Combination padlocks are used in a variety of applications, including, for example, with enclosures such as lockers, storage sheds, and various gates and doors. The locking mechanism of a conventional single dial combination lock 1 is illustrated in
While the use of a combination lock, as compared to a key based lock, may eliminate the risk of lost, stolen, or copied keys, an authorized combination may still be learned by an unauthorized user, or known by a once-authorized user to whom access is no longer desired. In these and other circumstances, an authorized user may wish to change the unlocking combination.
A conventional combination padlock is maintained in a locked condition by a latch that engages one leg of a shackle. Such a lock may be susceptible to tampering by rapping or shimming the latch out of engagement with the shackle to open the lock. As another characteristic of a conventional combination padlock, the internal cams rotated to an authorized combination to open the lock may remain at or near this authorized combination upon re-locking the lock, thereby potentially compromising lock security. As still another characteristic of a conventional combination padlock, the combination dial is controlled by a relatively small knob that may be ergonomically difficult to manipulate. Further, when dialing the combination on a conventional combination padlock, rapid revolution of the numbers on the dial may cause the numbers to visually wash together, making it difficult to accurately rotate the dial to the proper position without slowing rotation of the dial in order to view the numbers.
The present application describes various inventive features that may be provided with a locking arrangement, such as, for example, a combination padlock. According to one inventive aspect of the present application, a combination lock may be provided with a dial having a ring shaped portion that surrounds and is rotatable about a stationary front face of the lock body having one or more rotational position indicia for indicating the rotational position of the dial. According to another inventive aspect of the present application, a combination lock may be provided with a combination code reset feature, which may include a camming member that is pivotable to a reset position to separate dial-driven hubs from corresponding unlocking wheels, such that the rotational position of the hubs with respect to the wheels may be adjusted. According to yet another inventive aspect of the present application, a combination padlock may be provided with a sliding member configured to hold a locking member in locking engagement with a corresponding notch in a shackle when the sliding member is in a locked position, and further configured to allow the locking member to disengage from the shackle when the sliding member is in an unlocked position, to permit movement of the shackle from a retracted position to an extended position. According to still another inventive aspect of the present application, a combination padlock may be provided with an upset member assembled with a long leg of a shackle, the upset member being configured to be spring loaded against one of a plurality of rotatable cams as the shackle is moved from an extended position to a retracted position, such that the spring-loaded upset member imparts a rotational force on the one of the plurality of cams when the shackle reaches the retracted position to rotate the plurality of cams out of an unlocking orientation.
Accordingly, in one embodiment, a combination lock includes a lock body, a shackle axially moveable between a retracted position and an extended position, a locking mechanism, and a dial secured to the front side of the lock body. The locking mechanism is movable from a locked condition to an unlocked condition to permit movement of the shackle from the retracted position to the extended position. The dial includes an outer ring portion surrounding a stationary lock body face and rotatable with respect to the face, and a locking mechanism engaging portion disposed between the lock body face and the rear side of the lock body, wherein successive rotation of the dial to a series of one or more predetermined rotational positions causes the locking mechanism to move from the locked condition to the unlocked condition.
Features and advantages of the invention will become apparent from the following detailed description made with reference to the accompanying drawings, wherein:
This Detailed Description of the Invention merely describes embodiments of the invention and is not intended to limit the scope of the claims in any way. Indeed, the invention as claimed is broader than and unlimited by the embodiments described herein, and the terms used in the claims have their full ordinary meaning.
According to an inventive aspect of the present application, a combination padlock may be provided with a dial having an outer ring portion rotatable about a stationary front face of the lock. In one embodiment, one or more rotational position indicia (such as sequential numbers) may be provided on the stationary face of the lock, and an indicator marking may be provided on the dial, such that the dial may be rotated to align the indicator marking with one of the rotational position indicia corresponding with a proper dial position (either alone or as one of a sequence of dial positions) for unlocking the lock. In some embodiments, the width of the indicator marking may correspond with the required precision of the incremental dial position. For example, a wide or thick indicator marking may be provided with a combination lock requiring less precision in the incremental rotational positions of the dial required to unlock the lock.
