The present invention generally relates to textiles having loops extending outwardly from a base material.
Loop textiles have many applications. As an example, terry cloth loop textiles have been used for cleaning purposes. However, the terry cloth loops do not always provide a surface sufficient for scrubbing a surface. Therefore, there is a need for loop textiles having different characteristics for engaging another item.
and 30, generally include a base substrate 100 with a first surface 110 and a second surface 120, a plurality of first and second receiving loops 210, 220 extending from the base substrate 100, and a plurality of first and second stiff loops 310, 320 extending from the base substrate 100.
As illustrated in
The first receiving loops 210 are a yarn that originate and extend outwardly from the first surface 110 of the base substrate 100, and return into the first surface 110 of the base substrate 100. The second receiving loops 220 are a yarn that originate and extend outwardly from the second surface 120 of the base substrate 100, and return into the second surface 120 of the base substrate 100. In one embodiment, the height (h) of the receiving loop 210, 220 is between about 0.1 millimeter and about 5 millimeters, and the width (w) of the receiving loop 210, 220 is between about 0.1 millimeters and about 5 millimeters at the widest point. In another embodiment, the height (h) of the receiving loop 210, 220 is between about 0.3 millimeter and about 3 millimeters, and the width (w) of the receiving loop 210, 220 is between about 0.3 millimeters and about 3 millimeters at the widest point. In a particular embodiment, the receiving loop 210, 220 extends to a height (h) of about 0.8 millimeters from the base substrate 100, and is about 1.0 millimeter wide (w) at the widest point.
The receiving loops 210, 220 are absorbent and/or retain particles. In one embodiment, the yarn forming the first and second receiving loops 210, 220, is the same yarn as the substrate yarn 101 forming the base substrate 100. In another embodiment, the yarn forming the first and second receiving loops 210, 220, can be a different yarn than the substrate yarn 101 forming the base substrate 100. The yarn forming the receiving loops 210, 220 can be filament or staple yarns, textured or non-textured, and include an appropriate surface finish. The receiving loops 210, 220 have a denier per yarn of greater than about 10 in one embodiment, and greater than about 20 in another embodiment. The receiving loops 210, 220 also have a denier per yarn of less than about 1000 in one embodiment, and less than about 500 in another embodiment. In one embodiment, the receiving loops 210, 220 can have from 10 to 10,000 filaments per yarn, and at least one of the filaments can range from about 0.01 to about 5 denier per filament. In another embodiment, the receiving loops 210, 220 have at least one filament with a denier per filament of less than about 1.
The first stiff loops 310 are a yarn that originate and extend outwardly from the first surface 110 of the base substrate 100, and return into the first surface 110 of the base substrate 100. The second stiff loops 320 are a yarn that originate and extend outwardly from the second surface 120 of the base substrate 100, and return into the second surface 120 of the base substrate 100. The stiff loops 310, 320 have a height and width that is generally sufficient to receive material within the stiff loops 310, 320 when the textile 10, 20, 30 passes over another surface. In one embodiment, the height (h) of the stiff loop 310, 320 is between about 0.1 millimeter and about 5 millimeters, and the width (w) of the stiff loop 310, 320 is between about 0.1 millimeters and about 5 millimeters at the widest point. In another embodiment, the height (h) of the stiff loop 310, 320 is between about 0.3 millimeter and about 3 millimeters, and the width (w) of the stiff loop 310, 320 is between about 0.3 millimeters and about 3 millimeters at the widest point. In a particular embodiment, the stiff loop 310, 320 extends to a height (h) of about 1.0 millimeters from the base substrate 100, and is about 0.8 millimeter wide (w) at the widest point.
As illustrated in
Referring now to
In one embodiment, the cross-section of the filament(s) forming the stiff loops 310, 320 have an aspect ratio of greater than 1.2, as illustrated in
In an embodiment where the stiff loops 310, 320 are formed of mono-filament yarns, the cross sections of the filaments can either be all one type of cross-section, or multiple cross-sections can be used for the filaments forming the various stiff loops 310, 320. In an embodiment where the loops are formed of multiple filament yarns, the cross sections of the filaments forming the yarns can either be all of one type of cross-section (homogeneous), or multiple types of cross-sections (heterogeneous). Additionally, the various stiff loops 310, 320 can be yarns of different filaments, including any combination of homogenous yarns and/or heterogeneous yarns. Furthermore, the various stiff loops 310, 320 can be combinations of any of the mono-filament yarns and multiple filament yarns.
Referring back now to
The textile 10, 20, 30 having the two type of loops 210, 220, and 310, 320, can be imparted with favorable absorbency characteristics. Absorbency is defined by the mass of water absorbed by a textile per mass of textile. A common test procedure for this characteristic is the Institute of Environmental Science & Technology (IEST), Control Division Recommended Practice 004.2, test IEST-RP-CC004.2, “Evaluating Wiping Materials Used in Cleanrooms and Other Controlled Environments”. In one embodiment, the textile 10, 20, 30 has an absorbency rate of at least about 2 grams of water per gram of textile. In another embodiment, the textile 10, 20, 30 has an absorbency rate of at least about 2.5 grams of water per gram of textile. In yet another embodiment, the textile 10, 20, 30 has an absorbency rate of at least about 3 grams of water per gram of textile.
Referring now to
Referring now to
Referring now to
Additionally, it is anticipated that the present invention can be a textile that has sections according to the textile 10 in
Referring now to
In step 510, the acquired sheet of polymer material can be a polymer that is extruded, cast, blown, or that is formed in any other manner that produces a sheet of polymer. The polymer can be polyethylene, polyester, polypropylene, or the like. The thickness of the sheet can be from about 0.0005 inches to about 0.005 inches. In one embodiment, the film is about 0.0015 inches thick.
