The present invention relates to improvements in locks and tilt latches for slidable sash windows, and more particularly to improvements to an integral sash lock/tilt latch combination that furthermore includes a window vent stop capability.
Single hung and double hung sliding sash windows are commonly used today in the construction of residential and commercial buildings. Sash locks are typically mounted to the meeting rail of the bottom sash window to lock the sash or sashes, by preventing the lower sash (or both the lower and upper sashes for a double hung window), from being opened through sliding movement relative to the master window frame. Also, in order to assist in the cleaning of the exterior of these sliding sash windows, it is common for window manufacturers to incorporate a tilt latch device thereon that permits one end of the sliding sash window to be released from the track of the master window frame. This allows the sash window to be pivoted/tilted into the room, for easy access to the exterior surface of the glazing that is normally exposed to the exterior environment of the building.
The present invention seeks to provide improvements to such window hardware in the form of a new sash lock and tilt latch and stop assembly for single hung or double hung windows.
It is an object of the invention to provide a sash lock to prevent relative sliding movement of one or both sliding sash windows that is/are slidable within a master window frame.
It is another object of the invention to provide a tilt latch to permit pivoting of a sliding sash window inwardly into the room in which the window is installed.
It is a further object of the invention to provide a combination sash lock and tilt latch that act cooperatively.
It is another object of the invention to provide a sash lock and tilt latch that may act cooperatively to furthermore limit the travel of a window to provide a vent opening that is too small to permit egress of a small child therefrom.
It is yet another object of the invention to provide a sash lock, tilt latch, and vent stop arrangement that provides for damped movement of the sliding window as it approaches the limited window open (vent) position.
It is also an object of the invention to provide a sash lock that may be blindly coupled to a tilt latch device for cooperative interaction and actuation of the latch.
Further objects and advantages of the invention will become apparent from the following description and claims, and from the accompanying drawings.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The arrangement disclosed herein for a sliding sash window or door may include a sash lock assembly that may be interconnected with a tilt latch assembly. The sash lock assembly may be mounted to the top of the meeting rail of the sash window. The sash lock assembly may include a housing and a cam pivotally mounted to the housing, being configured to pivot out from a cavity in the housing to releasably engage a keeper on the master window frame (or on a second sliding sash window) in a “lock” position, to lock the sash window (or windows) and prevent it from sliding and/or tilting. The sash lock assembly may also include a lever arm that may be pivotally mounted to the housing, and which may be configured for a portion thereof to extend beyond the mounting surface of the sash lock housing, and into the hollow of the meeting rail. The cam may have a graspable shaft portion that may protrude upwardly, out from an orifice in the sash lock housing, to permit actuation of the device (cam rotation) by a user. Alternatively, the device may have a separate handle member secured to the cam, where the handle may facilitate easy rotation and counter-rotation of the cam for actuation of the sash lock assembly and the interconnected tilt latch assembly.
The latch assembly may be received through an opening on aside of the sash member. The latch assembly may include a housing, a latch member slidably disposed within the housing, and a spring to bias the latch member. A portion of the latch member is configured to receive the lever arm of the lock assembly, when positioned within the hollow meeting rail, for coupling therebetween. The latch housing, the latch member, and the spring are configured to normally bias the latch member, so that a portion of one end (i.e., a portion of its “tongue”) may protrude out from the latch housing, and out of the sash window frame.
With the cam releasably secured in the “lock” position (e.g., using a detent mechanism), the cam may prevent sliding of the sash window through its engagement with the keeper, and the latch member may also be in its fully extended position, which would prevent tilting of the sash window. The sash window may be redundantly locked as to any sliding motion with respect to the master window frame by a first portion of a stop assembly (e.g., a bottom surface of a stop assembly housing), which stop assembly may be secured to the master window frame (e.g., in a track thereof within which the sash member may slide). The first portion of the stop assembly may protrude a first distance away from the wall of the master window frame, and may thereat block sliding movement of the tongue of the latch member that is biased to protrude into the track to provide a secondary lock feature with respect to sliding of the sash window away from its closed position.
When actuation of the shaft/handle member causes the cam to rotate (e.g., 135 degrees from the locked position), it may move the cam from the extended lock position into a first retracted cam position—a position where the cam is disengaged from the keeper on the master window frame, and itself would no longer prevent the sash window from sliding. Rotation of the cam into the first retracted cam position may cause a portion thereof to contact a follower portion of the lever arm and also thereby drive the lever arm to rotate, which rotation may act to oppose the biasing of the latch member to actuate it a discrete amount, through the interconnection therebetween, to move the latch member and its tongue into a corresponding first retracted latch member position. With the latch member in the first retracted latch member position, the end of its tongue may be positioned clear of the first portion of the stop assembly, so that the sash window may slide away from its closed position.
The stop assembly may include a second portion that may protrude a second distance away from the wall of the master window frame, with the second distance being greater than the first distance, and may normally be positioned at a particular height above the first portion. With the tongue of the latch member in the first retracted position, and when sliding of the window away from the closed position, the tongue of the latch member may nonetheless still contact the second portion of the stop assembly to prevent any further sliding movement of the sash window.
This second portion of the stop assembly may provide a vent stop feature (i.e., a window opening control device) that permits sliding of the sash window from its closed position but only up to small elevated position (e.g., 4 inches) that may form an opening small enough to prevent accidental egress by a small child or ingress by an intruder, but which nonetheless provides ventilation. With the latch member in its first retracted position, a portion of its tongue may remain engaged within the track of the master window frame, and may thereat still serve to prevent tilting of the sash member out from the master window frame. Note that the detent mechanism may releasably secure the cam at the first retracted cam position, thereby also releasably securing the latch member at the first retracted latch member position, due to the interconnection therebetween.
