This disclosure relates to generating electromagnetic forces through an electromagnetic actuator, and, more particularly, to generating radial and axial electromagnetic forces using a combination radial/axial electromagnetic actuator with an improved axial bandwidth.
Equipment and machinery often contain moving (e.g., rotating, translating) members, which require support during operation. A bearing, or similar device, may be used to support the moving member. Although many types of bearings require direct contact with the member to provide the necessary support, some applications benefit from non-contact, or nearly non-contact support for the member. A magnetic bearing uses an electromagnetic actuator to apply a controlled electromagnetic force to support the moving member in a non-contact, or nearly non-contact, manner. The non-contact or nearly non-contact support provided by the magnetic bearing can provide frictionless or nearly frictionless movement of the member in both the axial and radial directions.
In certain implementations, an electromagnetic actuator may include a body with a rotational axis. A first pole may reside apart from the body, the first pole may be adjacent a first end facing surface of the body and adapted to communicate magnetic flux across a gap with the first end facing surface of the body. A second pole may reside apart from the body, the second pole may be adjacent a second end facing surface of the body and adapted to communicate magnetic flux with the second end facing surface of the body. The body, the first pole, and the second pole may be magnetically coupled and define an axial magnetic control circuit. A plurality of radial poles may reside apart from the body, the plurality of radial poles adjacent a lateral facing surface of the body and adapted to communicate magnetic fluxes with the lateral facing surface of the body. The body and the plurality of radial poles define a plurality of radial magnetic control circuits, the plurality of radial poles adapted to communicate magnetic fluxes with the lateral facing surface of the body and at least one of the first pole or the second pole. The body, the plurality of radial poles, and at least one of the first pole or the second pole define a magnetic bias circuit.
In certain implementations, an electric machine system includes a stator and a rotor, the rotor having a rotational axis configured to move relative to the stator. The system may also include an electromagnetic actuator subassembly that includes a cylindrical actuator target rigidly mounted on the rotor. A first axial pole may reside apart from the actuator target, the first axial pole adjacent a first end facing surface of the actuator target and adapted to communicate magnetic flux across a gap with the first end facing surface of the actuator target. A second axial pole residing apart from the actuator target, the second axial pole adjacent a second end facing surface of the actuator target and adapted to communicate magnetic flux with the second end facing surface of the actuator target. An axial back-iron may magnetically link the first axial pole and the second axial pole. The actuator target, the first axial pole, the second axial pole and the axial back-iron may be magnetically coupled and define an axial magnetic control circuit. An axial control conductive coil may be adapted to produce a magnetic flux in the axial magnetic control circuit. A magnetically permeable annual element located concentric to the rotational axis and including a plurality of radial poles and an electrically isolating radial gap interrupting a conductive path around the rotational axis, the magnetically permeable annual element including a plurality of radial poles residing apart from the actuator target, the plurality of radial poles adjacent a lateral facing surface of the actuator target and adapted to communicate magnetic fluxes with the lateral facing surface of the actuator target, the actuator target and the plurality of radial poles defining a plurality of radial magnetic control circuits, the plurality of radial poles adapted to communicate magnetic fluxes with the lateral facing surface of the actuator target and at least one of the first axial pole or the second axial pole, the actuator target, the plurality of radial poles and at least one of the first axial pole or the second axial pole defining a magnetic bias circuit. Radial control conductive coils may be wound around the radial poles and adapted to produce a magnetic flux in the radial magnetic control circuit. One or more position sensors may be configured to sense a position of the actuator target. At least one control electronics package may be configured to control the electric currents in the axial control conductive coil and radial control conductive coils.
In certain implementations, a method for exerting axial and radial forces on a cylindrical body having a symmetry axis includes communicating a first bias magnetic flux through a first axial facing surface of the body. The method may also include communicating a second bias magnetic flux through a second axial facing surface of the body. The method may also include communicating combined the first and the second bias magnetic fluxes through a lateral surface of the cylindrical body. In addition, the method may include communicating an axial control magnetic flux through the first and the second axial facing surfaces of the body. Communicating a radial control magnetic flux diagonally across the body may be accomplished by a stationary radial pole assembly located around the body and separated from it. Electrical currents may be suppressed in the stationary radial pole assembly by introducing isolating interrupts of the conductive paths.
In certain implementations, the end facing surface of the body is orthogonal to the rotational axis. In some implementations, the body incorporates a magnetically permeable actuator target, the actuator target adapted to communicate a magnetic flux.
