The present invention relates to improvements in locks and tilt latches for slidable sash windows, and more particularly to improvements to an integral sash lock/tilt latch combination.
Single hung and double hung sliding sash windows are commonly used today in the construction of residential and commercial buildings. Sash locks are typically mounted to the meeting rail of the bottom sash window to lock the sash or sashes, by preventing the lower sash (or both the lower and upper sashes for a double hung window), from being opened through sliding movement relative to the master window frame. Also, in order to assist in the cleaning of the exterior of these sliding sash windows, it is common for window manufacturers to incorporate a tilt latch device thereon that permits one end of the sliding sash window to be released from the track of the master window frame. This allows the sash window to be pivoted into the room, for easy access to the exterior surface of the glazing that is normally exposed to the exterior environment of the building.
The present invention seeks to provide improvements to such window hardware in the form of an integrated sash lock and tilt latch fastener for single hung or double hung windows.
It is an object of the invention to provide a sash lock to prevent relative sliding movement of one or both sliding sash windows that are slidable within a master window frame.
It is another object of the invention to provide a tilt latch to permit pivoting of a sliding sash window inwardly into the room in which the window is installed.
It is a further object of the invention to provide a combination sash lock and tilt latch that act cooperatively through the use of a single handle member.
It is another object of the invention to provide a sash lock that may be easily installed upon the meeting rail of the sliding sash window without the use of mechanical fasteners, and may also be easily removed therefrom.
It is also an object of the invention to provide a tilt latch device that may be blindly coupled to a sash lock for cooperative interaction and actuation therefrom.
Further objects and advantages of the invention will become apparent from the following description and claims, and from the accompanying drawing figures.
An integral sash locking and tilt latching fastener for a sliding sash window includes a lock assembly and a latch assembly. The sash lock assembly is configured to be releasably mounted to the top of the meeting rail of the sash window without screws, and includes a locking cam pivotably mounted to the sash lock housing, and is thereby configured to rotate out from a cavity in the housing to releasably engage a keeper on the master window frame, to inhibit sliding movement of the sash window. The sash lock may also include a pivotable lever arm with a post that is configured to extend beyond the lock housing, and into the hollow of the meeting rail.
The latch may include a biasing means and a latch member that may be slidably received within the side of the meeting rail. The biasing means and latch member may alternatively be received into a latch housing for ease of its installation into the meeting rail. The latch member may include a tongue and a flexible beam extending away from the tongue. The end of the beam distal from the tongue may include a fixed funnel member and a flexible funnel member. The fixed funnel member and the flexible funnel member may be configured to permit the latch assembly to blindly engage the pivotable lever arm of the lock assembly within the meeting rail, when installed therein. The flexible funnel member may deflect during such engagement, so that the post of the pivotal lever arm protruding into the interior hollow of the meeting rail may be received within an opening formed by the fixed funnel member and the flexible funnel member. The biasing member of the latch assembly may be configured to normally bias the latch member so that a portion of the tongue protrudes out from the meeting rail, and simultaneously biases the locking cam of the sash lock towards the latched position.
The locking cam may have a graspable shaft portion that protrudes upwardly, out from an orifice in the sash lock housing, to permit actuation of the device (cam rotation) by a user. Alternatively, the cam may have a separate handle member secured thereto, which may facilitate easy rotation and counter-rotation of the cam.
In addition to being configured to properly engage the key of the keeper to lock the sash to prevent its sliding movement, the locking cam may be configured to selectively drive the pivotable lever arm of the sash lock, and may include three key positions. The locking cam and handle combination may have a first position, in which the sash lock is locked to prevent sliding movement, and the sash latch is latched to prevent pivoting of the sash window. The locking cam and handle combination may have a second position, in which the sash lock is unlocked and the window is free to undergo sliding movement, but the sash latch remains latched to still prevent pivoting of the sash window. The locking cam and handle combination may also have a third position, in which the sash lock is still unlocked and free to undergo sliding movement, but the sash latch is also unlatched, so that the sash window may be pivoted inwardly. Movement of the locking cam and handle combination from the second position to the third position causes the cam to drive the pivotable lever arm to rotate, so that the arm engages the fixed funnel member of the latch assembly, and overcomes the biasing of the latch spring to cause translation of the latch into the retracted position.
