1. Field of the Invention
The present invention relates to a combination seal attached to a bearing comprising a fixed element and a rotating element, which rotate relative to each other, and seal the inner side and the outer side of said bearing. More particularly, the present invention relates to a combination seal mounted to a bearing of the wheel in a motor vehicle so as to seal the inner side of said bearing, and having a rotation detecting apparatus for detecting the rotation of front and rear wheels.
2. Description of the Related Art
With respect to the combination seal as described previously, various kinds of it have been conventionally proposed.
The combination seal attached to a bearing comprising a fixed element and a rotating element, which rotate relative to each other, and sealing the inner side and the outer side of the bearing is generally structured by combining a seal ring and a slinger, each having an L-shaped cross section.
The seal ring, having an L-shaped cross section, includes a seal ring side cylinder portion fitted and fixed to a peripheral surface of the fixed element of a bearing, and a seal ring side flange portion extending from an end portion of said seal ring side cylinder portion toward a side of the rotating element of a bearing in a radial direction.
The slinger, having an L-shaped cross section, includes a slinger side cylinder portion fitted and fixed to a peripheral surface of the rotating element of a bearing, and a slinger side flange portion extending from an end portion of the slinger side cylinder portion toward a side of the fixed element of a bearing in a radial direction.
In this combination seal, a leading end side of an elastic seal, which is supported by either the seal ring or the slinger, is in contact with an opposing surface of an opposing member, thereby preventing foreign materials from entering into an inner side of the bearing and preventing grease from leaking out from the inner side of the bearing.
In the combination seal mentioned above, the seal lip tends to turn over during the combining process, which combines the seal ring and slinger to form the combination seal. However, if the seal lip is turned over so that it is not held toward a predetermined direction, it is hard to achieve a secure seal performance, and it is impossible to achieve the desired operation and effect such as preventing foreign materials from entering into the inner side of the bearing and preventing grease from leaking out from the inner side of the bearing.
Accordingly, it is necessary to carefully carry out the combining work so that the seal lip does not turn over during the combining work process, and in some cases, it is necessary to pay attention and use a specific jig, such as pressing jig, so that the seal lip does not turn over during the combining work process.
Furthermore, in the conventional combination seal, the combination seal is assembled carefully in the manner mentioned above, and said combination seal is attached carefully to the bearing in order to prevent the seal lip from being turned over. To do this, it is necessary to provide a portion, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing.
A gap formed between the leading end portion of the slinger side flange portion in the radial direction and the peripheral surface of the fixed element, which is opposite to the rotating element is generally used as said portion, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing.
That is, the portion described previously is generally obtained by making the size of the slinger side flange portion in the radial direction smaller than the interval between the opposing fixed element and rotating element so that a gap is formed between the leading end portion of the slinger side flange portion in the radial direction and the peripheral surface of the fixed element, which is opposite to the rotating element, at the time of attaching the combination seal to the bearing. The gap, formed as described previously, between the leading end portion of the slinger side flange portion in the radial direction and the peripheral surface of the fixed element, which is opposite to the rotating element is used as the portion described previously, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing. That is, the structure is made such that, when the combined seal ring and slinger are pressed into the inner side of the bearing simultaneously, the seal ring is pressed via the gap mentioned above.
When a combination seal is attached to the bearing of a wheel in a motor vehicle to seal the inner side of said bearing, and when the combination seal is employed along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels, it is common to arrange an encoder in the slinger side flange portion.
Accordingly, when a combination seal is attached to the bearing of a wheel in a motor vehicle to seal the inner side of said bearing, and when it is intended to employ the combination seal along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels, there is no alternative but to apply a fixed limitation to the size of the slinger side flange portion in the radial direction due to the formation of the gap mentioned above, and accordingly there is no alternative but to limit the effective area of the encoder arranged in the slinger side flange portion.
If the effective area of the encoder can be increased, it is possible to improve the reliability of detecting a rotation of the wheel, and it is possible to make the output of a sensor, arranged close to and opposite to the encoder and sensing a pulse generated from the encoder so as to detect the rotation, large, so that this structure is advantageous.