In one embodiment, the second portion of the stop assembly may be a separate slidable stop member that may be configured to slide from a first position to a second position, with respect to the housing of the stop assembly. A spring may bias the slidable stop member away from the second position towards the first position. Therefore, initial contact of the tongue of the latch member may be with the slidable stop member in its first position and may not cause any impact loading to the respective parts, as such contact will initially cause the slidable stop member to slide rather than when a fixed stop member is used, which would cause the sliding motion of the sash window to abruptly stop, as the spring biasing will work to oppose the force of such contact. The spring biased slidable stop member may thus serve to damp/cushion such sliding movement of the sash window prior to its movement being terminated at the second position of the slidable stop member, at which point the sash window will be at a limited open (vent) position. This damping action of the spring biased stop member may serve to prolong the life of the relevant vent stop parts, which may be made of plastic, by reducing or eliminating impact loading, and may also provide a tactile indication to the user that the vent feature is engaged, as a user may not be aware of it being activated, and may otherwise be attempting to apply a much larger force in anticipation of sliding the window to a fully open position. The spring biased stop member may also serve another function, as discussed below.
When continued actuation of the shaft/handle member causes the cam to further rotate a discrete amount (e.g., to be at 165 degrees of total rotation from the cam's lock position), to move from the first retracted cam position to a second retracted cam position, the cam may further drive the lever arm to correspondingly rotate a discrete amount, and thus drive the latch member to move into a second retracted latch member position. With the latch member in the second retracted latch member position, the end of the tongue may then be positioned clear of the slidable stop member of the stop assembly, so that the sliding movement of the sash window is no longer limited, and the window may now slide all the way up to the fully open position. However, the tongue may nonetheless remain engaged within the track of the master window frame, and thus still serves to prevent tilting of the sash member out from the master window frame. Also, when the latch member is actuated into the second retracted latch member position, once the end of the tongue is positioned clear of the slidable stop member of the stop assembly, the spring-biased slidable stop member will be biased back to its first (lower) position, and the abrupt stopping of the movement of the low-mass stop member may produce a snapping sound that may serve to audibly alert the user that the window opening control (WOCD) feature is no longer active.
Continued actuation of the shaft/handle member to cause the cam to further rotate yet another discrete amount (e.g., to be at 180 degrees of total rotation from the cam's lock position), to move from the cam from the second retracted position to a third retracted cam position, may cause the cam to further drive the lever arm to correspondingly rotate another discrete amount, and may move the latch member into a third retracted latch member position. With the latch member in the third retracted latch member position, the end of the tongue may then be disengaged from the track of the master window frame, and the sash window is free to be tilted out of the master window frame. Note that a detent mechanism may also releasably secure the cam at the second and/or the third retracted cam positions, thereby also releasably securing the latch member at the corresponding latch member positions.
When the cam/handle member has been moved into the 180 degree position, and is subsequently released, the spring biased latch member may be driven to return to its third retracted position, and the interconnection with the sash lock through the lever arm, may correspondingly cause the lever arm to drive the cam to counter-rotate back to the third retracted (unlock) position. The tongue of the latch member may once again be engaged within the track of the master window frame, to once again permit sliding of the sash window, but prevent tilting. Where no detent is used for the third unlock position of the cam, and the cam/handle is released from the 180 degree position, the spring biased latch member may be driven to return to its second retracted position, and the interconnection with the sash lock through the lever arm may correspondingly cause the lever arm to drive the cam to counter-rotate back to the second retracted (unlock) position.
As the fully opened sash window is moved downward towards its closed window position, a bottom surface of the tongue of the latch member may contact a top surface of the slidable stop member, each of which may be appropriately angled, and thus such contact may operate to cause the latch member to retract against the spring biasing to automatically permit sliding movement of the sash window past the slidable stop member of the stop assembly and into the closed window position. Once clear of (i.e., positioned below) the slidable stop member of the stop assembly, the latch member may again be biased into its first retracted latch position, and its tongue may again restrict upward sliding movement of the window to be at or below the limited open “vent” position. Once the sash window reaches the closed window position, the handle/shaft member may then be actuated to return to zero degrees of rotation to place the cam in the locked position with respect to the keeper, and to extend the latch member for its tongue to again be positioned below the first portion of the housing of the stop assembly, to lock the sash window at two points.
Both a left-hand and right-hand version of the above described sash lock assembly, tilt latching assembly, and corresponding stop assembly may be mounted on a sliding sash window and master frame. The following discussion proceeds with a discussion of installation on one side of the window (i.e., the left side), with the understanding that the left-hand and right-hand arrangements may be used on the window, so that the sash window may be locked at four points—at each of the two cams/keepers, and at each of the two latch/stop assemblies.
The description of the various example embodiments is explained in conjunction with appended drawings, in which:
As used throughout this specification, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include”, “including”, and “includes” mean including but not limited to.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “one or more of A, B, and C”, and “A, B and/or C” mean all of the following possible combinations: A alone; or B alone; or C alone; or A and B together; or A and C together; or B and C together; or A, B and C together.
Also, the disclosures of all patents, published patent applications, and non-patent literature cited within this document are incorporated herein in their entirety by reference.
Furthermore, the described features, advantages, and characteristics of any particular embodiment disclosed herein, may be combined in any suitable manner with any of the other embodiments disclosed herein.
Additionally, any approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative or qualitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified, and may include values that differ from the specified value in accordance with applicable case law. Also, in at least some instances, a numerical difference provided by the approximating language may correspond to the precision of an instrument that may be used for measuring the value. A numerical difference provided by the approximating language may also correspond to a manufacturing tolerance associated with production of the aspect/feature being quantified. Furthermore, a numerical difference provided by the approximating language may also correspond to an overall tolerance for the aspect/feature that may be derived from variations resulting from a stack up (i.e., the sum) of multiple individual tolerances.
Any use of a friction fit (i.e., an interface fit) between two mating parts described herein may be a slight interference in one embodiment in the range of 0.0001 inches to 0.0003 inches, or an interference of 0.0003 inches to 0.0007 inches in another embodiment, or an interference of 0.0007 inches to 0.0010 inches in yet another embodiment, or a combination of such ranges. Other values for the interference may also be used in different configurations (see e.g., “Press Fit Engineering and Design Calculator.” available at: www.engineersedge.com/calculators/machine-design/press-fit/press-fit-calculator.htm).