The housing of the lock assembly may include one or more hooked legs that are configured to be received within one or more corresponding openings in the top of the meeting rail, for the releasable mounting of the lock assembly thereto, without screws. The lock assembly may be releasably secured in this position by a leaf spring that is fixedly secured to the underneath of the sash lock housing, and which has a portion that protrudes out beyond the sash lock housing to engage in one of the openings in the meeting rail. Removal of the sash lock may be easily accomplished by using a pry tool to deflect the leaf spring from its engagement in the rail opening, to permit appropriate sliding and pivoting of the sash lock assembly to effect removal of its legs from the openings in the meeting rail.
The keeper may be similarly constructed to accomplish its releasable securement to the master window frame, or to the other sash member, which may be slidable (double-hung) or may be fixed (single hung sash window).
The integrated sash lock/tilt latch fastener of
Perspective views of the housing 10 of the sash lock assembly 100 are shown in
Extending outwardly from the bottom of the housing 10 may be one or more legs that may be used to secure the sash lock assembly 100 to the sash window. In one embodiment of the housing, one leg constructed according to the following description may suffice for releasably securing of the sash lock assembly 100 to the sash window. In the embodiment shown within
The housing 10 may have a cylindrical boss 18 extending upwardly from the outer surface 13, and may have a cylindrical boss 19 extending downwardly from the interior surface 14, into the housing cavity. Cylindrical boss 18 and cylindrical boss 19 may be generally coaxial, and may have a through hole 20 positioned therein. The hole 20 may be used for pivotal mounting of a shaft extending from the locking cam, or alternatively, the hole 20 may be used for pivotal mounting of a separate shaft/handle member, to which the locking cam may instead be fixedly secured.
In the embodiment illustrated herein, as seen in
The locking cam 50 illustrated in
Protruding away from the hub 53 may be a cylindrical member 57, which may be generally concentric with the hub. The cylindrical member 57 may have a first flat 58A formed thereon, and a second flat 58B formed thereon to be clocked 180 degrees away from the first flat 58A. The flats 58A and 58B may operate as a detent to releasably secure the cam 50, at a sash locked position and at a sash unlocked position, with respect to the leaf spring 90 shown in
Assembly of the locking cam 50 and the shaft/handle member 46 into housing 10 may be seen in
To accommodate screwless installation of the sash lock assembly 100 upon the meeting rail of the sliding sash window, an engagement spring 94 may be utilized in addition to the use of the first, second, and third legs (15, 16, and 17) of the sash lock housing. Engagement spring 94, as seen detailed in
Interaction between the sash lock assembly 100, once installed upon the meeting rail of the sliding sash window, with the latch assembly 200, may be through the use of a lever arm 70 that may be pivotally mounted to the housing 10. The lever arm 70 is seen detailed within
The positions that the component parts of the sash lock assembly are capable of occupying is seen in
When the user wishes to unlock the sliding sash window to permit it to slide in the master window frame, the shaft/handle 40 may be rotated, to correspondingly rotate the locking cam, as shown by the arrow in
This contact may serve to releasably restrain the locking cam 50 from rotating out of the first unlocked position, without being deliberately moved therefrom. Note that since the angle at which the flats 58A/58B were clocked from the flats 59A/59B was approximately 135 degrees, the shaft/handle 40 will need to rotate approximately 135 degrees to actuate the sash lock assembly 100 from the locked position in
When the user wishes to unlatch the sliding sash window to permit one end of it to pivot out from the master window frame and into the room for cleaning of the glazing, the shaft/handle 40 may be rotated to correspondingly rotate the locking cam, as shown by the arrow in
This contact may serve to releasably restrain the locking cam 50 from rotating out of the second unlocked position, without being deliberately moved therefrom. During this rotation of the locking cam 50 from the first unlocked position to the second unlocked position, being roughly 55 degrees, the semi-cylindrical protrusion 56P of the locking cam 50 contacts the arm 75 of locking the cam, and the continued contact of the protrusion along the curved surface 75C of the arm 75 during the 55 degrees of rotation drives the lever arm 70 to pivot, and to cause unlatching of the latch assembly, as discussed hereinafter.