In step 520, the sheet of polymer material is slit into individual filaments. In one embodiment, a long sheet of polymer material is unrolled and engages a row of knives that slit the sheet of polymer from its original width to many strips of the polymer material, the number of strips determined by the number of knives. The width of the filaments can be from about 0.002 inches to about 0.25 inches. In one embodiment, the individual filaments are strips of polymer that are about 0.0145 inches wide.
In step 540, the forming a base substrate and attaching the strips of polymer and receiving yarn can be performed by double knitting the base substrate, tucking the strips of polymer and receiving yarn into the base substrate, and knitting the polymer strips and receiving yarn into the base substrate as loops. In one embodiment, the polymer strips and receiving yarn are attached as loops to the base substrate by attaching a first section of the strip of polymer and the receiving yarn to the base substrate 541, bringing the strip of polymer and receiving yarn around sacrificial yarn, attaching a second section of the strip of polymer and receiving yarn to the base substrate on the opposite side of the sacrificial yarn from the first section of the strip of polymer and receiving yarn 542, and removing the sacrificial yarn from between the base substrate and the strip of polymer and receiving yarn to form a stiff loop of the strip of polymer and a receiving loop of the receiving yarn 543. In a further embodiment, the step of removing the sacrificial yarn is performed by dissolving the sacrificial yarn.
The present invention can also be better understood by reference to the following example. A polymer sheet was acquired of a polyester film being about 0.0015 inches thick. The polymer sheet was slit into filament strips of about 0.0145 inches wide. A base substrate was formed from a substrate yarn of textured filament polyester yarn, having 34 filaments per yarn at a yarn denier of 150 (such as Dacron 56T by DuPont). The filament polymer strips were attached to the base substrate as stiff loops by tucking the filament polymer strips into a first side of the base substrate as it was being formed, and knitting the filament polymer strips into the base substrate around a one ply, 40 denier per filament, 12 filament sacrificial water-soluble poly(vinyl alcohol) yarn (such as Solvron by Nitivy) on the first side of the base substrate. A soft yarn of splittable of Nylon/PET, 150 denier per yarn, 48 filament (splittable into 48×11=528 filaments) (such as Wramp by Kuraray), was attached to the base substrate as receiving loops by tucking the soft yarn into a second side of the base substrate as it was being formed, and knitting the soft yarn into the base substrate around a one ply, 40 denier per filament, 12 filament sacrificial water-soluble poly(vinyl alcohol) yarn (such as Solvron by Nitivy) on the second side of the base substrate. The sacrificial yarn was removed by immersing the textile into a hot water scour of 160 F. After formation of the loops by dissolving the sacrificial yarn, the textile was dyed, slit to proper width, dried, and cut to the appropriate size. The textile according to this first example had an absorbency of about 3 grams of water per gram of textile.
In a second example, the first example was formed with an additional soft yarn being attached and knitted into the base substrate as receiving loops on the same side of the base substrate as the stiff loops. The textile according to this second example had an absorbency of about 4 grams of water per gram of textile.
This application is a Continuation of prior copending parent application Ser. No. 09/751,998 filed on Dec. 29, 2000 now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3078543 | Godfrey | Feb 1963 | A |
3332828 | Faria et al. | Jul 1967 | A |
3617413 | Elbert | Nov 1971 | A |
3850783 | Peters et al. | Nov 1974 | A |
4045605 | Breens et al. | Aug 1977 | A |
4437269 | Shaw | Mar 1984 | A |
4576848 | Dillon et al. | Mar 1986 | A |
4606154 | Herrmann et al. | Aug 1986 | A |
4820566 | Heine et al. | Apr 1989 | A |
4893439 | McAvoy et al. | Jan 1990 | A |
4966609 | Callinan et al. | Oct 1990 | A |
5055333 | Heine et al. | Oct 1991 | A |
5075917 | Wheat et al. | Dec 1991 | A |
5290269 | Heiman | Mar 1994 | A |
5344688 | Peterson et al. | Sep 1994 | A |
5449530 | Peake, III et al. | Sep 1995 | A |
5490878 | Peterson et al. | Feb 1996 | A |
5525393 | Raab | Jun 1996 | A |
5565011 | Follett et al. | Oct 1996 | A |
5615460 | Weirich et al. | Apr 1997 | A |
5652038 | Geren | Jul 1997 | A |
5733825 | Martin et al. | Mar 1998 | A |
5804274 | Nordin | Sep 1998 | A |
5811186 | Martin et al. | Sep 1998 | A |
5972463 | Martin et al. | Oct 1999 | A |
5987867 | Lang et al. | Nov 1999 | A |
6080482 | Martin et al. | Jun 2000 | A |
6099603 | Johnson | Aug 2000 | A |
6159576 | Rockwell, Jr. | Dec 2000 | A |
6305431 | Fenkes | Oct 2001 | B1 |
6468621 | Landau | Oct 2002 | B1 |
6468622 | Combs et al. | Oct 2002 | B1 |
20020086133 | Morin et al. | Jul 2002 | A1 |
20020092261 | Rockwell et al. | Jul 2002 | A1 |
20030021944 | Morin et al. | Jan 2003 | A1 |
20050003139 | Keller | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1527622 | Oct 1978 | GB |
2279247 | Jan 1995 | GB |
09285438 | Nov 1997 | JP |
2000-279210 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040102119 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09751998 | Dec 2000 | US |
Child | 10714994 | US |