Combination rotary and jaw folder for a printing press

Information

  • Patent Grant
  • 6279890
  • Patent Number
    6,279,890
  • Date Filed
    Tuesday, April 11, 2000
    24 years ago
  • Date Issued
    Tuesday, August 28, 2001
    23 years ago
Abstract
A printing press having a jaw mode assembly and a rotary mode assembly with a single folding cylinder adapted to feed either the jaw mode assembly or the rotary mode assembly is disclosed. A moving web of material is initially trained about the folding cylinder and cut into a signatures which are then temporarily held on the folding cylinder. A folding blade extends from the folding cylinder to initiate a fold in each signature and direct each signature to either the jaw mode assembly or the rotary mode assembly. The timing of the folding blade is coordinated and adjusted using an indexable spider assembly to feed either the jaw mode assembly or the rotary mode assembly.
Description




FIELD OF THE INVENTION




The present invention generally relates to printing presses and, more particularly, relates to printing presses adapted to fold signatures cut from a moving web of printed material.




BACKGROUND OF THE INVENTION




Signatures produced from printing presses, such as those for newspapers, periodicals, and catalogs are typically cut from a moving web of printed material traversed through the printing press. After the cut, the signature is typically folded at least once to produce the desired configuration for the end product.




The printing press industry has typically employed one of two mechanisms for creating a fold within a signature cut from a moving web. One of the known mechanisms for creating the fold is referred to as a rotary folder or couple, wherein a pair of second fold rollers are positioned proximate a folding cylinder with a gap or nip being provided between the second fold rollers. The web of material is wrapped around the folding cylinder and a folding blade is adapted to extend from the folding cylinder in a position corresponding to the nip. The folding blade is typically mounted to a spider assembly used to appropriately time the extension of the folding blade. When a folding blade extends from the folding cylinder, the folding blade extends into the nip, pushing the signature cut from the web into the nip. The second fold rollers, which rotate away from the folding cylinder, complete the fold in the signature initiated by the folding blade, and process the folded signature on to a delivery system including such things as delivery flies and conveyor belts.




Another known type of folding couple is referred to as a jaw folder wherein a jaw cylinder is positioned proximate the folding cylinder with a plurality of jaws or clamp assemblies positioned around the periphery of the jaw cylinder. The timing of the rotating jaw cylinder is coordinated with the rotation and extension of the folding blade from the folding cylinder such that when the folding blade extends from the folding cylinder, the folding blade extends into one of the jaws or clamp assemblies on the jaw cylinder. This in turn pushes the fold of the signature into the jaw or clamp to complete the fold. The jaw is then released to allow the folded signature to be transported away by a delivery system. Examples of such jaw cylinders are disclosed in U.S. Pat. Nos. 5,226,871, 5,522,586, and 5,797,319, the disclosures of each being herein incorporated by reference.




While such systems continue to be used, certain production criteria necessitate the need for one or the other type of folding couple. For example, rotary folders have proven to be extremely rugged and durable and thus are often preferred by facilities wherein it is desirable to produce a large quantity of product on a daily basis, such as with a newspaper. However, jaw folders have proven to be more accurate and to result in minimized marking on the signatures and thus are more desirable in situations wherein extremely high quality and accuracy are at a premium, such as with magazines and catalogs.




Some printing presses are equipped with both mechanisms. However, such presses are relatively expensive in that, among other things, two separate folding couples need to be provided. This includes additional frames, drive shafts, drive gearing, delivery flies, and conveyors. In addition, since the hardware for both the rotary folder and jaw folder are provided on the same press, regardless of which is being used, the mechanics of the resulting press are tightly grouped, with little access room being provided in the press for maintenance and the like.




SUMMARY OF THE INVENTION




In accordance with one aspect of the invention, a printing press folding system is provided which includes a frame, a folding cylinder mounted to the frame, a jaw cylinder mounted to the frame, and a rotary mode assembly mounted to the frame. A moving web of printed material is adapted to traverse through the printing press and be cut into individual signatures. The folding cylinder is adapted to receive the signatures and includes a folding blade adapted to extend radially therefrom to initiate a fold in each signature. The folding cylinder is configurable into a rotary mode or a jaw mode. The jaw cylinder is positioned proximate the folding cylinder and includes a plurality of clamp assemblies extending radially therefrom, each clamp assembly being adapted to receive the folding blade and a folded signature therein when the folding cylinder is in the jaw mode. The rotary mode assembly includes a pair of second fold rollers separated by a nip which is adapted to receive the folding blade and a signature therein when the folding cylinder is in the rotary mode.