When the user has pivoted the sash window back into the master window frame, and seeks to latch the window therein, the shaft/handle 40 may be counter-rotated roughly 55 degrees to correspondingly counter-rotate the locking cam, as shown by the arrow in
The latch assembly may include a latch member 250 and a biasing means (e.g. spring 291). Perspective views of the latch member 250 are shown in
Extending away from the tongue 253 may be an elongated beam 255 that is flexible, and which may terminate in a fixed funnel member 256 and a flexible funnel member 257. The periphery of the fixed funnel member 256 that is distal to its connection with the beam 255 may be shaped to form an angled funnel surface 256F, which may thereafter transition to form a curved recess 256R. The flexible funnel member may be formed with a periphery that, while the flexible funnel member is undeflected, will be generally disposed across the curved recess 256R of the fixed funnel member 256. The periphery of the flexible funnel member 257 that is distal to its connection with the beam 255 may also be shaped to form an angled funnel extension 257F, whereby the angled funnel surface 256F of the fixed funnel member 256, and the angled funnel surface 257F of the flexible funnel member form a V-shaped funnel arrangement, as seen in
For example, where the sash lock assembly 100 may desirably be located a greater distance away from the master window frame, in a somewhat larger sized window, the secondary fixed/flexible funnel members 256′ and 257′ may be utilized. However, the same latch member 250 may also be utilized where the sash lock assembly 100 may desirably be located at a position closer to the master window frame, in a somewhat smaller sized window, because the secondary beam 255′ with its corresponding secondary fixed/flexible funnel member (256′ and 257′) may be severed from the primary fixed funnel member 256. Its ease of removal and severing therefrom may be accommodated by a notch 255N in the secondary beam 255′ proximate to the first fixed funnel member, to permit a length modification. The notch may be recessed below the angled funnel surface 256F of the fixed funnel member 256 so that its removal would not affect proper operation of the funnel surface, which is discussed further hereinafter.
The dual latch member 250 or the single latch member 250A may be installed through a suitable opening in the side of the meeting rail of the sliding sash window, and may be properly biased using a spring or other biasing means that may be installed therein as well. However, because of the increased complexity of the manufacturing operations necessary to produce the suitable opening in the meeting rail of the sliding sash window, it may be preferable to instead utilize a separate housing with the latch member. The latch housing member 210 may have a simple exterior surface, the complement of which can be easily formed (e.g., bored) into the rail of the sliding sash window, and permit ease of its installation therein.
Perspective views of the housing 210 of the latch assembly 200 are shown in
The biasing of the latch member 250 relative to the housing 210 may be through the use of a suitably arranged tension spring, or by using a compression spring. For the sake of brevity, the figures herein only depict the embodiment where a compression spring is utilized.
The interior surface 215 of housing 210 may be contoured to receive the latch member 250 therein, in a slidable relation. Assembly of the helical compression spring 291 and the latch member 250 into the housing 210 is illustrated in
Installation of the sash lock assembly 100 upon the sliding sash window 300 is illustrated within
As seen in
During pivoting of the sash lock assembly 100 for insertion of the legs 16 and 17 into rail openings 316 and 317, the post 77 of the lever arm 70 may also be inserted into rail opening 370, which may be arcuate in shape to accommodate the pivotal motion of the lever arm upon the post 25 of the sash lock housing 10.
Also, during pivoting of the sash lock assembly 100 for insertion of the legs 16 and 17 into openings 316 and 317, the engagement spring 94 may become deflected from its static position with respect to the sash lock housing 10, as seen in
The final, step in installing the sash lock assembly 100 upon the rail of the sliding sash window 300 is to slide the lock assembly laterally, so that the engagement spring 94 may begin to move into the rail opening 315, back towards its undeflected position, until the legs 98 and 99 of the engagement spring 94 may engage the edge of the rail opening 315 that is distal from the stile 302, as seen in
Uninstalling of the lock assembly 100 is shown in
A keeper assembly 400 may be constructed similar to the lock assembly 100, using a housing 410 and an engagement spring 494, as seen in
Installation of the latch assembly 200 is shown initially in
As the latch assembly 250A is advanced through the opening 310 in the rail, as seen in
The integrated sash lock/tilt latch fastener, which includes sash lock assembly 100 and latch assembly 200 (
The examples and descriptions provided merely illustrate a preferred embodiment of the present invention. Those skilled in the art and having the benefit of the present disclosure will appreciate that further embodiments may be implemented with various changes within the scope of the present invention. Other modifications, substitutions, omissions and changes may be made in the design, size, materials used or proportions, operating conditions, assembly sequence, or arrangement or positioning of elements and members of the preferred embodiment without departing from the spirit of this invention.