It is further noted that any use herein of relative terms such as “top,” “bottom,” “upper,” “lower,” “vertical,” and “horizontal” are merely intended to be descriptive for the reader, based on the depiction of those features within the figures for one particular position of the device, and such terms are not intended to limit the orientation with which the device of the present invention may be utilized.
Perspective views of the housing 10 of the sash lock assembly 100 are shown in
Extending outwardly from the interior surface 14 of the housing 10 may be at least one hollow cylindrical protrusion that may be used to secure the sash lock assembly 100 to the sash window. In one embodiment of the housing, two hollow cylindrical protrusions 15 and 16 may be used, and each may be configured to respectively receive a screw or other fastener for mounting of the sash lock assembly 100 to the meeting rail of the sliding sash window.
Extending outwardly from the interior surface 14 of the housing 10 may also be a shaft 25, which may be hollow and may be used for pivotal mounting of a lever arm to the housing.
The housing 10 may have a cylindrical boss 18 extending upwardly from the outer surface 13, and may also have a cylindrical boss 19 extending downwardly from the interior surface 14, into the housing cavity, which may be joined and may constitute a single boss. The housing may have a hole 20 through the cylindrical boss 18 and boss 19. The hole 20 may be used for pivotal mounting of a shaft that may extend from a portion of a locking cam, or alternatively, the hole 20 may be used for pivotal mounting of a separate shaft/handle member, to which the locking cam may instead be fixedly secured, as described hereinafter.
As seen in
The locking cam 50, illustrated in
Protruding away from the hub 53 may be a cylindrical member 57, the axis of which may be generally concentric with the axis of the hub. The cylindrical member 57 may have a first flat 58A formed thereon, and a second flat 58B may be formed thereon to be clocked 180 degrees away from the first fat 58A. The fats 58A and 58B may co-act with respect to the leaf spring 90 shown in
The cylindrical member 57 may also have a third flat 59A formed thereon, as seen in
In another embodiment of the cam, the cylindrical member 7 may also have a flat formed thereon, at a position that is clocked at about 165 degrees from the first flat 58A, which flat may also co-act with respect to the leaf spring 90 to operate as a detent mechanism to releasably secure the cam 50 at yet another sash unlocked position, termed herein as a second retracted (unlock) position. A sixth flat may be positioned on the cylindrical member 57 at a position that may be clocked at about 180 degrees from the flat at 165 degrees from the first flat 58A, and which may releasably engage a leaf spring where the dual leaf spring arrangement is used.
Interaction between the sash lock assembly 100, once installed upon the meeting rail of the sliding sash window, and the installed latch assembly 200, may be through the use of a lever arm 70 that may be pivotally mounted to the housing 10. The lever arm 70 is shown within
Initial assembly of sash lock assembly 100 is shown in
As seen in
Next, as seen in
The clocking of the flat 58A on the cylindrical member 57 on the hub 53 of locking cam 50 may contact and be flush with the leaf spring 90, to releasably restrain the locking cam 50 from rotating out of the extended locking position (zero degrees of cam rotation), unless being deliberately moved therefrom by the user. Alternatively, such contact therebetween may be so slight as to merely provide tactile indication of such positioning, without offering a significant retraining force. The flat 58A on the cylindrical member 57 on the hub 53 of locking cam 50 may also contact and be flush with the leaf spring 90′, to releasably restrain and/or provide tactile indication of the locking cam 50 upon reaching the third retracted unlock position (i.e., 180 degrees of cam rotation).
Also, the clocking of the flat 59A (and the flat 59B where used) of the cylindrical member 57 on the hub 53 of locking cam 50 may be engaged by the flexible leaf spring 90 (and spring 90′) when the cam is at the first retracted (unlocked) position (i.e., 135 degrees of cam rotation). Note, to increase flexibility of the leaf springs 90 and 90′, only one end of each leaf spring may be fixedly mounted in the housing, to permit some lateral deflection of the leaf springs, but without permitting them to become loosened or disconnected from proper positioning within the housing adjacent to the locking cam, or alternatively both ends may be mounted therein as shown. Also note that since the angle at which the flats 59A/59B were clocked from the flats 58A/58B was approximately 135 degrees, the shaft/handle 40 will need to rotate approximately 135 degrees to actuate the sash lock assembly 100 from the extended lock position to the first retracted (unlock) position. This is shown by the movement of the handle portion 46 of the shaft/handle 40 in
In another embodiment, the shaft/handle 40 and cam 50 may also be releasably secured at the second retracted (unlocked) position using the same detent mechanism, where the leaf spring 90 may engage appropriately clocked flats on the hub 53 of locking cam 50.
The above noted interconnection between the sash lock assembly 100 and the latch assembly 200 may be through the use of the following latch assembly configuration.
The latch assembly 200 may include a latch housing 210, shown in
Perspective views of the latch member 250 are shown in
The beam 255, which may be generally slender, may transition and widen to form peripheral walls about an opening 275A, the size of which may depend upon the cross-sectional shape of the post 76 of lever arm 70 of the lock assembly 100, to provide for engagement of the post with the latch member 250. The opening 275A may be an elongated shape, which may, for example, be generally rectangular-shaped, as shown in
Extending away from the far end of the peripheral walls formed about opening 275A may be a secondary beam 255A that may be formed substantially the same as beam 255, and the distal end of which may similarly widen to form peripheral walls about an opening 275B that may be constructed the same as opening 275A. The connection of the beam 255A with the peripheral walls about opening 275A may include a first notch 255N1 on a first side of the beam and a second notch 255N2 on a second side of the beam, to produce a cross-sectional area that may be weakened. The weakened area may be used to sever the secondary beam 255A from the peripheral walls associated with the opening 275A of beam 255, where it is necessary/desirable to use the first opening 275A for receiving the post 76 of the lever arm 70 of the sash lock 100, with respect to mounting upon a meeting mail of a window of a particular size. A third beam 255B with peripheral walls about an opening 275C may be similarly formed. An additional pair of notches (255BN1 and 255BN2) may be similarly formed, or may instead be formed in its central region, to permit severing of the most distal portion of the beam, being just beyond the cylindrical protrusion 255P2.