In accordance with other aspects of the invention, the folding blade may be connected to a timing mechanism which is adjustable to cause a folding blade to extend either into one of the clamp assemblies when in the jaw mode, or into the nip when in the rotary mode. The timing mechanism may include a planetary gear system.




In accordance with another aspect of the invention, a folding couple for a printing press is provided which includes a rotary mode assembly, a jaw mode assembly, and means for directing a fold in a signature to either the rotary mode assembly or the jaw mode assembly.




In accordance with yet another aspect of the invention, a method of producing folded signatures from a moving web is provided including the steps of cutting the moving web into signatures, creating a fold in the signature, and directing the fold to a rotary mode assembly or a jaw mode assembly wherein the rotary mode assembly and jaw mode assembly are provided on the same folding couple.




These and other aspects and features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic representation of a printing press according to the invention configured into a rotary mode;





FIG. 2

is a schematic representation of a printing press according to the invention configured into a jaw mode;





FIG. 3

is a schematic representation of a printing press according to the invention, depicting a spider motion that is typical in the industry but which is timed in accordance with the invention to cooperate with a rotary mode assembly;





FIG. 4

is a side sectional view through a folding cylinder and spider assembly typical of rotary folders currently existing in newspaper printing plants, and used by the invention.





FIGS. 5A-G

are schematic representations of a printing press according to the invention in sequenced stages of operation in the rotary mode; and





FIGS. 6A-G

are schematic representations of a printing press according to the invention in sequenced stages of operation in the jaw mode.











While the invention is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions and equivalents falling within the spirit and scope of the invention as defined by the appended claims.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the drawings, and with specific reference to

FIGS. 1 and 2

, a printing press folder according to the present invention is generally depicted by reference numeral


20


. As shown therein, the printing press folder


20


includes a frame


22


relative to which a moving web


24


is adapted to move. While not depicted, it is to be understood that the web


24


is typically provided in the form of a wound roll of paper which is threaded and pulled through the printing press folder


20


to have various printing procedures performed thereon. Once printed, the web


24


is cut into signatures


26


and folded into end units


28


.




First with regard to

FIG. 1

, the rotary mode into which the printing press folder


20


can be configured is shown. The web


24


, moving in the direction of arrow A, is initially wrapped partially around a folding cylinder


30


and held thereto by a first set of pins


32


(FIG.


3


). As will be described in further detail herein, the first set of pins


32


are timed to extend from the folding cylinder


30


prior to cutting, and retract into the folding cylinder


30


prior to folding. A second set of pins


32


(

FIG. 3

) is provided to hold the web


24


to the folding cylinder


30


after the signature


26


is cut. A third set of pins


32


(

FIG. 3

) is also provided so as to allow for continuous operation more fully described below.




After the first set of pins


32


have extended from the folding cylinder


30


and into the web


24


, the web


24


is cut into signatures


26


by cutting blades


34


extending radially from a cutting cylinder


36


. In the depicted embodiment, the cutting cylinder


36


rotates counterclockwise (arrow B) and the folding cylinder


30


rotates clockwise (arrow C). The cutting blades


34


cooperate with anvils


38


provided on the folding cylinder


30


to create the signatures


26


. After the cut is made the web


24


continues to be held to the folding cylinder


30


by the second set of pins


32


(See FIG.


3


).




As best shown by

FIGS. 5A-G

, when the press


20


is in the rotary mode, a fold


40


is created in the signature


26


simultaneously with the cut being made by the extension of one of two sets of folding blades


42


from the folding cylinder


30


. The extension of the first set of folding blades


42


causes the tips


43


of the blades


42


to create the fold


40


(

FIG. 5B

) and push the fold


40


of the signature


26


into a nip


44


provided between a pair of second fold rollers


46


and


48


. Once the signature


26


is frictionally gripped in the nip


44


, rotation of the first and second fold rollers


46


and


48


in the directions indicated by arrows D and E, respectively, in

FIG. 1

, causes the signature


26


to be pulled away from the folding cylinder


30


. This motion completes the fold


40


and results in a folded signature or end unit


28


. The first set of pins


32


are retracted in a timely fashion along with the extension of the first set of folding blades


42


to free the signature during folding.