Number | Name | Date | Kind |
---|---|---|---|
36524 | Minor | Sep 1862 | A |
51222 | Ridell | Nov 1865 | A |
108778 | Gorman | Nov 1870 | A |
115781 | Steele | Jun 1871 | A |
126872 | Buckman | May 1872 | A |
148857 | Smith | Mar 1874 | A |
166842 | Berryman | Aug 1875 | A |
176360 | Cooper | Jun 1876 | A |
178360 | Cooper | Jun 1876 | A |
192614 | Andrews | Jul 1877 | A |
192919 | Hoyt | Jul 1877 | A |
201146 | Adler | Mar 1878 | A |
215125 | Hunter | May 1879 | A |
226033 | Burns | Mar 1880 | A |
230476 | Green | Jul 1880 | A |
234387 | Burgess | Nov 1880 | A |
284993 | Abele | Sep 1883 | A |
314350 | Smith | Mar 1885 | A |
316235 | McKeen | Apr 1885 | A |
331005 | Sahr | Nov 1885 | A |
336302 | Dudgeon | Feb 1886 | A |
346768 | Teufel | Aug 1886 | A |
350678 | Hussey | Oct 1886 | A |
353287 | Chumard | Nov 1886 | A |
369885 | Shaw | Sep 1887 | A |
375656 | Shaw | Dec 1887 | A |
376252 | McIntyre | Jan 1888 | A |
379910 | McIntyre | Mar 1888 | A |
410728 | Brown | Sep 1889 | A |
417868 | Rosentreter | Dec 1889 | A |
423761 | Hasenpflug | Mar 1890 | A |
452723 | Schmalhausen | May 1891 | A |
480148 | Theby | Aug 1892 | A |
493159 | Gibson | Mar 1893 | A |
509941 | Perry | Dec 1893 | A |
512593 | Webster et al. | Jan 1894 | A |
520754 | Burmeister | May 1894 | A |
526118 | Sharp | Sep 1894 | A |
528656 | Burmeister | Nov 1894 | A |
530078 | Ammerman | Dec 1894 | A |
534185 | Winchester | Feb 1895 | A |
537258 | Wilcox | Apr 1895 | A |
539030 | Bitner | May 1895 | A |
551181 | Dillon | Dec 1895 | A |
551242 | Wallace | Dec 1895 | A |
554448 | Keil | Feb 1896 | A |
564426 | Hubbard | Jul 1896 | A |
587424 | Bonine | Aug 1897 | A |
590225 | Hill | Sep 1897 | A |
653458 | Paquette | Jul 1900 | A |
683928 | Geraghty | Oct 1901 | A |
688491 | Sigler | Dec 1901 | A |
695736 | Kendrick | Mar 1902 | A |
699696 | Mellen | May 1902 | A |
708406 | Robison | Sep 1902 | A |
714343 | Wellman | Nov 1902 | A |
718007 | Linn | Jan 1903 | A |
719981 | Adams | Feb 1903 | A |
722162 | St. Louis | Mar 1903 | A |
724466 | Hannan | Apr 1903 | A |
743716 | Hacka | Nov 1903 | A |
744755 | Hasenpflug | Nov 1903 | A |
745888 | McElwee | Dec 1903 | A |
756453 | Arens | Apr 1904 | A |
756559 | Arens | Apr 1904 | A |
757249 | Barnard | Apr 1904 | A |
759642 | Sparks | May 1904 | A |
764493 | Noseworthy | Jul 1904 | A |
769386 | Johnson | Sep 1904 | A |
769767 | Phelps | Sep 1904 | A |
774536 | Saunders | Nov 1904 | A |
775602 | Heamshaw | Nov 1904 | A |
800043 | Witte | Sep 1905 | A |
804994 | Andrews | Nov 1905 | A |
815537 | Kissinger | Mar 1906 | A |
833900 | Sigler | Oct 1906 | A |
837811 | Ebbeson | Dec 1906 | A |
840427 | Brister | Jan 1907 | A |
865090 | Eddy | Sep 1907 | A |
868073 | Saunders | Sep 1907 | A |
878206 | Johnson | Feb 1908 | A |
881658 | Bowman | Mar 1908 | A |
886108 | Allen | Apr 1908 | A |
887690 | Pearce | May 1908 | A |