Referring to
Many different configurations may be used to provide a ring-shaped dial that rotates about a stationary face on a combination lock. In one embodiment, a dial includes a center or locking mechanism engaging portion configured to connect with a locking mechanism of the combination padlock, such as, for example, a stacked cam locking arrangement. In such an embodiment, the stationary face of the lock may be affixed to a central portion of the lock body through an opening in the center portion of the dial. In an exemplary embodiment, as illustrated in
While the center portion 22 of the illustrated dial 20 is supported at the center of a cross-shaped frame portion 24, many different configurations of dials may be used, taking into consideration factors such as material usage, durability, and manufacturability. As one example, a combination lock may utilize a solid disk-shaped dial with central opening.
The types of locking mechanisms utilized in a combination padlock may be limited by the space within the lock body to accommodate the lock components. According to another inventive aspect of the present application, a stack of dial cams associated with a combination lock arrangement may be offset from the center of the lock body to provide additional space near the ends of the shackle legs for locking members to engage the shackle, which may allow for a more durable or tamper resistant locking engagement with the shackle. In one embodiment, the offset cam stack may be gear driven by a central gear. In the illustrated embodiments, the dial 20 includes a gear member 23 on a rear side of the central portion 22. The gear member 23 is positioned to be received in a recess 53 in the lock body hub 52, such that the gear member 23 engages a gear portion 73 rotatable about a post 58 extending from a back plate 59 at the rear side of the lock body 50. The gear portion 73 extends through an opening 55 in the lock body 50 to axially align with the gear member 23. The engagement of the gear member 23 with the gear portion 73 translates rotation of the gear member 23 to a series of dial cams 70, 74, 76, which rotate about the post 58. In the exemplary embodiment, the gear portion 73 is integral with the first dial cam 70. The offset position of the dial cams 70, 74, 76 and post 58 with respect to the central axis of the dial 20 provides space to accommodate a locking mechanism, such as the locking member subassembly 80 of the illustrated embodiments, described in greater detail below.
Many different dial cam arrangements may be utilized. In the illustrated embodiment, rotation of the dial 20 causes gear member 23 to engage a series of rotating cams or wheels 70, 74, 76 through gear portion 73. Detents 77 extending from each of the cams 70, 74, 76 engage each other to cause the cams to rotate together. A sliding member or plunger 85 (or latch, fence, or other such movable component) as illustrated in
According to another inventive aspect of the present application, a single dial combination lock may be provided with an unlocking combination resetting feature, either alone or in combination with other inventive features described in the present application. Such a resetting feature may allow a user to change the unlocking combination to any desired series of dial positions, for example, to prevent access by an individual who knows the previous combination, or to change the combination to a series of numerical positions that may be more easily remembered by that user (e.g., a birth date or some other significant numerical combination). In one embodiment, a combination lock includes a series of cams each having a lock releasing portion (for example, a portion having a notch for receiving a corresponding latch or fence or other such unlocking feature) and a cam inter-engaging portion (for example, a portion having a detent for engaging the detent of an adjacent cam). The lock releasing portions and cam inter-engaging portions may (but need not) be similar to those shown in the embodiment of
Many different mechanisms or configurations may be used for selective engagement and disengagement of a lock releasing portion and a cam inter-engaging portion of a cam. For example, lock releasing and cam inter-engaging portions may be engaged or disengaged by opposed frictional surfaces, fasteners, or gear teeth. In one embodiment, a single dial combination lock includes a set of cams, with each cam having a lock releasing portion on a wheel and a cam inter-engaging portion on a hub. Each exemplary wheel and hub are engaged for mutual rotation when the wheel and hub are axially aligned. The wheel and hub are disengaged from each other when the wheel is axially separated from the hub. In this axially separated condition, the hubs remain rotationally connected with the combination dial, with the wheels being rotationally separated from the dial. While many different arrangements may be used to axially separate the wheels from the hubs, in one embodiment, a camming member may be provided in the lock body. When the camming member is pivoted to a resetting condition, the camming member axially moves the wheels to disengage the wheels from the hubs.