The object of the present invention is to solve the problem of the conventional combination seal mentioned above and the problem generated in the case of a conventional combination seal being attached to the bearing of a wheel in a motor vehicle to seal the inner side of said bearing, and when the conventional combination seal is employed along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels.
That is, an object of the present invention is to provide a combination seal in which a seal lip does not turn over and the seal lip can be held toward a predetermined direction without using a specific jig during the combining work process, and without particularly careful combining work.
Furthermore, an object of the present invention is to provide a combination seal that can be attached to the bearing of a wheel in a motor vehicle to seal the inner side of said bearing, and that can be employed along with a rotation detecting apparatus for detecting the rotation of front and rear wheels, wherein it can make the effective area of an encoder larger.
In order to achieve the objects mentioned above, the combination seal proposed by the present invention is comprised as follows.
A combination seal 1, 18 in accordance with the present invention, is attached to a bearing comprising a fixed element (for example, an outer ring 101) and a rotating element (for example, an inner ring 102), which rotate relative to each other, so as to seal the inner side and the outer side of the bearing.
The combination seal 1 is comprised of a seal ring 2 and a slinger 7.
The seal ring 2 is comprised of a reinforcing ring 5 and an elastic seal 6 supported by the reinforcing ring 5. The reinforcing ring 5 has an L-shaped cross section and comprises a seal ring side cylinder portion 3 fitted and fixed to a peripheral surface of the fixed element of a bearing (for example, the outer ring 101 of a bearing) and a seal ring side flange portion 4 extending from an end portion of the seal ring side cylinder portion 3 toward the side of the rotating element in a radial direction.
The slinger 7 has an L-shaped cross section, and is comprised of a slinger side cylinder portion 8 fitted and fixed to a peripheral surface of the rotating element of a bearing (for example, the inner ring 102 of a bearing), and a slinger side flange portion 9 extending from an end portion of the slinger side cylinder portion 8 toward a side of the fixed element in the radial direction.
The combination seal 1 is structured such that a leading end side of the elastic seal 6 extending toward the slinger 7 is brought into contact with a surface of the slinger 7, which is opposite to the seal ring 2, when it is attached to the bearing.
The elastic seal 6 supported by the reinforcing ring 5 of the seal ring 2 is equipped with a radial lip 11, an outer radial lip 12, and a side lip 13.
The radial lip 11 is structured, as illustrated in
The outer radial lip 12 is structured, as illustrated in
The side lip 13 is structured, as illustrated in
In this case, in the combination seal 1, in accordance with the present invention, the elastic seal 6 described previously has the following characteristic structures and aspects.
When the seal ring 2 and the slinger 7 are moved close to each other to be combined, as shown by arrows 14 and 15 in
When the leading end side of the radial lip 11 slides on the peripheral surface of the slinger side cylinder portion 8, which is opposite to the seal ring 2, by moving the seal ring 2 closer to the slinger 7, in correspondence thereto, the leading end side of the outer radial lip 12 moves toward the peripheral surface of the slinger side cylinder portion 8, which is opposite to the seal ring 2, around the base end portion 10, as shown by an arrow 16 in
Furthermore, only after the leading end side of the radial lip 11 comes in contact with a regular amount of exposed thread with respect to the peripheral surface of the slinger side cylinder portion 8, which is opposite to the seal ring 2 in the attaching state as illustrated in
Since the combination seal, in accordance with the present invention, has the characteristic structure as mentioned above, the outer radial lip 12 does not turn over during the combining work as illustrated in
Accordingly, in the case of attaching the combination seal to the bearing, in accordance with the present invention, the slinger can be mounted after the seal ring is first mounted. That is, the seal ring and the slinger constituting the combination seal of the present invention can be separately attached to the bearing.
As mentioned above, in the conventional combination seal it is necessary to provide a portion, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing, in order to attach the previously assembled combination seal to the bearing while preventing the seal lip from being turned over. And, in the conventional combination seal, for example, the gap formed between the leading end portion in the radial direction of the slinger side flange portion and the peripheral surface of the fixed element, which is opposite to the rotating element when the combination seal is attached to the bearing is used as said portion.