In some embodiments, a magnetic element may be configured to produce magnetic bias flux in the magnetic bias circuit. An axial coil may be adapted to produce a magnetic flux in the axial magnetic control circuit and a plurality of radial coils adapted to produce magnetic fluxes in the plurality of radial magnetic control circuits.
In certain implementations, the magnetic flux entering the end facing surface of the body exerts an axial force on the body and the magnetic fluxes entering the lateral surface of the body exert radial forces on the body. In certain instances, the axial force is proportional to the magnetic flux in the axial magnetic control circuit and the radial forces are proportional to the magnetic fluxes in the radial magnetic control circuits.
In implementations, the plurality of radial poles is defined by a first annular lamination and a second annular lamination, the first and second annular laminations defining an annular lamination stack coaxial to the rotational axis. In some instances, the first and the second annular laminations comprise a magnetically permeable material. In certain implementations, the first and the second annular laminations are electrically isolated from each other. The first annular lamination may be a first disjointed annular element defining a first air gap between disjoined segments of the annular element and the second annular lamination may be a second disjointed annular element defining a second air gap between disjoined segments of the second annular element. The first air gap may reside misaligned from the second air gap in the annular lamination stack.
In certain embodiments, the rotor may be coupled to a driven load, the driven load comprising at least one of a flywheel, a generator, or an expander. The rotor may be coupled to a driver, the driver comprising at least one of a motor, an engine, or a turbine.
The magnetic fluxes exert electromagnetic forces on the actuator target. The electronic control package is further configured to energize the control coils around each of the plurality of radial poles with control currents in response to changes of signals from the position sensors so that the rotor is supported by electromagnetic forces without a mechanical contact with the stator.
In certain instances, the stationary radial pole assembly may be composed of magnetically-permeable laminations made of electrical steel stacked together along the body symmetry axis. The isolating interrupts may be introduced in each lamination. In certain instances, circumferential locations of the insolating interrupts may vary from lamination to lamination across the lamination stack.
This disclosure relates to generating electromagnetic forces through an electromagnetic actuator and, more particularly, to generating radial and axial electromagnetic forces through a combination radial/axial electromagnetic actuator with an improved axial bandwidth.
Permanent-Magnet-Biased Homopolar Combination Axial/Radial Electromagnetic Actuators offer advantages over arrangements of separate radial and axial actuators including smaller part count, smaller size and weight, and shorter axial length. One of the important applications of such an actuator is in Active Magnetic Bearings (AMBs) providing non-contact support of objects using electromagnetic forces. In particular, when an AMB system is used in rotating machinery, the combination actuator allows achieving better rotordynamic response due to a more compact design than a combination of separate radial and axial actuators. However, the axial channel of a combination actuator may exhibit lower bandwidth characteristics as compared to a dedicated axial actuator. This may complicate the axial control of an AMB system and degrades its performance. In conventional axial electromagnetic actuators, the bandwidth limitation is caused by eddy currents induced in the components of the axial control magnetic circuit, which are made metallic for practical reasons, when an alternating axial control current is applied. These currents result in both amplitude attenuation and a phase lag of the magnetic control flux, which subsequently affect the control force. In addition, in the combination actuator, the bandwidth may be further limited by the currents induced in the stator lamination stack, a part of the radial control magnetic circuit.
The coil 12 carries axial control current 30 flowing around the actuator axis 40. This current 30 produces magnetic axial control flux 13 which propagates through the axial pole 5, axial gap 7, actuator target 9, axial gap 8, axial pole 6 and axial back-iron 14. The magnitude and direction of the flux 13 can be changed by changing the current 30 in the coil 12. If the axial control flux 13 is zero, the bias flux 1 in the axial gap 7 is equal or near equal to the bias flux 2 in the axial gap 8 and the net axial electromagnetic force acting on the actuator target 9 is zero or near zero. If there is a non-zero axial control flux 13 flowing in the direction shown in
The magnetic actuator 100 also provides radial forces on the same actuator target 9. The mechanism of the radial force generation is explained in
For practical reasons the radial actuator pole assembly 11 and the actuator target 9 may be assembled of magnetically permeable and electrically conductive laminations (e.g. steel laminations) stacked axially and electrically isolated from each other. The isolation reduces eddy currents in these components induced when the radial control windings 16a-16d are energized with time-varying currents in order to produce time-varying radial forces. An issue with this construction arises when the axial control current 30 changes in time in order to produce a time-varying axial force Fz 32. In this case, the axial control flux 13 may also be varying in time.