Below the folding cylinder


30


, a delivery system


50


is provided. The delivery system


50


includes a delivery fly


52


above an exit conveyor


54


. The delivery fly


52


includes a rotating hub


56


from which a plurality of arcuate vanes


58


extend. Each pair of adjacent arcuate vanes


58


defines a pocket


60


adapted to receive an end unit


28


. Rotation of the delivery fly


52


in the direction indicated by arrow F causes the end unit


28


to be deposited upon the exit conveyor


54


with the folds


40


facing forward for transportation to downstream equipment (not shown) in the direction of arrow G.




Referring now to

FIG. 2

, the printing press folder


20


is shown configured into a jaw mode. It will be noted that the equipment associated with the rotary mode remains positioned proximate the folding cylinder


30


, but that the first and second sets of folding blades


42


, when the printing press folder


20


is in the jaw mode, extend in a different rotational position than in the rotary mode. The timing mechanism to accomplish such a difference in the extension of the sets of folding blades


42


will be discussed in further detail herein. A second timing mechanism is provided to coordinate extension and retraction of the first, second and third sets of pins


32


.





FIGS. 6A-G

depicts the jaw mode assembly in various stages of operation. As shown therein, a jaw cylinder


62


is provided proximate the folding cylinder


30


and adapted to rotate in the direction of arrow H (see FIG.


2


). The jaw cylinder


62


includes a plurality of jaw clamps


64


radially extending therefrom. The jaws


64


include first and second clamp arms


66


and


68


which are adapted to close and open to grip folds


40


created in signatures


26


. The rotation of the jaw cylinder


62


is timed such that one of the sets of the folding blades


42


extends and pushes the fold


40


into one of the clamps


64


as both rotate. Further rotation of the jaw cylinder


62


, after a signature


26


has been clamped, completes the fold


40


, resulting in the end unit


28


.




The end unit


28


is delivered by the jaw cylinder


62


to a second delivery system


70


. The delivery system


70


includes a delivery fly


72


positioned above an exit conveyor


74


. The delivery fly


72


includes a hub


76


from which a plurality of arcuate vanes


78


extend. Each adjacent pair of arcuate vanes


78


defines a pocket


80


adapted to receive an end unit


28


. Rotation of the delivery fly


72


in the direction indicated by arrow I causes the end units


28


to be deposited upon the exit conveyor


74


, which transports the end units


28


in the direction indicated by arrow J.




From

FIGS. 1 and 2

, it can be seen that using a single folding cylinder


30


, the printing press folder


20


can be configured from a rotary mode to a jaw mode. In the rotary mode, the hardware associated with the jaw mode is not utilized. Similarly, when the printing press


20


is in the jaw mode, the hardware associated with the rotary mode is not utilized. It is important to note that the printing press folder


20


can be purchased and installed with the hardware associated with rotary mode only, the jaw mode only, or both. In any scenario, only a single folding cylinder


30


is needed, thus reducing cost, and enhancing accessibility.




The first and second sets of folding blades


42


, as indicated above, can be configured to extend from the folding cylinder


30


at different rotational positions and at various intervals through the use of a timing mechanism


82


. The timing mechanism


82


, referred to as a spider assembly, is adapted to extend the folding blades


42


radially outward, as shown in

FIGS. 1 and 2

, upon every 120° of rotation of the folding cylinder


30


.




With regard to the mechanics of the spider assembly


82


,

FIGS. 3 and 4

depict the spider assembly


82


in detail. The spider assembly


82


is preferably a planetary gear system having a drive gear


84


rotating in the same direction as the folding cylinder


30


. The drive gear


84


is motionless with respect to ground, but a drive device


86


rotates about the drive gear


84


in the direction indicated by arrow K. The drive gear


84


includes teeth


88


which mesh with teeth


90


of first and second intermediate gears


92


. The teeth


90


of the intermediate gears


92


mesh with teeth


96


of first and second folding blade shafts


98


, respectively. The first and second sets of folding blades


42


are attached to the first and second folding blade shafts


98


, respectively. Therefore, rotation of the drive gear


84


in the direction of the arrow K causes rotation of the intermediate gears


92


in the same direction, which in turn causes rotation of the folding blade shafts


98


in the opposite direction as indicated by arrow L.




