opposite the first side wall. A first air intake is configured on the first side wall.
A gap is provided between the second side wall and an inner side wall of the sliding rail. The second side wall is inclined from the bottom of the groove, such that air enters the hermetic chamber through the first air intake and the gap when the piston slides towards door hinge, such that the air in the hermetic chamber is then compressed and the seal ring seals the gap, and thereby the air can be exhausted only by a regulating valve at the opposite end of the cylinder. Therefore, the counteraction to the piston can be adjusted by adjusting the exhaust of the regulating valve, and thereby the sliding speed of the sliding block can be adjusted.
In the preferred embodiment, the elastic component is a spring, and the pulley is a cam. The driving components comprises a driving piston configured at one end of the spring, and a cam roller on the driving piston. The cam roller is tangent to the profile of the cam. The intersection of the cam roller and the cam deviates from a line through the center of the cam roller to the shaft of the cam. The other end of the spring is connected with the side wall of the receiving chamber. The profile of the cam is designed to balance the varied resilience of the spring, such that the door is closed uniformly. Further, in order to close the door eventually, the spring ensures that there is a sufficient thrust to close the door fully.
In an alternative embodiment, the pulley is a gear, and the driving component is a rack engaged with the gear. The rack is connected to one end of the spring, and the other end of the spring is connected with a side wall of the receiving chamber.
Preferrably the hydraulic cylinder is configured on the door, and with the driving apparatus positioned within the cylinder chamber.
Furthermore, the adjusting member is a regulating valve, for convenience.
Furthermore, the sliding rail is a pneumatic cylinder. The regulating valve is configured on one end of the hermetic chamber, of this cylinder, and a vent is configured on the other end of the hermetic chamber. A slot for the lever is arranged on the cylinder.
For aesthetics purpose, the pneumatic gas adjusting apparatus is embedded into the beam of the door frame, and the hydraulic cylinder housing is embedded into the top of the door.
Compared with the prior art, the beneficial effects are
Preferred embodiments of the present invention will be further described in detail hereinafter with reference to the accompanying drawings.
Preferred embodiments of the invention will be further described in detail hereinafter with reference to the accompanying drawing. However, it should be understood that the preferred embodiments herein are only described for explaining the present invention, and the invention is not limited to the embodiments described herein.
As shown in the figures a door closer mounted on or in a door frame 10 and a door 12. The closer 10 is capable of adjusting its closing speed, and comprises a pneumatic cylinder 14 mounted in the door frame 10, and a hydraulic cylinder 16 mounted in the door 12. A receiving chamber 18 is formed inside the cylinder 16. A driving apparatus 20 is mounted in the receiving chamber 18. A lever 22 connects the gas adjusting apparatus 24, 26, 28 and the driving apparatus 20.
A gas adjusting apparatus 24, 26, 28 is provided inside the pneumatic cylinder 14, and comprises a sliding block 24, a piston 28 and a joining rod 26 for connecting the sliding block 24 and the piston 28. A hermetic chamber 30 is formed by the piston 28 at one end of the cylinder 14. A regulating valve 32, for adjusting the exhaust velocity of the hermetic chamber 30, is threadably mounted in the wall of the hermetic chamber 30 at one end of the pneumatic cylinder 14. The other end of the cylinder 14 opposite the hermetic chamber 30 is provided with a vent 24.
The piston 28 has an air passageway comprising a groove 36 on the periphery of the piston 28, and a seal ring 38 movably configured in the groove 36. The groove 36 has a first side wall 40 and a second side wall 42 is opposite the wall 40. A first air intake 44 extends from the first side wall 40 to the chamber 30. There is a gap 45 between the second side wall 42 and the inner side wall of the cylinder 14. The first side wall 40 is in a plane perpendicular to the direction of movement of the piston 28, while the second side wall 42 is an inclined plane from bottom of the groove 36.
The driving apparatus comprises a cam 46, a spring 48 and driving components 20, inside the chamber 18 of the hydraulic cylinder 16. The driving components 20 comprise a driving piston 50 and a cam roller 52 configured on the driving piston 50. One end of a spring 48 is connected to an end of the chamber 18 while the other spring end is connected to the driving piston 50. The intersection of the cam roller 52 and the cam 46 deviates from a line from the center of the cam roller 52 to the shaft of the cam 46.
One end of the lever 22 is hinged to the sliding block 24, while the other end of the lever 22 is fixed to the shaft of the cam 46.
The pneumatic cylinder 14 is embedded into the beam of the door frame 10, and the hydraulic cylinder 16 is embedded into the top of the door 12. However, the cylinders 14 and 16 of embodiments of the present invention is not limited to such positions, and may be configured at the bottom of the door frame and the door instead, upon actual requirement. The cylinders 14 and 16 may also be mounted to the exterior of the door frame 10 and the door 12. The cylinders 14 and 16 may also be reversed such that cylinder 14 is on or in the door 12 and the cylinder 16 is on or in the door frame 10.
The cylinder 14 is used as a guide rail for the sliding block 24, however, this is not a limitation to embodiments of the present invention. Alternatively, the cylinder 14 can be formed in two parts, wherein one part would be a hermetic cylinder for installing the piston 28, while the other part would be an open guide rail to cooperate with the sliding block 24.
The sliding members in the assembly are the sliding block 24 and the piston 28, which are connected together by the joint rod 26, however, this is not a limitation to embodiments of the present invention. Alternatively, the sliding block 24 and the piston 28 could be integrated together inside the cylinder 14.
The operation of the door closer of the present invention is as follows:
When the door 12 is opened manually, the door 12 drives the sliding block 24 sliding towards left side in
Simultaneously, the sliding block 24 is driven by the lever 22 and slides towards right side in
The airflow for the pneumatic cylinder 14 is shown in
The flow of fluid in the hydraulic cylinder 20 as the door opens and closes is shown in
As shown in
When the door is open, the lever 22 rotates the gear 53, which drives the rack 54 towards the spring 48, thereby the spring 48 possesses a great resilience. When the door 12 is released, the spring 48 drives the rack 54, which rotates the gear 53, such that the lever 22 drives the sliding block 24 towards right side in
In embodiments of the present invention, the hermetic chamber is formed by the piston and the pneumatic cylinder 14, such that the sliding speed of the sliding block, and further the closing speed of the door, can be controlled by adjusting the regulating valve 32. As the air flow is insensitive to air temperature, the closing speed of the door 12 can be constant whatever the air temperature varies. Thus the regulating valve 32 long can be adjusted when the door closer is installed, for consistent and reliable use all year. Such a door closer reduces the cost and eliminates the contamination hydraulic of oil spilling.
The other structure of the door closer in the embodiments may refer to known door closers.
Number | Date | Country | Kind |
---|---|---|---|
201510318849.8 | Jun 2015 | CN | national |
This application is a continuation-in-part of U.S. application Ser. No. 14/795,004 filed Jul. 9, 2015, which in turn claims priority to Chinese Application No. CN 201510318849.8 having a filing date of Jun. 11, 2015 the entire contents of both applications being incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14795004 | Jul 2015 | US |
Child | 15335002 | US |