According to Faraday's Law, the time varying magnetic flux induces time-varying electromotive forces around the flux. Furthermore, if there is a closed conductive loop surrounding the time-varying magnetic flux, the above electromotive forces will induce electrical currents in that loop. In particular, there will be current 26 induced in the radial actuator pole assembly 11 as shown in
Reduction of the circular current 26 when the radial actuator pole assembly 11 is composed of individual electrically isolated laminations stacked together in the axial direction may be achieved by introducing a slot in each lamination and rotating them during the stacking so that the slots in any two neighboring laminations do not overlap. This method of preventing a current in the radial control pole assembly is illustrated in
In some aspects, the proposed homopolar combination axial/radial magnetic actuator 100 may be utilized as a part of an Active Magnetic Bearing (AMB) system to support a rotor of a rotational machine without a mechanical contact. The rotational machine can be, for example, an electric pump including an electric motor driving an impeller mounted directly on the motor shaft. The electric motor may have a rotor and a stator. Alternatively, the impeller can be driven by a flow of gas or liquid and spin the rotor attached to it through the shaft. In this case, the motor can be used as a generator. In embodiments, the rotor of the electric machine can be supported without mechanical contact by means of, for example, a combination axial/radial AMB and a radial AMB located on the opposite ends of the rotor. The combination axial/radial AMB utilizes the combination axial/radial electromagnetic actuator per present invention to exert radial and axial forces on an actuator target firmly mounted on the rotor in response to rotor displacements from the desired non-contact position measured with a set of sensors included in the AMB.
The front AMB 614 consists of a combination radial and axial electromagnetic actuator 601 per the concepts described herein, radial position sensors 624, axial position sensor 626 and control electronics 632. The electromagnetic actuator 601 in accordance with the concepts described herein may be capable of exerting radial and axial forces on the actuator target 609 firmly mounted on the rotor 610. The axial force is the force in the direction of Z-axis 617 and the radial forces are forces in the direction of X-axis 618 (directed into the page) and the direction of Y-axis 619. The actuator may have several sets of coils corresponding to each of the axes and the forces may be produced when the corresponding coils are energized with control currents produced by control electronics 632. The position of the front end of the rotor in space is constantly monitored by non-contact position sensors 624 and 626. The non-contact position sensors 624 can monitor radial position of the rotor whereas the position sensor 626 monitors the axial position of the rotor.
Signals from the position sensors 624 and 626 may be input into the control electronics 632, which may generate currents in the control coils of the electromagnetic actuator 601 when it finds that the rotor is deflected from the desired position such that these currents may produce forces pushing the rotor back to the desired position.
In certain instances, smaller axial gain attenuation with frequency and smaller phase difference between the actuator force and the control current in the combination actuator 601 per the concepts described herein compared to conventional designs can result in a larger axial load capacity at any particular frequency and simplify control design.