Given the respective diameters of the folding cylinder


30


, the drive gear


84


, the intermediate gears


92


, and the folding blade shafts


98


, it can be seen that the folding blade shafts


98


make multiple rotations for each individual rotation of the folding cylinder


30


. This is illustrated by pathways a and a in

FIGS. 5A-G

and


6


A-G, wherein the pathway designated by a indicates the motion of the folding blade shafts


98


with respect to ground, and the pathway designated by


0


indicates the motion of the folding blade tips


43


with respect to ground. By using first and second sets of folding blades


42


and the gear system described, one of the folding blades


42


extend beyond the periphery


83


(see

FIG. 4

) of the folding cylinder


30


at the location of the second fold rollers


46


and


48


upon every 1200 of rotation of the folding cylinder


30


.




In FIGS.


3


and


5


A-G the extension of the folding blades


42


beyond the periphery


83


of the folding cylinder


30


corresponds to the location of the nip


44


. If, however, the user wishes to switch to jaw mode, the first and second sets of folding blades


42


can be extended radially outward beyond the periphery


83


of the folding cylinder


30


at a position corresponding to the location of the jaw cylinder


62


. This is done by indexing the entire drive device


86


one hundred and twenty degrees clockwise from the position shown in

FIGS. 5A-G

to the position shown in

FIGS. 6A-G

to thus coordinate the extension of the folding blade


42


with the location of the jaw cylinder


62


. Such indexing simply requires the drive gear


84


, drive device


86


, intermediate gears


92


, and folding blade shafts


98


to be physically moved. After indexing, each set of folding blades


42


continues to extend radially outward after every 120° of rotation of the folding cylinder


30


, but the folding blades


42


only extend beyond the periphery


83


of the folding cylinder


30


at the location of the jaw cylinder


62


.




From the foregoing, it can therefore be seen that the disclosed apparatus and method are able to produce folded signatures from a moving web of material in either a rotary mode or a jaw mode to thus provide the beneficial features of both modes, while minimizing equipment requirements and enhancing physical access space to the press.