Many different mechanisms may be utilized to separate a lock releasing portion or wheel from a cam interengaging portion or hub for resetting a combination code, including, for example, externally manipulable buttons, levers, or other such components, or a linkage between the lock shackle and the cam wheels enabled by positioning the shackle in a specific orientation. In one embodiment, to prevent inadvertent or unauthorized changes to the unlocking combination, a separate component, such as, for example, a key or other such tool, may be used to separate the cam wheels from the hubs. While a key may be inserted through a keyhole in the lock body to engage a mechanism for separation of the wheels and hubs, the lock body may instead be configured to receive an authorized key or tool through the shackle hole for the short leg of the shackle, thereby limiting this code changing access to the unlocked condition (when the shackle has been withdrawn). As such, both the unlocking combination and the tool may be required to change the unlocking combination.
In the illustrated single dial combination lock 10, each cam 70, 74, 76 includes a wheel 70a, 74a, 76a having a notch or recess 79, and a hub 70b, 74b, 76b having inter-engaging detents 77. As shown in
As shown, the lock body 50 may be provided with a blocking wall 49 having an opening or aperture 49a sized to allow insertion of the key K while preventing full insertion of other such items. Further, the key K may include a tab or prong K1, such that the inserted key K, upon rotation, will be retained against the blocking wall 49 and held in the fully inserted condition against the force of spring 48 to maintain the resetting condition of the camming member 41.
Other key operated mechanisms may be utilized to separate the wheels 70a, 74a, 76a from the corresponding hubs 70b, 74b, 76b. In an alternative embodiment, as shown in
Other features may be provided to assist or facilitate code resetting. In one embodiment, a detent feature is included to provide a user with a positive identification of the position of the combination dial, so that the new unlocking combination may be accurately set as desired. In the illustrated embodiment, a ball bearing 27 is biased by spring 28 (see
While many different types of locking mechanisms or locking members may be utilized, in one embodiment, a locking mechanism includes locking members (such as, for example, balls, pins, poppets or other such components) that move in and out of locking engagement with both legs of a shackle when the padlock is locked and unlocked, respectively. While many different locking members may be used, in one embodiment, locking ball members engage corresponding recesses in the shackle legs to maintain the shackle in a locked condition. This locking ball engagement with both shackle legs may, for example, reduce the padlock's susceptibility to unauthorized access by rapping or shimming the shackle. According to another inventive feature of the present application, a locking mechanism, such as the dual ball locking member arrangement described herein, may be provided as a self-contained subassembly, which may, for example, assist in assembly or maintenance of the padlock.
In the illustrated embodiments, the padlock 10 includes a locking subassembly 80 configured to be installed in the lock body 50 between the legs of the shackle 40. As shown in
The plunger 85 includes ramped surfaces that engage the locking members 83. When the locking mechanism is in a locked condition, the outer periphery of one or more of the cams 70, 74, 76 forces the plunger 85 upward, such that a wider portion of the plunger 85 forces the locking members 83 outward into locking engagement with the shackle 40. When the locking mechanism is in an unlocked condition, the plunger 85 is permitted to extend into engagement with the recesses 79 of the cams 70, 74, 76, causing a narrower portion of the plunger to align with the locking members 83. This allows the locking members 83 to disengage from the shackle 40, releasing the shackle for withdrawal from the lock body 50. The locking subassembly 80 may further include biasing members 88, such as springs, between the plunger 85 and the posts 87 to bias the plunger into a locking position for forcing the lock members 83 toward engagement with the shackle 40. The plunger 85 may additionally extend into an upper opening 86 in the housing 81, and shown in
According to another inventive aspect of the present application, a combination lock may be provided with a cam misalignment or “upset” feature which rotates one or more of the dial cams from an aligned unlocked condition to a misaligned condition or locked condition when the shackle (or other such latch) is returned to a locked condition. In one embodiment, a component assembled with the shackle is configured to engage (either directly or indirectly) one or more of the dial cams when the shackle is retracted back into the lock body, causing the cams to rotate or “scramble” out of the aligned, unlocked condition. In one such embodiment, the upset feature may be associated with a shackle stop, assembled with the long shackle leg to retain the long end of the shackle within the lock body when the lock is unlocked.