Biasing of the slidable latch member 250 relative to the housing 210 may be through the use of a suitably arranged tension spring, or by using a compression spring. To simplify the presentation, the figures herein only depict an embodiment where a compression spring is utilized.
The latch assembly 200 is shown in
A keeper 400 that may be engaged by the cam 50 of the sash lock assembly 100 is shown in
One configuration for a stop assembly 300, for use in combination with the latch assembly 200 disclosed herein, is shown in
One embodiment of the slidable stop member 350 is shown in
Assembly of the slidable stop member 350 and spring 395 into the housing 310 may be seen in
To accommodate installation of the latch assembly 200, the sash window frame 525, as seen in
To accommodate installation of the sash lock assembly 100, the top of the meeting rail 525M may have an elongated opening 525ME formed therein, adjacent to which may be a first hole 525A, and a second hole 525B. The elongated opening 525ME may be shaped and positioned to provide suitable clearance for the post 76 of the lever arm 70, and for its movement between the extended locking position (
The initial installation of the latch assembly 200 is shown in
One or more of the beams (255, 255A, and 255B) of the latch member 250 may be formed to include a vertical protrusion. For example, beams 255 and 255B of the latch member 250 may each formed to each include a respective vertical protrusion 255P1/255P2 that may protrude down from the bottom surface of the beam. The protrusions 255P1/255P2, which may be cylindrical, may be formed of a selective length so as to contact the bottom wall of the meeting rail 525M to provide support for the beam of the latch member to be maintained at a substantially horizontal position, which may be a substantially central position within the hollow meeting rail of the sash window, or may be just a desired height above the bottom wall of the meeting rail. The protrusions 255P1/255P2 may also serve to prevent disengagement of the post 76 of the lever arm 70 from the opening 275A (or from openings 275B/275C, whichever is utilized), which may co-act in combination with the protrusion 77 of the post 76 of the lever arm 70.
One of the openings 275A, 275B, 275C on one of the beams (e.g., 255, 255A, or 255B) of the latch assembly 200 may be coordinated with and properly positioned for alignment below the opening 525ME in the meeting rail 525M of the sash window frame 525 (see
The initial installation of the sash lock assembly 100 upon the sash window frame 525 is also illustrated in the exploded view of
After insertion of the post 76 through the opening 525ME in the top of the meeting rail 525M and into the rectangular opening 275B of the latch beam, the sash lock assembly 100 may then be rotated roughly 90 degrees. Next the sash lock 100 may be lowered for the bottom surface 11 of the sash lock housing 10 to contact and be flush with the top of the meeting rail, and be fastened to the holes 525A and 525B therein, using fasteners through the hollow cylindrical protrusions 15 and 16 of the housing 10. The 90 degree rotation of the sash lock assembly 100 just prior to its securement to the meeting rail may orient the long transverse direction of the post 76 of lever arm 70 to be parallel to the axial direction 525AX of the meeting rail 525M, so that it may be generally in-line with the shorter width 275W of the rectangular opening 275A in the latch member 250.
The width 275W of the rectangular opening 275A in the latch member 250 may be just slightly larger than the long transverse direction of the post 76 of the lever arm 70 positioned therein, so that movement of the post actuates the latch member of the latch assembly, to provide the above noted interconnection therebetween. The protrusion 77 may redundantly serve to prevent disconnection of the post 76 of the lever arm from the opening 275B in the latch member (i.e., preventing the latch member from falling off of the post). The protrusions 2551 and 255P2 on the latch beams 255 etc. may serve to maintain the latch beam(s) (e.g., 255, 255A, and 255B) at the proper elevation within the meeting rail, to redundantly prevent such disconnection.
The sash lock assembly 100 and the latch assembly 200 are shown installed with respect to the sliding sash window frame 525M, in
In
With both the cam 50 disengaged from the keeper 400 and the tongue 253 of the latch member 250 moved clear of the housing 310 of the stop assembly 300, the sash window frame may slide away from the closed window position. The tongue 253 in its first retracted position still has a portion thereof disposed within track of the master window frame 500 to prevent tilting during such sliding.
As the sash window frame 525 continues to slide open the top engagement surface 254T of the tongue 253 (
Also, in order for a child to be prevented from egressing through an opening between the bottom of the sash window frame 525 and a corresponding bottom portion of the master window frame 500, the sash window at the restricted open window position of
It is further noted that the stop assembly may include multiple slidable stop members to provide for multiple restricted window open positions (e.g., two slidable stop members that respectively provide a first window open gap of 3 inches and a second window open gap of 6 inches).
When the user desires to open the sash window frame 525 beyond the restricted window open position shown in
With the tongue 253 of the latch member 250 in its second retracted position, a portion thereof still remains disposed within the track of the master window frame 500 (
Once the outside of the glazing of the window has been cleaned, the shaft/handle member 40 may again be rotated to the 180 degree position so that the sash window frame 525 may be pivoted back into the master window frame 500. Upon releasing of the shaft/handle member 40 it may again be biased back into the second retracted position or back into the first retracted unlock position, depending upon the degree of latch spring biasing and the shape of the follower surface of the cam (see
As seen in
When the user no longer desires to ventilate the room, the sash window 525 may be lowered into the closed window position, and the shaft/handle member 40 may be returned to the zero degree position to once again lock the cam 50 with respect to the keeper 400, as seen in
While illustrative implementations of one or more embodiments of the present invention are provided hereinabove, those skilled in the art and having the benefit of the present disclosure will appreciate that further embodiments may be implemented with various changes within the scope of the present invention. Other modifications, substitutions, omissions and changes may be made in the design, size, materials used or proportions, operating conditions, assembly sequence, or arrangement or positioning of elements and members of the exemplary embodiments without departing from the spirit of this invention.