However, as mentioned above, since the seal ring and the slinger constituting the combination seal of the present invention can be separately attached to the bearing, there is no requirement for the portion described previously, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing, in order to attach the previously assembled combination seal to the bearing while preventing the seal lip from being turned over.
As a result, in the case of employing the combination seal, in accordance with the present invention, as the combination seal is mounted to the bearing portion of a wheel in a motor vehicle so as to seal the inner side of the bearing, and is employed along with the rotation detecting apparatus for detecting the rotation of the front and rear wheels, it is possible to expand the area of the encoder to the limit between the outer ring and inner ring of the bearing, and it is possible to increase the effective area of the encoder.
Accordingly, in the case of employing the combination seal, in accordance with the present invention, as the combination seal is mounted to the bearing of a wheel in a motor vehicle so as to seal the inner side of the bearing, and is employed along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels, it is possible, for example, to employ a structure in which an encoder 17 is mounted to an outer side surface in an axial direction of the slinger side flange portion 9.
In accordance with the combination seal of the present invention, the outer radial lip does not turn over during the combining work, which combines the seal ring and the slinger to form the combination seal of the present invention, even if a specific jig, such as pressing jig, is not used or the work is not carried out with specific care.
Accordingly, it is possible to separately attach the seal ring and the slinger, which comprise the combination seal, to the bearing and to assemble them into a combination seal.
Furthermore, if assembled and combined in this manner, it is possible to bring not only the outer radial lip but also the radial lip and the side lip into contact with the inner side surface of the slinger with the regular amount exposed thread, and to hold them toward a predetermined direction.
Furthermore, in accordance with the combination seal of the present invention, in the case that a combination seal is mounted to the bearing of a wheel in a motor vehicle so as to seal the inner side of the bearing, and is employed along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels, it is possible to increase the effective area of the encoder.
Embodiment
The combination seal 1 is comprised of a seal ring 2 and a slinger 7. The seal ring 2 comprises a reinforcing ring 5 made of metal and having an L-shaped cross sectional shape, and an elastic seal 6 supported by the reinforcing ring 5. The slinger 7 is also made of metal and has an L-shaped cross sectional shape.
In the embodiment illustrated in
The elastic seal 6 is made of a known material in this technical field such as a synthetic rubber, an elastomer or the like, and is attached to the reinforcing ring 5 so as to be supported.
In a state in which the combination seal 1 is combined as shown in
The radial lip 11 is structured, as illustrated in
Since the radial lip 11 is inclined, as illustrated in
The outer radial lip 12 is structured, as illustrated in
Furthermore, the side lip 13 is structured, as illustrated in
Since the contact aspect between the outer radial lip 12 and the side lip 13, and the inner side surface of the slinger 7 is an aspect as mentioned above and illustrated in
When the seal ring 2 and the slinger 7 are combined by moving the seal ring 2 and the slinger 7 close to each other, as shown by arrows 14 and 15 in
When the seal ring 2 and the slinger 7 are moved close to each other from the state illustrated in
Next, when the seal ring 2 and the slinger 7 are moved close to each other from the state illustrated in
Furthermore, only after the leading end side of the radial lip 11 comes in contact with a regular amount of exposed thread with respect to the outer peripheral surface of the slinger side cylinder portion 8, in the attaching state as illustrated in
Accordingly, during the combining process of the combination seal 1 of the present invention, when combining the seal ring 2 and the slinger 7 by moving them close to each other, as shown by arrows 14 and 15 in
That is, the outer radial lip 12 does not turn over during the combining work from the state illustrated in
As described previously, the contact aspects between the radial lip 11, the outer radial lip 12, and the side lip 13, and the inner side surface of the slinger 7 becomes as shown in
In the present invention, the structure and the aspect may be modified such that, although the illustration is omitted, the leading end side of the outer radial lip 12 is in light contact with the outer peripheral surface of the slinger side cylinder portion 8 when the seal ring 2 and the slinger 7 move close to each other from the state illustrated in
In this modified structure and aspect, in the same manner as mentioned above, when the leading end side of the radial lip 11 slides on the outer peripheral surface of the slinger side cylinder portion 8, the leading end side of the outer radial lip 12 moves toward the outer peripheral surface of the slinger side cylinder portion 8 around the base end portion 10 in correspondence thereto, as shown by the arrow 16 in
Therefore, in accordance with the modified aspect mentioned above, during the combining process, when combining the seal ring 2 and the slinger 7 to form the combination seal 1 of the present invention by moving the seal ring 2 and the slinger 7 close to each other as shown by the arrows 14 and 15 in
As mentioned above, the combination seal 1 of the present invention can be made in the combined state shown in
Therefore, when a combination seal 1 of the present invention is attached to a bearing, first the seal ring 2 can be mounted, and then the slinger 7 can be mounted. That is, the seal ring 2 and the slinger 7 can be separately attached to the bearing.