Claims
  • 1. A printing press folder, comprising:a frame, a moving web of printed material being adapted to move relative to the frame and be cut into individual signatures; a folding cylinder mounted to the frame adapted to form the signatures, the folding cylinder including a folding blade adapted to extend radially therefrom to initiate a fold in each signature, the folding cylinder being configurable into either a rotary mode or a jaw mode; a jaw cylinder mounted to the frame and positioned proximate the folding cylinder, the jaw cylinder including a plurality of clamp assemblies extending radially therefrom, each clamp assembly being adapted to receive the folding blade and a signature therein when the folding cylinder is in the jaw mode, the jaw cylinder being adapted to complete the fold; and a rotary mode assembly mounted to the frame and positioned proximate the folding cylinder, the rotary mode assembly including a pair of second fold rollers divided by a nip, the nip being adapted to receive the folding blade and a signature therein when the folding cylinder is in the rotary mode, the rotary mode assembly being adapted to complete the fold.
  • 2. The printing press folder of claim 1 further including a cutting cylinder mounted to the frame and positioned proximate the folding cylinder, the cutting cylinder including a cutting blade adapted to cut the signatures from the moving web.
  • 3. The printing press folder of claim 1 further including a first delivery fly and conveyor positioned proximate the jaw cylinder, and a second delivery fly and conveyor positioned proximate the rotary mode assembly, the first and second delivery flies and conveyors being adapted to receive and transport the folded signatures.
  • 4. The printing press folder of claim 1 wherein the folding blade is connected to a timing mechanism, the timing mechanism being adjustable to cause the folding blade to extend into one of the clamp assemblies when in the jaw mode, and into the nip when in the rotary mode.
  • 5. The printing press folder of claim 4 wherein the timing mechanism includes a planetary gear system.
  • 6. The printing press folder of claim 4 wherein the folding blade is adapted to extend radially outward after every 120° of rotation of the folding cylinder, the jaw cylinder and rotary mode assembly being positioned 120° apart around the folding cylinder.
  • 7. A folding couple for a printing press comprising:a rotary mode assembly; a jaw mode assembly; and means for directing a fold in a signature to either the rotary mode assembly or the jaw mode assembly.
  • 8. The folding couple of claim 7 wherein the rotary mode assembly includes a pair of spaced rollers adapted to receive a folded signature therebetween.
  • 9. The folding couple of claim 8 further including a delivery fly and a conveyor, the delivery fly being adapted to receive the folded signature and transport the folded signature to the conveyor.
  • 10. The folding couple of claim 9 wherein the delivery fly includes a hub with a plurality of arcuate vanes extending therefrom.
  • 11. The folding couple of claim 7 wherein the jaw mode assembly includes a rotating cylinder having a plurality of clamp assemblies extending therefrom, each clamp assembly being adapted to receive a folded signature therein.
  • 12. The folding couple of claim 11 further including a delivery fly and a conveyor, the delivery fly being adapted to receive the folded signature and transport the folded signature to the conveyor.
  • 13. The folding couple of claim 12 wherein the delivery fly includes a hub with a plurality of arcuate vanes extending therefrom.
  • 14. The folding couple of claim 7 wherein the means for directing includes a folding cylinder with a spider assembly operably connected to the folding cylinder.
  • 15. The folding couple of claim 14 wherein the spider assembly includes a movable folding blade.
  • 16. The folding couple of claim 15 wherein the spider assembly is indexable to coordinate extension of the folding blade with the location of the jaw mode assembly and the rotary mode assembly.
  • 17. The folding couple of claim 16 wherein the spider assembly includes a planetary gear system.
  • 18. The folding couple of claim 16 wherein the spider assembly causes the folding blade to extend from the folding cylinder upon every 120° of rotation of the folding cylinder, the rotary mode assembly and jaw mode assembly being positioned 120° apart around the folding cylinder.
  • 19. A method of producing folded signatures from a moving web of material comprising the steps of:cutting the moving web into signatures; creating a fold in the signature; and directing the fold to one of a rotary mode assembly and a jaw mode assembly, the rotary mode assembly and jaw mode assembly being provided on the same printing press.
  • 20. The method of claim 19 wherein the cutting step is performed by a rotating cutting cylinder.
  • 21. The method of claim 19 wherein the creating step is performed by the extension of a folding blade from a rotating folding cylinder about which the web is trained.
  • 22. The method of claim 21 wherein the creating step is performed upon every 120° of rotation of the folding cylinder.
  • 23. The method of claim 21 wherein the folding blade is operably connected to a spider assembly.
  • 24. The method of claim 23 wherein the directing step is adjusted to direct the folded signature to one of the rotary mode assembly and the jaw mode assembly by indexing the spider assembly with respect to the folding cylinder.
  • 25. The method of claim 24 wherein the rotary mode assembly and jaw mode assembly are spaced 120° apart around the folding cylinder.
US Referenced Citations (32)
Number Name Date Kind
408390 Tucker Aug 1889
658209 Firm Sep 1900
1791694 Wood Feb 1931
1870544 Wood Aug 1932
3083010 Salmon et al. Mar 1963
3986111 Anlkanov et al. Oct 1976
4273320 Fijishirio Jun 1981
4279410 Bolza-Schünemann Jul 1981
4386879 Hoshi Jun 1983
4391596 Fischer Jul 1983
4537390 Kiamco et al. Aug 1985
4564470 Schmitt Jan 1986
4781667 Kitai Nov 1988
4863307 Crotatt et al. Sep 1989
5049120 Prüm Sep 1991
5072919 Schneider Dec 1991
5226871 Skipor Jul 1993
5425697 Lanvin Jun 1995
5439206 Raasch et al. Aug 1995
5443437 Mack et al. Aug 1995
5522586 Bennett et al. Jun 1996
5527256 Vauchelle et al. Jun 1996
5547452 Kepert et al. Aug 1996
5551678 Michalik et al. Sep 1996
5653429 Michalik Aug 1997
5707330 Kiamco et al. Jan 1998
5730056 Schmitt Mar 1998
5797319 Tomczak Aug 1998
5846177 Mayr Dec 1998
5901647 Kohlmann May 1999
5921906 Nagano Jul 1999
6093139 Bolanger Jul 2000