The rear AMB 616 consists of an electromagnetic actuator 628, radial non-contact position sensors 630, and control electronics 632. It may function similarly to the front AMB 614 except that it might not be configured to control the axial position of the rotor 610 because this function is already performed by the front AMB 614. Correspondingly, the electromagnetic actuator 628 may not be able to produce controllable axial force and there may be no axial position sensor.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the concepts described herein. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application Ser. No. 61/292,746, filed on Jan. 6, 2010, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1916256 | Chandeysson | Jul 1933 | A |
2276695 | Lavarello | Mar 1942 | A |
2345835 | Serduke | Apr 1944 | A |
2409857 | Hines et al. | Oct 1946 | A |
2917636 | Akeley | Dec 1959 | A |
3060335 | Greenwald | Oct 1962 | A |
3064942 | Martin | Nov 1962 | A |
3439201 | Levy et al. | Apr 1969 | A |
3937533 | Veillette | Feb 1976 | A |
3943443 | Kimura et al. | Mar 1976 | A |
4093917 | Haeussermann | Jun 1978 | A |
4127786 | Volkrodt | Nov 1978 | A |
4170435 | Swearingen | Oct 1979 | A |
4260914 | Hertrich | Apr 1981 | A |
4358697 | Liu et al. | Nov 1982 | A |
4362020 | Meacher et al. | Dec 1982 | A |
4415024 | Baker | Nov 1983 | A |
4635712 | Baker et al. | Jan 1987 | A |
4639665 | Gary | Jan 1987 | A |
4642501 | Kral et al. | Feb 1987 | A |
4659969 | Stupak | Apr 1987 | A |
4731579 | Petersen et al. | Mar 1988 | A |
4740711 | Sato et al. | Apr 1988 | A |
4806813 | Sumi et al. | Feb 1989 | A |
4920291 | McSparran | Apr 1990 | A |
4948348 | Doll et al. | Aug 1990 | A |
5003211 | Groom | Mar 1991 | A |
5083040 | Whitford et al. | Jan 1992 | A |
5115192 | Bardas et al. | May 1992 | A |
5241425 | Sakamoto et al. | Aug 1993 | A |
5315197 | Meeks et al. | May 1994 | A |
5481145 | Canders et al. | Jan 1996 | A |
5514924 | McMullen et al. | May 1996 | A |
5559379 | Voss | Sep 1996 | A |
5589262 | Kiuchi et al. | Dec 1996 | A |
5627420 | Rinker et al. | May 1997 | A |
5672047 | Birkholz | Sep 1997 | A |
5739606 | Takahata et al. | Apr 1998 | A |
5767597 | Gondhalekar | Jun 1998 | A |
5831431 | Gottfried-Gottfried et al. | Nov 1998 | A |
5939879 | Wingate et al. | Aug 1999 | A |
5942829 | Huynh | Aug 1999 | A |
5994804 | Grennan et al. | Nov 1999 | A |
6087744 | Glauning | Jul 2000 | A |
6130494 | Schöb | Oct 2000 | A |
6148967 | Huynh | Nov 2000 | A |
6167703 | Rumez et al. | Jan 2001 | B1 |
6191511 | Zysset | Feb 2001 | B1 |
6259179 | Fukuyama et al. | Jul 2001 | B1 |
6268673 | Shah et al. | Jul 2001 | B1 |
6270309 | Ghetzler et al. | Aug 2001 | B1 |
6304015 | Filatov et al. | Oct 2001 | B1 |
6313555 | Blumenstock et al. | Nov 2001 | B1 |
6325142 | Bosley et al. | Dec 2001 | B1 |
6359357 | Blumenstock | Mar 2002 | B1 |
6437468 | Stahl et al. | Aug 2002 | B2 |
6465924 | Maejima | Oct 2002 | B1 |
6664680 | Gabrys | Dec 2003 | B1 |
6700258 | McMullen et al. | Mar 2004 | B2 |
6727617 | McMullen et al. | Apr 2004 | B2 |
6794780 | Silber et al. | Sep 2004 | B2 |
6856062 | Heiberger et al. | Feb 2005 | B2 |
6876194 | Lin et al. | Apr 2005 | B2 |
6885121 | Okada et al. | Apr 2005 | B2 |
6897587 | McMullen et al. | May 2005 | B1 |
6925893 | Abe et al. | Aug 2005 | B2 |
6933644 | Kanebako | Aug 2005 | B2 |
7042118 | McMullen et al. | May 2006 | B2 |
7135857 | Johnson | Nov 2006 | B2 |
7557480 | Filatov | Jul 2009 | B2 |
7635937 | Brunet et al. | Dec 2009 | B2 |
8169118 | Filatov | May 2012 | B2 |
20010017500 | Hirama et al. | Aug 2001 | A1 |
20010030471 | Kanebako | Oct 2001 | A1 |
20020006013 | Sato et al. | Jan 2002 | A1 |
20020175578 | McMullen et al. | Nov 2002 | A1 |
20030155829 | McMullen et al. | Aug 2003 | A1 |
20030197440 | Hasegawa et al. | Oct 2003 | A1 |