922894 | Heid | May 1908 | A |
897719 | Daubaignan | Sep 1908 | A |
900079 | Bittorf | Oct 1908 | A |
910850 | Petrie | Jan 1909 | A |
925899 | Roy | Jul 1909 | A |
928408 | Taube | Jul 1909 | A |
948628 | Jefferis | Feb 1910 | A |
959150 | Morris | May 1910 | A |
966063 | Toothaker | Aug 1910 | A |
976777 | Brown | Nov 1910 | A |
980131 | Shean | Dec 1910 | A |
998642 | Shean | Jul 1911 | A |
1003386 | Welker | Sep 1911 | A |
1006211 | Hermon | Oct 1911 | A |
1020454 | Seidenbecker | Mar 1912 | A |
1041803 | Kilburn | Oct 1912 | A |
1051918 | Rowley | Feb 1913 | A |
1059999 | James et al. | Apr 1913 | A |
1069079 | Voight | Jul 1913 | A |
1077487 | Miller | Nov 1913 | A |
1080172 | Rusk | Dec 1913 | A |
1100820 | Edwards | Jun 1914 | A |
1121228 | Burkhart | Dec 1914 | A |
1122026 | O'Rourke | Dec 1914 | A |
1127835 | Westlund | Feb 1915 | A |
1133217 | Barton | Mar 1915 | A |
1141437 | Unterlender | Jun 1915 | A |
1148712 | Overland | Aug 1915 | A |
1163086 | Harper | Dec 1915 | A |
1173129 | Taliaferro | Feb 1916 | A |
1177637 | Lane | Apr 1916 | A |
1177838 | Wilkinson | Apr 1916 | A |
1207989 | O'Rourke | Dec 1916 | A |
1232683 | Hollis | Jul 1917 | A |
1243115 | Shur | Oct 1917 | A |
1247182 | Tuekmantel | Nov 1917 | A |
1253810 | Gianninoto | Jan 1918 | A |
1261274 | Newsam | Apr 1918 | A |
1269467 | Winters | Jun 1918 | A |
1270740 | Keyes | Jun 1918 | A |
1272900 | Berman | Jul 1918 | A |
1279353 | Keiley | Sep 1918 | A |
1311052 | Danforth | Jul 1919 | A |
1322677 | Ditlefsen | Nov 1919 | A |
1338250 | Parkes | Apr 1920 | A |
1338416 | Bellinger | Apr 1920 | A |
1339362 | L'Heureux | May 1920 | A |
1341234 | Honon | Jun 1920 | A |
1350698 | Boedtcher | Aug 1920 | A |
1387302 | Page | Aug 1921 | A |
1388272 | Lawrence | Aug 1921 | A |
1393628 | Leichter | Oct 1921 | A |
1398174 | Carlson | Nov 1921 | A |
1399897 | Singer | Dec 1921 | A |
1412154 | Wollesen | Apr 1922 | A |
1439585 | Trost | Dec 1922 | A |
1461466 | Stuart | Jul 1923 | A |
1463866 | Bourbeau | Aug 1923 | A |
1485382 | Foley | Apr 1924 | A |
1490874 | Webb | Apr 1924 | A |
1516995 | Trigueiro | Nov 1924 | A |
1550532 | French | Aug 1925 | A |
1552690 | Frantz | Sep 1925 | A |
1601051 | Wilbert | Sep 1925 | A |
1537037 | Rudolph | Jun 1926 | A |
1605717 | Gregg | Nov 1926 | A |
1619031 | Ostrosky | Mar 1927 | A |
1622742 | Shipman | Mar 1927 | A |
1658818 | Dillon | Jan 1928 | A |
1692579 | Schrader | Nov 1928 | A |
1704946 | Lindgren | Mar 1929 | A |
1712792 | Hansen | May 1929 | A |
1715957 | Stein | Jun 1929 | A |
1724837 | Bergstrom | Aug 1929 | A |
1750715 | Jeffers | Mar 1930 | A |
1794171 | Grutel | Feb 1931 | A |
1812288 | Drapeau | Jun 1931 | A |
1819824 | McAllister | Aug 1931 | A |
1864253 | McIntyre | Jun 1932 | A |
1869274 | Phillips | Jul 1932 | A |
1891940 | McAllister | Dec 1932 | A |
1900936 | Macy | Mar 1933 | A |