Accordingly, the breadth and scope of the present disclosure should not be limited by any of the above-described example embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims priority on U.S. Provisional Application Ser. No. 62/573,805 filed on Oct. 18, 2017, having the title “Improved Lock Tilt Combo with WOCD,” the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
16228 | Copeland | Dec 1856 | A |
30408 | Judd | Oct 1860 | A |
36524 | Minor | Sep 1862 | A |
51222 | Ridell | Nov 1865 | A |
108778 | Gorman | Nov 1870 | A |
115781 | Steele | Jun 1871 | A |
126872 | Buckman | May 1872 | A |
148857 | Smith | Mar 1874 | A |
163008 | Gillespie | May 1875 | A |
166842 | Berryman | Aug 1875 | A |
178360 | Cooper | Jun 1876 | A |
190074 | Penfield | Apr 1877 | A |
192614 | Andrews | Jul 1877 | A |
192919 | Hoyt | Jul 1877 | A |
201146 | Adler | Mar 1878 | A |
226033 | Burns | Mar 1880 | A |
230476 | Green | Jul 1880 | A |
234387 | Burgess | Nov 1880 | A |
284993 | Abele | Sep 1883 | A |
314350 | Smith | Mar 1885 | A |
316285 | McKeen | Apr 1885 | A |
331005 | Sahr | Nov 1885 | A |
336302 | Dudgeon | Feb 1886 | A |
346788 | Teufel | Aug 1886 | A |
350678 | Hussey | Oct 1886 | A |
353287 | Chumard | Nov 1886 | A |
368595 | King | Aug 1887 | A |
369885 | Shaw | Sep 1887 | A |
375656 | Shaw | Dec 1887 | A |
376252 | McIntyre | Jan 1888 | A |
379910 | Rosentreter | Mar 1888 | A |
410728 | Brown | Sep 1889 | A |
417868 | Janes | Dec 1889 | A |
423761 | Hasenpflug | Mar 1890 | A |
426303 | McGovern | Apr 1890 | A |
447068 | Dixon | Feb 1891 | A |
452723 | Schmalhausen | May 1891 | A |
471363 | Sloan | Mar 1892 | A |
480148 | Theby | Aug 1892 | A |
493159 | Gibson | Mar 1893 | A |
509941 | Perry | Dec 1893 | A |
512593 | Webster | Jan 1894 | A |
520754 | Burmeister | May 1894 | A |
526118 | Sharp | Sep 1894 | A |
528656 | Burmeister | Nov 1894 | A |
530078 | Ammerman | Dec 1894 | A |
534185 | Winchester | Feb 1895 | A |
537258 | Wilcox | Apr 1895 | A |
539030 | Bitner | May 1895 | A |
551181 | Dillon | Dec 1895 | A |
551242 | Wallace | Dec 1895 | A |
554448 | Keil | Feb 1896 | A |
564426 | Hubbard | Jul 1896 | A |
572591 | Woodard | Dec 1896 | A |
587424 | Bonine | Aug 1897 | A |
590225 | Hill | Sep 1897 | A |
653458 | Paquette | Jul 1900 | A |
666596 | Breen | Jan 1901 | A |
683928 | Geraghty | Oct 1901 | A |
688491 | Sigler | Dec 1901 | A |
695736 | Kendrick | Mar 1902 | A |
698742 | Scharnweber | Apr 1902 | A |
699696 | Mellen | May 1902 | A |
708406 | Robison | Sep 1902 | A |
714343 | Wellman | Nov 1902 | A |
718007 | Linn | Jan 1903 | A |
719981 | Adams | Feb 1903 | A |
722162 | St. Louis | Mar 1903 | A |
724466 | Hannan | Apr 1903 | A |
743716 | Hadka | Nov 1903 | A |
744755 | Hasenpflug | Nov 1903 | A |
745888 | McElwee | Dec 1903 | A |
749469 | Assorati | Jan 1904 | A |
756453 | Arens | Apr 1904 | A |
756559 | Arens | Apr 1904 | A |
757249 | Barnard | Apr 1904 | A |
759642 | Sparks | May 1904 | A |
764493 | Noseworthy | Jul 1904 | A |
769386 | Johnson | Sep 1904 | A |
769767 | Phelps | Sep 1904 | A |
774536 | Saunders | Nov 1904 | A |
775602 | Hearnshaw | Nov 1904 | A |
800043 | Witte | Sep 1905 | A |
804994 | Andrews | Nov 1905 | A |
815537 | Kissinger | Mar 1906 | A |
833900 | Sigler | Oct 1906 | A |
837811 | Ebbeson | Dec 1906 | A |
840427 | Brister | Jan 1907 | A |
865090 | Eddy | Sep 1907 | A |
866073 | Saunders | Sep 1907 | A |
878206 | Johnson | Feb 1908 | A |
881658 | Bowman | Mar 1908 | A |
886108 | Allen | Apr 1908 | A |
887690 | Pearce | May 1908 | A |
922894 | Heid | May 1908 | A |
897719 | Daubaignan | Sep 1908 | A |
900079 | Bittorf | Oct 1908 | A |
910850 | Petrie | Jan 1909 | A |
913730 | Kapus | Mar 1909 | A |
926899 | Roy | Jul 1909 | A |
928408 | Taube | Jul 1909 | A |
948628 | Jefferis | Feb 1910 | A |
959150 | Morris | May 1910 | A |
963983 | Bernhard | Jul 1910 | A |
966063 | Toothaker | Aug 1910 | A |
976777 | Brown | Nov 1910 | A |
980131 | Shean | Dec 1910 | A |
998642 | Shean | Jul 1911 | A |
1003386 | Welker | Sep 1911 | A |
1006211 | Hermon | Oct 1911 | A |
1020454 | Seidenbecker | Mar 1912 | A |