20050093391 | McMullen et al. | May 2005 | A1 |
20070056285 | Brewington | Mar 2007 | A1 |
20070063594 | Huynh | Mar 2007 | A1 |
20070164627 | Brunet et al. | Jul 2007 | A1 |
20070200438 | Kaminski et al. | Aug 2007 | A1 |
20070296294 | Nobe et al. | Dec 2007 | A1 |
20080211355 | Sakamoto et al. | Sep 2008 | A1 |
20080246373 | Filatov | Oct 2008 | A1 |
20080252078 | Myers | Oct 2008 | A1 |
20090004032 | Kaupert | Jan 2009 | A1 |
20090201111 | Filatov | Aug 2009 | A1 |
20090295244 | Ries | Dec 2009 | A1 |
20100007225 | Platon et al. | Jan 2010 | A1 |
20100090556 | Filatov | Apr 2010 | A1 |
20100117627 | Filatov | May 2010 | A1 |
20100301840 | Filatov | Dec 2010 | A1 |
20110101905 | Filatov | May 2011 | A1 |
20110234033 | Filatov | Sep 2011 | A1 |
20120212093 | Sande et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
102006004836 | May 2007 | DE |
0774824 | May 1997 | EP |
1905948 | Apr 2008 | EP |
2225813 | Jun 1990 | GB |
63277443 | Nov 1988 | JP |
2006136062 | May 2006 | JP |
Entry |
---|
U.S. Appl. No. 13/116,991, filed May 26, 2011, Filatov. |
U.S. Appl. No. 13/045,379, filed Mar. 10, 2011, Filatov. |
Hawkins, Lawrence A. et al., “Application of Permanent Magnet Bias Magnetic Bearings to an Energy Storage Flywheel,” Fifth Symposium on Magnetic Suspension Technology, Santa Barbara, CA, Dec. 1-3, 1999, pp. 1-15. |
Turboden—Organic Rankine Cycle, “Turboden High Efficiency Rankine for Renewable Energy and Heat Recovery,” (2 pages), available at http://www.turboden.it/orc.asp, 1999-2003, printed Jul. 27, 2006. |
Turboden—Applications, “Turboden High Efficiency Rankine for Renewable Energy and Heat Recovery,” (1 page), available at http://www.turboden.it/applications—detail—asp?titolo=Heat+recovery, 1999-2003, printed Jul. 27, 2006. |
Honeywell, “Genetron®245fa Applications Development Guide,” (15 pages), 2000. |
Hawkins, Lawrence A. et al., “Analysis and Testing of a Magnetic Bearing Energy Storage Flywheel with Gain-Scheduled, Mimo Control,” Proceedings of ASME Turboexpo 2000, Munich, Germany, May 8-11, 2000, pp. 1-8. |
McMullen, Patrick T. et al., “Combination Radial-Axial Magnetic Bearing,” Seventh International Symposium on Magnetic Bearings, ETH Zurich, Aug. 23-25, 2000, pp. 473-478. |
Hawkins, Lawrence et al., “Shock and Vibration Testing of an AMB Supported Energy Storage Flywheel,” 8th International Symposium on Magnetic Bearings, Mito, Japan, Aug. 26-28, 2002, 6 pages. |
McMullen, Patrick T. et al., “Design and Development of a 100 KW Energy Storage Flywheel for UPS and Power Conditioning Applications,” 24th International PCIM Conference, Nuremberg, Germany, May 20-22, 2003, 6 pages. |
Hawkins, Larry et al., “Development of an AMB Energy Storage Flywheel for Industrial Applications,” 7th International Symposium on Magnetic Suspension Technology, Fukoka, Japan, Oct. 2003, 5 pages. |
Freepower FP6,. “Freepower FP6 Specification & Dimensions for 6kWe Electricity Generating Equipment,” (2 pages), 2000-2004, printed Jul. 26, 2006. |
Hawkins, Larry et al., “Development of an AMB Energy Storage Flywheel for Commercial Application,” International Symposium on Magnetic Suspension Technology, Dresden, Germany, Sep. 2005, 5 pages. |
Freepower ORC Electricity Company with Industrial Processes, “Industrial Processes,” (1 page), available at http://www.freepower.co.uk/site-5.htm, 2000-2006, printed Jul. 26, 2006. |
Freepower ORC Electricity Company FP6 Product Description, “FP6,” (1 page), available at http://www.freepower.co.uk/fp6.htm, 2000-2006, printed Jul. 26, 2006. |
Freepower ORC Electricity Company FP120 Product Description, “FP120,” (1 page), available at http://www.freepower.co.uk/fp120.htm, 2000-2006, printed Jul. 26, 2006. |
Freepower ORC Electricity Company FP60 Product Description, “FP60,” (1 page), available at http://www.freepower.co.uk/fp60.htm, 2000-2006, printed Jul. 26, 2006. |