1901974 | Macy | Mar 1933 | A |
1922062 | Sullivan | Aug 1933 | A |
1960034 | Stewart | May 1934 | A |
1964114 | Gerlach et al. | Jun 1934 | A |
2095057 | Corrado | Oct 1937 | A |
2122661 | Rightmyer | Jul 1938 | A |
2126995 | Kingdom | Aug 1938 | A |
2136408 | Bedell | Nov 1938 | A |
2158260 | Stillman | May 1939 | A |
2202561 | Lahiere | May 1940 | A |
2272145 | Anderson et al. | Feb 1942 | A |
2326084 | Westrope | Aug 1943 | A |
2369584 | Lundholm | Feb 1945 | A |
2452521 | Johnson et al. | Oct 1948 | A |
2480016 | Granberg | Aug 1949 | A |
2480988 | Walton | Sep 1949 | A |
2500849 | Menns | Mar 1950 | A |
2503370 | Zanona | Apr 1950 | A |
2523559 | Couture | Sep 1950 | A |
2527278 | Schemansky | Oct 1950 | A |
2537736 | Carlson | Jan 1951 | A |
2560274 | Cantelo | Jul 1951 | A |
2590624 | James | Mar 1952 | A |
2599196 | Peremi | Jun 1952 | A |
2605125 | Emerson | Jul 1952 | A |
2612398 | Miller | Sep 1952 | A |
2613526 | Holmstein | Oct 1952 | A |
2621951 | Ostacal | Dec 1952 | A |
2645515 | Thomas | Jul 1953 | A |
2648967 | Holmstein | Aug 1953 | A |
2670982 | Barnam | Mar 1954 | A |
2692789 | Rivard | Oct 1954 | A |
2758862 | Endler | Aug 1956 | A |
2766492 | Day et al. | Oct 1956 | A |
2789851 | Lickteig | Apr 1957 | A |
2818919 | Sylvan | Jan 1958 | A |
2846258 | Granberg | Aug 1958 | A |
2855772 | Hilgren | Oct 1958 | A |
2884276 | Baptist | Apr 1959 | A |
2941832 | Grossman | Jun 1960 | A |
3027188 | Eichstadt | Mar 1962 | A |
3135542 | Wilkenson | Jun 1964 | A |
3187526 | Moler | Jun 1965 | A |
3267613 | McQuiston | Aug 1966 | A |
3288510 | Gough | Nov 1966 | A |
3352586 | Hakanson | Nov 1967 | A |
3362740 | Burns | Jan 1968 | A |
3422575 | Armstrong | Jan 1969 | A |
3438153 | Lemme | Apr 1969 | A |
3599452 | Yokohama et al. | Aug 1971 | A |
3600019 | Toyota | Aug 1971 | A |
3642315 | Alpern | Feb 1972 | A |
3645573 | Strang | Feb 1972 | A |
3683652 | Halopoff et al. | Aug 1972 | A |
3705467 | Martin | Dec 1972 | A |
3762750 | Orr | Oct 1973 | A |
3811718 | Bates | May 1974 | A |
3841674 | Bisbing | Oct 1974 | A |
3907348 | Bates | Sep 1975 | A |
3919808 | Simmons | Nov 1975 | A |
3927906 | Mieras | Dec 1975 | A |
4054308 | Prohaska | Oct 1977 | A |
4059298 | van Klompenburg | Nov 1977 | A |
4063766 | Granberg | Dec 1977 | A |
4068871 | Mercer | Jan 1978 | A |
4095827 | Stavenau | Jun 1978 | A |
4095829 | van Klompenburg | Jun 1978 | A |
4102546 | Costello | Jul 1978 | A |
4151682 | Schmidt | May 1979 | A |
4165894 | Wojciechowski | Aug 1979 | A |
4223930 | Costello | Sep 1980 | A |
4227345 | Durham, Jr. | Oct 1980 | A |
4235465 | Costello | Nov 1980 | A |
4253688 | Hosooka | Mar 1981 | A |
4261602 | Anderson | Apr 1981 | A |
4274668 | Peck | Jun 1981 | A |
4293154 | Cassells | Oct 1981 | A |
4303264 | Uehara | Dec 1981 | A |
4305612 | Hunt et al. | Dec 1981 | A |
4392329 | Suzuki | Jul 1983 | A |