1041803 | Kilburn | Oct 1912 | A |
1051918 | Rowley | Feb 1913 | A |
1059999 | James | Apr 1913 | A |
1069079 | Voight | Jul 1913 | A |
1077487 | Miller | Nov 1913 | A |
1080172 | Rusk | Dec 1913 | A |
1100820 | Edwards | Jun 1914 | A |
1121228 | Burkhart | Dec 1914 | A |
1122020 | O'Rourke | Dec 1914 | A |
1127835 | Westlund | Feb 1915 | A |
1133217 | Barton | Mar 1915 | A |
1141437 | Unterlender | Jun 1915 | A |
1148712 | Overland | Aug 1915 | A |
1163086 | Harper | Dec 1915 | A |
1173129 | Taliaferro | Feb 1916 | A |
1177637 | Lane | Apr 1916 | A |
1177838 | Wilkinson | Apr 1916 | A |
1207989 | O'Rourke | Dec 1916 | A |
1232683 | Hoillis | Jul 1917 | A |
1243115 | Shur | Oct 1917 | A |
1244725 | Gadke | Oct 1917 | A |
1253810 | Gianninalo | Jan 1918 | A |
1261274 | Newsam | Apr 1918 | A |
1269467 | Winters | Jun 1918 | A |
1270740 | Keyes | Jun 1918 | A |
1272900 | Berman | Jul 1918 | A |
1279353 | Kelley | Sep 1918 | A |
1311052 | Danforth | Jul 1919 | A |
1322677 | Ditlefsen | Nov 1919 | A |
1338250 | Parkes | Apr 1920 | A |
1338416 | Bellinger | Apr 1920 | A |
1339362 | L'Heureux | May 1920 | A |
1341234 | Horton | May 1920 | A |
1350698 | Boedtcher | Aug 1920 | A |
1387302 | Page | Aug 1921 | A |
1388272 | Lawrence | Aug 1921 | A |
1393628 | Leichter | Oct 1921 | A |
1398174 | Carlson | Nov 1921 | A |
1399897 | Singer | Dec 1921 | A |
1412154 | Wollesen | Apr 1922 | A |
1439585 | Trost | Dec 1922 | A |
1461467 | Stuart | Jul 1923 | A |
1463866 | Bourbeau | Aug 1923 | A |
1470858 | Maxwell | Oct 1923 | A |
1485382 | Foley | Mar 1924 | A |
1490874 | Webb | Apr 1924 | A |
1516995 | Trigueiro | Nov 1924 | A |
1550532 | French | Aug 1925 | A |
1552690 | Frantz | Sep 1925 | A |
1587037 | Rudolph | Jun 1926 | A |
1601051 | Wilbert | Sep 1926 | A |
1605717 | Gregg | Nov 1926 | A |
1619031 | Ostrosky | Mar 1927 | A |
1622742 | Shipman | Mar 1927 | A |
1656818 | Dillon | Jan 1928 | A |
1692579 | Schrader | Nov 1928 | A |
1704946 | Lindgren | Mar 1929 | A |
1712792 | Hansen | May 1929 | A |
1715957 | Stein | Jun 1929 | A |
1724637 | Bergstrom | Aug 1929 | A |
1750715 | Jeffers | Mar 1930 | A |
1794171 | Grutel | Feb 1931 | A |
1812288 | Drapeau | Jun 1931 | A |
1819824 | McAllister | Aug 1931 | A |
1864253 | McIntyre | Jun 1932 | A |
1869274 | Phillips | Jul 1932 | A |
1877177 | Hinderer | Sep 1932 | A |
1891940 | McAllister | Dec 1932 | A |
1900936 | Huttger | Mar 1933 | A |
1901974 | Macy | Mar 1933 | A |
1918114 | Lorenzen | Jul 1933 | A |
1922062 | Sullivan | Aug 1933 | A |
1940084 | Grasso | Dec 1933 | A |
1960034 | Stewart | May 1934 | A |
1964114 | Gerlach | Jun 1934 | A |
2095057 | Corrado | Oct 1937 | A |
2122661 | Rightmyer | Jul 1938 | A |
2126995 | Kingdon | Aug 1938 | A |
2136408 | Bedell | Nov 1938 | A |
2158260 | Stillman | May 1939 | A |
2202561 | Lahiere | May 1940 | A |
2232965 | Perl | Feb 1941 | A |
2272145 | Anderson | Feb 1942 | A |
2326084 | Westrope | Aug 1943 | A |
2369584 | Lundholm | Feb 1945 | A |
2452521 | Johnson | Oct 1948 | A |
2480016 | Granberg | Aug 1949 | A |
2480988 | Walton | Sep 1949 | A |
2500349 | Menns | Mar 1950 | A |
2503370 | Zanona | Apr 1950 | A |
2523559 | Couture | Sep 1950 | A |
2627278 | Schemansky | Oct 1950 | A |
2537736 | Carlson | Jan 1951 | A |
2560274 | Cantelo | Jul 1951 | A |
2581816 | Schlueter | Jan 1952 | A |
2590624 | James | Mar 1952 | A |
2599196 | Peremi | Jun 1952 | A |
2605125 | Emerson | Jul 1952 | A |
2612398 | Miller | Sep 1952 | A |
2613526 | Holmsten | Oct 1952 | A |
2621951 | Osladal | Dec 1952 | A |
2645515 | Thomas | Jul 1953 | A |
2648967 | Holmsten | Aug 1953 | A |
2670982 | Banham | Mar 1954 | A |
2692789 | Rivard | Oct 1954 | A |
2735707 | Sylvan | Feb 1956 | A |
2758862 | Endter | Aug 1956 | A |
2766492 | Day | Oct 1956 | A |
2789851 | Lickteig | Apr 1957 | A |
2818919 | Sylvan | Jan 1958 | A |
2846258 | Granberg | Aug 1958 | A |
2855772 | Hillgren | Oct 1958 | A |
2884276 | Baptist | Apr 1959 | A |
2920914 | Jenkins | Jan 1960 | A |
2941832 | Grossman | Jun 1960 | A |
2997323 | Riser | Aug 1961 | A |
3027188 | Eichstadt | Mar 1962 | A |
3122387 | Wakelin | Feb 1964 | A |