Freepower ORC Electricity Company Products Technical Overview “A System Overview,” (1 page), available at http://http://www.freepower.co.uk/tech-overview.htm, 2000-2006, printed Jul. 26, 2006. |
Freepower ORC Electricity Company with Landfill Flarestacks, Flarestacks (Landfill & Petrochemical), (1 page) available at http://www.freepower.co.uk/site-2.htm, 2000-2006, printed Jul. 26, 2006. |
Huynh, Co et al., “Flywheel Energy Storage System for Naval Applications,” GT 2006-90270, Proceedings of GT 2006 ASME Turbo Expo 2006: Power for Land, Sea & Air, Barcelona, Spain, May 8-11, 2006, pp. 1-9. |
Freepower ORC Electricity Company Home Page, “Welcome to Freepower,” (1 page) available at http://www.freepower.co.uk/, Jul. 18, 2006. |
PureCycle: Overview, “Super-efficient, reliable, clean energy-saving alternatives—the future is here,” (1 page) available at http://www.utcpower.com/fs/com/fs—com—Page/0,5433,03400,00.html, printed Jul. 26, 2006. |
Ormat Web Site: “Recovered Energy Generation in the Cement Industry,” (2 pages) available at http://www.ormat.com/technology—cement—2.htm, printed Jul. 26, 2006. |
McMullen, Patrick et al., “Flywheel Energy Storage System with AMB's and Hybrid Backup Bearings,” Tenth International Symposium on Magnetic Bearings, Martigny, Switzerland, Aug. 21-23, 2006, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority issued in International Application No. PCT/US2009/031837 on Sep. 7, 2009; 11 pages. |
International Preliminary Report on Patentability issued in International Application No. PCT/US2009/031837 on Jul. 27, 2010, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority issued in International Application No. PCT/US2009/058816, mailed Jun. 10, 2010, 10 pages. |
International Preliminary Report on Patentability issued in International Application No. PCT/US2009/058816 on Apr. 12, 2011, 5 pages. |
Meeks, Crawford, “Development of a Compact, Lightweight Magnetic Bearing,” 26th Annual AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Jul. 16-18, 1990, 9 pages. |
Ehmann et al., “Comparison of Active Magnetic Bearings With and Without Permanent Magnet Bias,” Ninth International Symposium on Magnetic Bearings, Lexington, Kentucky, Aug. 3-6, 2004, 6 pages. |
Office Action issued in U.S. Appl. No. 12/267,517 on Mar. 28, 2011, 9 pages. |
Office Action issued in U.S. Appl. No. 12/569,559 on Apr. 25, 2011, 22 pages. |
Notice of Allowance issued in Application U.S. Appl. No. 12/569,559 on Aug. 9, 2011, 9 pages. |
Notice of Allowance issued in Application U.S. Appl. No. 12/358,172 on Sep. 20, 2011, 10 pages. |
Notice of Allowance issued in U.S. Appl. No. 12/569,559 on Jan. 27, 2012, 6 pages. |
Request for Continued Examination filed in U.S. Appl. No. 12/569,559 on Nov. 9, 2011, 13 pages. |
Notice of Allowance issued in U.S. Appl. No. 12/267,517 on Feb. 21, 2012, 7 pages. |
Amendment filed in U.S. Appl. No. 12/267,517 on Jan. 31, 2012, 9 pages. |
Office Action issued in U.S. Appl. No. 12/475,052 on Jun. 19, 2012, 9 pages. |
Office Action issued in U.S. Appl. No. 12/475,052 on Sep. 12, 2012, 8 pages. |
Notice of Allowance issued in U.S. Appl. No. 12/610,766, on Oct. 19, 2012; 7 pages. |
Office Action issued in U.S. Appl. No. 13/116,991 on Oct. 26, 2012; 13 pages. |
Sortore, Christopher K. et al., “Design of Permanent Magnet Biased Magnetic Bearings for a Flexible Rotor” Presentation at the 44th MFPG Meeting, Virginia Beach, VA, Apr. 2-5, 1990 (10 pages). |
Notice of Allowance issued in U.S. Appl. No. 13/116,991 on Mar. 7, 2013, 7 pages. |
Office Action issued in U.S. Appl. No. 13/045,379 on Jun. 21, 2013 , 19 pages. |
Final Office Action issued in U.S. Appl. No. 13/045,379 on Nov. 27, 2013, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20110163622 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61292746 | Jan 2010 | US |