4429910 | Anderson | Feb 1984 | A |
4470277 | Uyeda | Sep 1984 | A |
4475311 | Gibson | Oct 1984 | A |
4525952 | Cunningham et al. | Jul 1985 | A |
4580366 | Hardy | Apr 1986 | A |
4587759 | Gray | May 1986 | A |
4621847 | Paulson | Nov 1986 | A |
4624073 | Randall | Nov 1986 | A |
4639021 | Hope | Jan 1987 | A |
4643005 | Logas | Feb 1987 | A |
4736972 | Mosch | Apr 1988 | A |
4801164 | Mosch | Jan 1989 | A |
4813725 | Mosch | Mar 1989 | A |
4824154 | Simpson | Apr 1989 | A |
4827685 | Schmidt | May 1989 | A |
4893849 | Schlack | Jan 1990 | A |
4922658 | Coddens | May 1990 | A |
4949506 | Durham, Jr. | Aug 1990 | A |
4961286 | Bezubic | Oct 1990 | A |
4991886 | Nolte | Feb 1991 | A |
5042855 | Bennett | Aug 1991 | A |
5072464 | Draheim et al. | Dec 1991 | A |
5076015 | Manzalini | Dec 1991 | A |
5087087 | Vetter et al. | Feb 1992 | A |
5087088 | Milam | Feb 1992 | A |
5090750 | Lindqvist | Feb 1992 | A |
5090754 | Thompson | Feb 1992 | A |
5110165 | Piltingsrud | May 1992 | A |
5127685 | Dallaire et al. | Jul 1992 | A |
5139291 | Schultz | Aug 1992 | A |
5143412 | Lindovist | Sep 1992 | A |
5161839 | Piltingsrud | Nov 1992 | A |
5165737 | Riegelman | Nov 1992 | A |
5183302 | Pelachyk | Feb 1993 | A |
5183310 | Shaughnessy | Feb 1993 | A |
5219193 | Piltingsrud | Jun 1993 | A |
5244238 | Lindqvist | Sep 1993 | A |
5248174 | Matz | Sep 1993 | A |
5263750 | Smith | Nov 1993 | A |
5274955 | Dallaire et al. | Jan 1994 | A |
5341752 | Hambleton | Aug 1994 | A |
5398447 | Morse | Mar 1995 | A |
5437484 | Yamada | Aug 1995 | A |
5448857 | Stormo | Sep 1995 | A |
5452925 | Huang | Sep 1995 | A |
5454609 | Slocomb et al. | Oct 1995 | A |
5560149 | Lafevre | Oct 1996 | A |
5582445 | Olsen | Dec 1996 | A |
RE35463 | Vetter | Feb 1997 | E |
5636475 | Nidelkoff | Jun 1997 | A |
5688000 | Dolman | Nov 1997 | A |
5715631 | Kailian et al. | Feb 1998 | A |
5741032 | Chaput | Apr 1998 | A |
5778602 | Johnson | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5829196 | Maier | Nov 1998 | A |
5839767 | Piltingsrud | Nov 1998 | A |
5873199 | Meunier et al. | Feb 1999 | A |
5901499 | Delaske et al. | May 1999 | A |
5901501 | Fountaine | May 1999 | A |
5911763 | Quesada | Jun 1999 | A |
5927768 | Dallmann | Jul 1999 | A |
5970656 | Maier | Oct 1999 | A |
5992907 | Sheldon et al. | Nov 1999 | A |
6000735 | Jourdenais | Dec 1999 | A |
6052948 | Spitzley | Apr 2000 | A |
6086121 | Buckland | Jul 2000 | A |
6116665 | Subliskey | Sep 2000 | A |
6135510 | Diginosa | Oct 2000 | A |
6139071 | Hopper | Oct 2000 | A |
6142541 | Rotondi | Nov 2000 | A |
6155615 | Schultz | Dec 2000 | A |
6161335 | Beard et al. | Dec 2000 | A |
6176041 | Roberts | Jan 2001 | B1 |
6178696 | Liang | Jan 2001 | B1 |
6183024 | Schultz et al. | Feb 2001 | B1 |
6209931 | Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6230443 | Schultz | May 2001 | B1 |