3135542 | Wilkenson | Jun 1964 | A |
3187526 | Moler | Jun 1965 | A |
3267613 | McQuiston | Aug 1966 | A |
3288510 | Gough | Nov 1966 | A |
3352586 | Hakanson | Nov 1967 | A |
3362740 | Burns | Jan 1968 | A |
3422575 | Armstrong | Jan 1969 | A |
3425729 | Bisbing | Feb 1969 | A |
3438153 | Lemme | Apr 1969 | A |
3469877 | Hutchison | Sep 1969 | A |
3599452 | Maruyama | Aug 1971 | A |
3600019 | Toyota | Aug 1971 | A |
3642315 | Alpern | Feb 1972 | A |
3645573 | Strang | Feb 1972 | A |
3683652 | Halopoff | Aug 1972 | A |
3706467 | Martin | Dec 1972 | A |
3762750 | Orr | Oct 1973 | A |
3811718 | Bates | May 1974 | A |
3907348 | Bates | Sep 1975 | A |
3919808 | Simmons | Nov 1975 | A |
3927906 | Mieras | Dec 1975 | A |
3930678 | Alexander | Jan 1976 | A |
4063766 | Grasberg | Feb 1977 | A |
4054308 | Prohaska | Oct 1977 | A |
4059298 | Van Klompenburg | Nov 1977 | A |
4068871 | Mercer | Jan 1978 | A |
4095827 | Stavenau | Jun 1978 | A |
4095829 | Van Klompenburg | Jun 1978 | A |
4102546 | Costello | Jul 1978 | A |
4151682 | Schmidt | May 1979 | A |
4165894 | Wojciechowski | Aug 1979 | A |
4223930 | Costello | Sep 1980 | A |
4227345 | Durham | Oct 1980 | A |
4235465 | Costello | Nov 1980 | A |
4253688 | Hosooka | Mar 1981 | A |
4261602 | Anderson | Apr 1981 | A |
4274666 | Peck | Jun 1981 | A |
4293154 | Cassells | Oct 1981 | A |
4303264 | Uehara | Dec 1981 | A |
4305612 | Hunt | Dec 1981 | A |
4392329 | Suzuki | Jul 1983 | A |
4429910 | Anderson | Feb 1984 | A |
4470277 | Uyeda | Sep 1984 | A |
4475311 | Gibson | Oct 1984 | A |
4525952 | Cunningham | Jul 1985 | A |
4580366 | Hardy | Apr 1986 | A |
4587759 | Gray | May 1986 | A |
4621847 | Paulson | Nov 1986 | A |
4624073 | Randall | Nov 1986 | A |
4639021 | Hope | Jan 1987 | A |
4643005 | Logas | Feb 1987 | A |
4655489 | Bisbing | Apr 1987 | A |
4736972 | Mosch | Apr 1988 | A |
4801164 | Mosch | Jan 1989 | A |
4813725 | Mosch | Mar 1989 | A |
4824154 | Simpson | Apr 1989 | A |
4826222 | Davis | May 1989 | A |
4827685 | Schmidt | May 1989 | A |
4893849 | Schlack | Jan 1990 | A |
4922658 | Coddens | May 1990 | A |
4923230 | Simpson | May 1990 | A |
4949506 | Durham | Aug 1990 | A |
4961286 | Bezubic | Oct 1990 | A |
4991886 | Nolte | Feb 1991 | A |
5042855 | Bennett | Aug 1991 | A |
5072464 | Draheim | Dec 1991 | A |
5076015 | Manzalini | Dec 1991 | A |
5087087 | Vetter | Feb 1992 | A |
5087088 | Milam | Feb 1992 | A |
5090750 | Lindqvist | Feb 1992 | A |
5090754 | Thompson | Feb 1992 | A |
5092640 | Plummer | Mar 1992 | A |
5110165 | Piltingsrud | May 1992 | A |
5127685 | Dallaire | Jul 1992 | A |
5139291 | Schultz | Aug 1992 | A |
5143412 | Lindqvist | Sep 1992 | A |
5161839 | Piltingsrud | Nov 1992 | A |
5165737 | Riegelman | Nov 1992 | A |
5183310 | Shaughnessy | Feb 1993 | A |
5217264 | Fier | Jun 1993 | A |
5219193 | Piltingsrud | Jun 1993 | A |
5244238 | Lindqvist | Sep 1993 | A |
5248174 | Matz | Sep 1993 | A |
5274955 | Dallaire | Jan 1994 | A |
5341752 | Hambleton | Aug 1994 | A |
5398447 | Morse | Mar 1995 | A |
5437484 | Yamada | Aug 1995 | A |
5448857 | Stormo | Sep 1995 | A |
5452925 | Huang | Sep 1995 | A |
5454609 | Slocomb | Oct 1995 | A |
5536052 | Maier | Jul 1996 | A |
5553903 | Prete | Sep 1996 | A |
5560149 | Lafevre | Oct 1996 | A |
5575116 | Carlson | Nov 1996 | A |
5582445 | Olsen | Dec 1996 | A |
RE35463 | Vetter | Feb 1997 | E |
5636475 | Nidelkoff | Jun 1997 | A |
5688000 | Dolman | Nov 1997 | A |
5715631 | Kailian | Feb 1998 | A |
5741032 | Chaput | Apr 1998 | A |
5778602 | Johnsen | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5806900 | Bratcher | Sep 1998 | A |
5829196 | Maier | Nov 1998 | A |
5839767 | Piltingsrud | Nov 1998 | A |
5901499 | Delaske | May 1999 | A |
5901501 | Fountaine | May 1999 | A |
5911763 | Quesada | Jun 1999 | A |
5927768 | Dallmann | Jul 1999 | A |
5970656 | Maier | Oct 1999 | A |
5992907 | Sheldon | Nov 1999 | A |
6000735 | Jourdenais | Dec 1999 | A |
6086121 | Buckland | Jul 2000 | A |
6116665 | Subliskey | Sep 2000 | A |
6135510 | Diginosa | Oct 2000 | A |
6139071 | Hopper | Oct 2000 | A |
6142541 | Rotondi | Nov 2000 | A |