In the illustrated embodiment, as shown in
Additional features may be provided with a combination lock according to other inventive aspects of the present application. As one example, a light source, such as a light emitting diode (LED) may be provided in a combination lock to illuminate a stationary face of the combination lock. In one such embodiment, the stationary face is provided in a transparent or translucent material to allow the front of the face to be illuminated from within the padlock. As another example, a lock may be provided with a magnetic member, for example, attached to a back plate of the lock for attaching the lock to a locker when it is unlatched. As another example, a lock may be configured for customization of a stationary face, by using replacement face plates with varying patterns, contours, shades, and textures, or by adapting a lock to receive a patterned disk behind a transparent face plate.
While various inventive aspects, concepts and features of the inventions may be described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects, concepts and features may be used in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present inventions. Still further, while various alternative embodiments as to the various aspects, concepts and features of the inventions—such as alternative materials, structures, configurations, methods, circuits, devices and components, software, hardware, control logic, alternatives as to form, fit and function, and so on—may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the inventive aspects, concepts or features into additional embodiments and uses within the scope of the present inventions even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the inventions may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present disclosure; however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated. Moreover, while various aspects, features and concepts may be expressly identified herein as being inventive or forming part of an invention, such identification is not intended to be exclusive, but rather there may be inventive aspects, concepts and features that are fully described herein without being expressly identified as such or as part of a specific invention. Descriptions of exemplary methods or processes are not limited to inclusion of all steps as being required in all cases, nor is the order that the steps are presented to be construed as required or necessary unless expressly so stated.
This application claims the benefit of both U.S. patent application Ser. No. 60/880,611, entitled COMBINATION PADLOCK and filed Jan. 16, 2007, and U.S. patent application Ser. No. 60/975,902, entitled COMBINATION PADLOCK and filed Sep. 28, 2007, the entire disclosures of both of which are incorporated herein by reference, to the extent that they are not conflicting with the present application.
Number | Name | Date | Kind |
---|---|---|---|
548757 | Kellog | Oct 1895 | A |
1310634 | Rozycki | Jul 1919 | A |
1607758 | Junkunc | Oct 1926 | A |
1703193 | Jacobi | Feb 1929 | A |
1719637 | Werner | Jul 1929 | A |
1743331 | Ellison | Jan 1930 | A |
1866273 | Sinner | Jul 1932 | A |
2116965 | Schoorel et al. | May 1938 | A |
2132201 | Allman | Oct 1938 | A |
2673457 | Miller | Mar 1954 | A |
2775112 | Taylor | Dec 1956 | A |
2780087 | Miller | Feb 1957 | A |
2830447 | Miller | Apr 1958 | A |
2852928 | Miller | Aug 1958 | A |
2931204 | Check | Apr 1960 | A |
3349584 | Russell et al. | Oct 1967 | A |
3533253 | Miller et al. | Oct 1970 | A |
3720083 | Wellekens | Mar 1973 | A |
3894415 | Bako | Jul 1975 | A |
3952559 | Atkinson | Apr 1976 | A |
4014191 | Harrington et al. | Mar 1977 | A |
RE29277 | Harrington et al. | Jun 1977 | E |
4170884 | Calegan | Oct 1979 | A |
4236394 | Harrington | Dec 1980 | A |
4422311 | Zaabel et al. | Dec 1983 | A |
4476698 | Treslo | Oct 1984 | A |
D276408 | Zabel et al. | Nov 1984 | S |
4722207 | Wertz, Jr. | Feb 1988 | A |
4730467 | Lebrecht | Mar 1988 | A |
5953940 | Ling | Sep 1999 | A |
6298694 | Knoll | Oct 2001 | B1 |
6425274 | Laitala | Jul 2002 | B1 |
6442983 | Thomas et al. | Sep 2002 | B1 |
7117698 | Lai | Oct 2006 | B2 |
7251965 | Yu | Aug 2007 | B2 |
20020046584 | Lumpkin | Apr 2002 | A1 |
20030196461 | Liou | Oct 2003 | A1 |
20030205069 | Knoll | Nov 2003 | A1 |
20040093914 | Vito | May 2004 | A1 |
20070220929 | Green | Sep 2007 | A1 |
20080314093 | Nave | Dec 2008 | A1 |
20090113947 | Lai | May 2009 | A1 |
20090145178 | Nave | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
2229220 | Sep 1990 | GB |
Number | Date | Country | |
---|---|---|---|
20080173049 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60880611 | Jan 2007 | US | |
60975902 | Sep 2007 | US |