As mentioned above, in the conventional combination seal it is necessary to provide a portion, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing in order to attach the previously assembled combination seal to the bearing while preventing the seal lip from being turned over.
However, as mentioned above, since the seal ring 2 and the slinger 7, comprising the combination seal 1 of the present invention, can be separately attached to the bearing as described previously, there is no requirement for the portion described previously, which can make it possible to press the seal ring and the slinger into the inner side of the bearing simultaneously when the combination seal is attached to the bearing, in order to attach the previously assembled combination seal to the bearing while preventing the seal lip from being turned over. And, the combination seal 1 of the present invention can be made in the combined state shown in
Accordingly, it is possible to move the leading end portion of the slinger side flange portion 9, which is opposite to the outer ring 101, close to the inner peripheral surface of the outer ring 101 as illustrated in
Furthermore, since it is possible to move the leading end portion of the slinger side flange portion 9, which is opposite to the outer ring 101, close to the inner peripheral surface of the outer ring 101 as illustrated in
Furthermore, in the case of mounting an encoder to the slinger side flange portion 9, when mounting the combination seal 1 of the present invention to the bearing of a wheel in a motor vehicle to seal the inner side of the bearing, and when employing the combination seal 1 along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels, it is possible to increase the effective area of the encoder.
Embodiment 2
FIGS. 3(a) and 3(b) describe another embodiment of a combination seal 18 in accordance with the present invention.
The combination seal 18 illustrated in FIGS. 3(a) and 3(b) expresses a case in which the combination seal is mounted to the bearing of the wheel in the motor vehicle to seal the inner side of the bearing, and is employed along with a rotation detecting apparatus for detecting the rotation of the front and rear wheels.
This embodiment is different from the embodiment illustrated in
The encoder 17, which is magnetized so that N poles and S poles appear alternately in a circumferential direction, is formed by mixing magnetic powders such as ferrite or the like into a rubber material, vulcanizing said mixture, and then magnetizing it so that N poles and S poles appear alternately in a circumferential direction.
In the combination seal 18, in accordance with this embodiment, it is possible to mount the encoder 17 in a manner illustrated in
In this case, in the embodiment illustrated in FIGS. 3(a) and 3(b), the structure is made such that one end side (an end portion in a side of the outer ring 101) of the encoder 17 is mounted to the end portion of the slinger side flange portion 9 on a side of the outer ring 101.
However, the structure for mounting the encoder 17 to the outer side surface of the slinger side flange portion 9 in the axial direction is not limited to the embodiment mentioned above. For example, it can be modified to bond the encoder 17 on the outer side surface of the slinger side flange portion 9 in the axial direction, or to integrally vulcanize the encoder 17 on the outer side surface of the slinger side flange portion 9 in the axial direction while expanding the outer peripheral edge of the encoder 17 close to the outer peripheral edge of the slinger side flange portion 9.
Although, the preferred embodiments of the present invention are described above using the accompanying drawings. In the preferable embodiments described previously, respective structures, shapes, and relations of arrangement described with reference to the accompanying drawings are only schematically shown for understanding the present invention. Accordingly, the present invention is not limited to the aspects described in the embodiments described previously, and can be modified to various aspects within a technical scope comprehended by the description in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-101838 | Apr 2002 | JP | national |
This application is a Continuation of U.S. Ser. No. 10,405,239, filed Apr. 3, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10405239 | Apr 2003 | US |
Child | 10899156 | Jul 2004 | US |