6155615 | Schulz | Dec 2000 | A |
6176041 | Roberts | Jan 2001 | B1 |
6178696 | Liang | Jan 2001 | B1 |
6183024 | Schultz | Feb 2001 | B1 |
6209931 | Von Stoutenborough | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6230443 | Schultz | May 2001 | B1 |
6250694 | Weiland | Jun 2001 | B1 |
6279266 | Searcy | Aug 2001 | B1 |
6349576 | Subliskey | Feb 2002 | B2 |
6364375 | Szapucki | Apr 2002 | B1 |
6450544 | Rofondi | Sep 2002 | B2 |
6546671 | Mitchell | Apr 2003 | B2 |
6565133 | Timothy | May 2003 | B1 |
6568723 | Murphy | May 2003 | B2 |
6588150 | Wong | Jul 2003 | B1 |
6592155 | Lemley | Jul 2003 | B1 |
6607221 | Elliott | Aug 2003 | B1 |
6631931 | Magnusson | Oct 2003 | B2 |
6634683 | Brannan | Oct 2003 | B1 |
6688659 | Kobrehel | Feb 2004 | B2 |
6817142 | Marshik | Nov 2004 | B2 |
6848728 | Rotondi | Feb 2005 | B2 |
6871885 | Goldenberg | Mar 2005 | B2 |
6871886 | Coleman | Mar 2005 | B2 |
6877784 | Kelley | Apr 2005 | B2 |
6925758 | Petit | Aug 2005 | B2 |
6957513 | Pettit | Oct 2005 | B2 |
6983963 | Eslick | Jan 2006 | B2 |
7000957 | Lawrence | Feb 2006 | B2 |
7013603 | Eenigenburg | Mar 2006 | B2 |
7017957 | Murphy | May 2006 | B2 |
7036851 | Romig | May 2006 | B2 |
7063361 | Lawrence | Jun 2006 | B1 |
7070211 | Polowinczak | Jul 2006 | B2 |
7070215 | Kelley | Jul 2006 | B2 |
7100951 | Jien | Sep 2006 | B2 |
7147255 | Goldenberg | Dec 2006 | B2 |
7159908 | Liang | Jan 2007 | B2 |
7171784 | Eenigenburg | Feb 2007 | B2 |
7296831 | Generowicz | Nov 2007 | B2 |
7322619 | Nolte | Jan 2008 | B2 |
7322620 | Lawrence | Jan 2008 | B1 |
7407199 | Richardson | Aug 2008 | B2 |
7431356 | Liang | Oct 2008 | B2 |
7441811 | Lawrence | Oct 2008 | B2 |
7481470 | Eenigenburg | Jan 2009 | B2 |
7510221 | Eenigenburg | Mar 2009 | B2 |
7530611 | Liang | May 2009 | B2 |
7559588 | Liang | Jul 2009 | B2 |
7607262 | Pettit | Oct 2009 | B2 |
7637544 | Liang | Dec 2009 | B2 |
7665775 | Miller | Feb 2010 | B1 |
7699365 | Liang | Apr 2010 | B2 |
7922223 | Lawrence | Apr 2011 | B2 |
7976077 | Flory | Jul 2011 | B2 |
8205919 | Flory | Jun 2012 | B2 |
8205920 | Flory | Jun 2012 | B2 |
8220846 | Liang | Jul 2012 | B2 |
8231148 | Van Der Kooij | Jul 2012 | B2 |
8235430 | Liang | Aug 2012 | B2 |
8272164 | Albrecht | Sep 2012 | B2 |
8336930 | Liang | Dec 2012 | B2 |
8360484 | Liang | Jan 2013 | B2 |
8414039 | Liang | Apr 2013 | B2 |
8511724 | Liang | Aug 2013 | B2 |
8550507 | Barton | Oct 2013 | B2 |
8567830 | Liang | Oct 2013 | B2 |
8657347 | Liang | Feb 2014 | B2 |
8726572 | Derham | May 2014 | B2 |
8789857 | Liang | Jul 2014 | B2 |
8789862 | Liang | Jul 2014 | B2 |
8833809 | Liang | Sep 2014 | B2 |
8844985 | Liang | Sep 2014 | B2 |
8870244 | Liang | Oct 2014 | B2 |
8881461 | Derham | Nov 2014 | B2 |
9103144 | Liang | Aug 2015 | B2 |
9140033 | Wolf | Sep 2015 | B2 |
9376834 | Liang | Jun 2016 | B2 |
9493970 | Campbell | Nov 2016 | B2 |
9816300 | Derham | Nov 2017 | B2 |
20060192391 | Pettit | Aug 2006 | A1 |
20060244270 | Rotondi | Nov 2006 | A1 |
20070205615 | Eenigenburg | Sep 2007 | A1 |
20080012358 | Liang | Jan 2008 | A1 |
20080022728 | Flory | Jan 2008 | A1 |
20080169658 | Wolf | Jul 2008 | A1 |
20100199726 | Varney | Aug 2010 | A1 |
20100218425 | Nolte | Sep 2010 | A1 |
20100263415 | Rupsil | Oct 2010 | A1 |
20130214545 | Wolf | Aug 2013 | A1 |
20130283695 | Hollermann | Oct 2013 | A1 |
20150252596 | Liang | Sep 2015 | A1 |
20150275556 | Curtis | Oct 2015 | A1 |
20160069108 | Liang | Mar 2016 | A1 |
20160076282 | Wolf | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
3300975 | Jul 1984 | DE |
2 286 627 | Aug 1995 | GB |
2 461 079 | Dec 2009 | GB |
2 461 107 | Dec 2009 | GB |
2 461 108 | Dec 2009 | GB |
Entry |
---|
Press Fit Forces Stress Design Calculator, Jun. 18, 2018, available at: www.engineersedge.com/calculators/machine-design/press-fit/press-fit.htm. |
“Three General Types of Fit,” available at www.mmto.org/dclark/Reports/Encoder%20Upgrade/fittolerences%20%5BRead-Only%5D.pdf., Jul. 8, 2019. |
“Engineering Fit,” available at: https://en.wikipedia.org/wiki/Engineering_fit, Jul. 8, 2019. |
Number | Date | Country | |
---|---|---|---|
62573805 | Oct 2017 | US |