6257303 | Coubray et al. | Jul 2001 | B1 |
6279266 | Searcy | Aug 2001 | B1 |
6349576 | Subliskey | Feb 2002 | B2 |
6364375 | Szapucki | Apr 2002 | B1 |
6401302 | Josserand | Jun 2002 | B1 |
6422287 | Wilke | Jul 2002 | B1 |
6546671 | Mitchell et al. | Apr 2003 | B2 |
6565133 | Timothy | May 2003 | B1 |
6588150 | Wong et al. | Jul 2003 | B1 |
6592155 | Lemley et al. | Jul 2003 | B1 |
6607221 | Elliott | Aug 2003 | B1 |
6631931 | Magnusson | Oct 2003 | B2 |
6634083 | Brannan | Oct 2003 | B1 |
6817142 | Marshik | Nov 2004 | B2 |
6848728 | Rotondi | Feb 2005 | B2 |
6871885 | Goldenberg et al. | Mar 2005 | B2 |
6871886 | Coleman | Mar 2005 | B2 |
6877784 | Kelley et al. | Apr 2005 | B2 |
6925753 | Pettit | Aug 2005 | B1 |
6957513 | Pettit | Oct 2005 | B2 |
6983963 | Eslick | Jan 2006 | B2 |
7000957 | Lawrence | Feb 2006 | B2 |
7013603 | Eenigenburg et al. | Mar 2006 | B2 |
7063361 | Lawrence | Jun 2006 | B1 |
7070211 | Polowinczak et al. | Jul 2006 | B2 |
7070215 | Kelley | Jul 2006 | B2 |
7100951 | Jien | Sep 2006 | B2 |
7147255 | Goldenberg | Dec 2006 | B2 |
7159908 | Liang | Jan 2007 | B2 |
7296831 | Generowicz | Nov 2007 | B2 |
7322620 | Lawrence | Jan 2008 | B1 |
7407199 | Richardson | Aug 2008 | B2 |
7452014 | Vetter | Nov 2008 | B2 |
7481470 | Polowinczak | Jan 2009 | B2 |
7490873 | Ricke | Feb 2009 | B1 |
7510221 | Eenigenburg | Mar 2009 | B2 |
7607262 | Pettit | Oct 2009 | B2 |
7665775 | Miller | Feb 2010 | B1 |
7922223 | Lawrence | Apr 2011 | B2 |
7963577 | Wolf | Jun 2011 | B2 |
7976077 | Flory | Jul 2011 | B2 |
8020904 | Flory | Sep 2011 | B2 |
8177265 | Stevens | May 2012 | B2 |
8205919 | Flory | Jun 2012 | B2 |
8205920 | Flory | Jun 2012 | B2 |
8272164 | Albrecht | Sep 2012 | B2 |
8550507 | Barton | Oct 2013 | B2 |
8726572 | Derham | May 2014 | B2 |
8789857 | Liang | Jul 2014 | B2 |
8789862 | Liang | Jul 2014 | B2 |
8844985 | Liang | Sep 2014 | B2 |
9140033 | Wolf | Sep 2015 | B2 |
20040168370 | Pettit | Sep 2004 | A1 |
20040262929 | Trickel | Dec 2004 | A1 |
20060192391 | Pettit | Aug 2006 | A1 |
20060244270 | Rotondi | Nov 2006 | A1 |
20070205615 | Eenigenberg | Sep 2007 | A1 |
20080022728 | Flory | Jan 2008 | A1 |
20080169658 | Wolf | Jul 2008 | A1 |
20100132263 | Flory | Jun 2010 | A1 |
20100199726 | Varney | Aug 2010 | A1 |
20100218425 | Nolte | Sep 2010 | A1 |
20100263415 | Rupsil | Oct 2010 | A1 |
20120284993 | Liang | Nov 2012 | A1 |
20120313386 | Liang | Dec 2012 | A1 |
20130214545 | Wolf | Aug 2013 | A1 |
20130283694 | DeBoer | Oct 2013 | A1 |
20130283695 | Hollermann | Oct 2013 | A1 |
20160076282 | Wolf | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
0341207 | Jan 1931 | GB |
2026594 | Feb 1980 | GB |
2286627 | Aug 1995 | GB |
2347455 | Sep 2000 | GB |
2461079 | Dec 2009 | GB |
2461107 | Dec 2009 | GB |
2461108 | Dec 2009 | GB |
Number | Date | Country | |
---|---|---|---|
20150252596 A1 | Sep 2015 | US |