Combination SIS and vacuum bandage and method

Information

  • Patent Grant
  • 7910791
  • Patent Number
    7,910,791
  • Date Filed
    Tuesday, May 15, 2001
    23 years ago
  • Date Issued
    Tuesday, March 22, 2011
    13 years ago
Abstract
A wound care bandage for treating a wound is provided. The bandage includes an SIS layer to be placed on the wound surface and a cover to placed over the wound. Illustratively, the bandage further includes a structure to provide a vacuum space. A method for promoting wound healing is further provided. The method includes applying the above-mentioned wound care bandage to the wound and creating a vacuum in the vacuum space to draw blood controllably from the wound into the SIS layer.
Description
BACKGROUND OF THE INVENTION

The present invention relates to wound care and more particularly to the provision of an SIS wound care cover used in combination with a vacuum bandage. The invention contemplates both apparatus and a method for using the apparatus.


It is known to use small intestine submucosa (SIS) in wound care treatment, particularly the application of layers of SIS directly upon an open wound that has been debrided and cleaned. SIS is described in the following U.S. Pat. Nos.: 5,855,619, 5,866,414, 5,753,267, 5,762,966, 5,755,791, 4,902,508, 4,956,178, 5,275,826, 5,281,422, 4,352,463, 5,372,821, 5,445,833, 5,516,533, 5,573,784, 5,645,860, 5,641,518, 5,711,969, and 5,695,998. These patents disclose the nature of SIS.


SIS has been described as a natural acellular biomaterial used to repair, support, and stabilize a wide variety of anatomical defects and traumatic injuries. See, for example, the COOK® Online New Release provided by Cook Biotech and submitted in the Information Disclosure Statement filed concurrently with the present patent application. The SIS material is a tissue engineered collagen matrix derived from porcine small intestinal submucosa that models the qualities of its host when implanted in human soft tissues. Further, it is taught that the SIS material provides a natural scaffold-like matrix with a three-dimensional structure and biochemical composition that attracts host cells and supports tissue remodeling. SURGISIS™ Soft Tissue Repair Biomaterial and OASIS™ Wound Dressing Biomaterial are available for remodeling partial thickness skin injuries (Cook Biotech, Bloomington, Ind.). The OASIS™ Wound Dressing is provided in single thickness, fenestrated sheets. It will be appreciated that SIS is readily available for use as a wound dressing.


While small intestine submucosa is available, other sources of submucosa are known to be effective for tissue remodeling. These sources include, but are not limited to, stomach, bladder, alimentary, respiratory, or genital submucosa. See, e.g., U.S. Pat. Nos. 6,171,344, 6,099,567, and 5,554,389. Further, it is known that these various submucosa materials may be derived from non-porcine sources, including bovine and ovine sources. Additionally, other collagen matrices are known, for example lamina propria and stratum compactum.


It is also known to use a vacuum treatment bandage for accelerating wound healing. A vacuum bandage is a bandage having a cover for sealing about the outer perimeter of the wound and under which a vacuum is established to act on the wound surface. This vacuum applied to the wound surface accelerates healing of chronic wounds. Typically, suction tubes are provided for drawing exudate away from the wound, and the suction tubes may be used to create the vacuum under the cover. If the cover is a flexible cover, which is typically more comfortable for the patient, a porous packing may be provided under the cover to provide the space in which the vacuum is formed. Additionally, it is known a heater within a wound treatment apparatus to promote healing. The following U.S. patents establish the nature of vacuum and/or heat treatment bandages and devices: U.S. Pat. Nos. 6,095,992, 6,080,189, 6,071,304, 5,645,081, 5,636,643, 5,358,494, 5,298,015, 4,969,880, 4,655,754, 4,569,674, 4,382,441, and 4,112,947.


As shown, for example, in U.S. Pat. No. 5,645,081 (hereinafter the '081 patent), a method of treating tissue damage is provided by applying negative pressure to a wound. The negative pressure is provided in sufficient duration and magnitude to promote tissue migration in order to facilitate the closure of the wound. FIG. 1 of the '081 patent discloses an open cell polyester foam section covering the wound, a flexible hollow tube inserted into the foam section at one end and attached to a vacuum pump at another end, an adhesive sheet overlying the foam section, and tubing to adhere to the skin surrounding the wound in order to form a seal that allows the creation of a vacuum when the suction pump is operating. The '081 patent further teaches use of negative pressure between about 0.1 and 0.99 atmospheres, and that the pressure can be substantially continuous, wherein the pressure is relieved only to change the dressing on the wound. Alternatively, the '081 patent teaches use of a cyclic application of pressure in alternating periods of application and non-application. In a preferred embodiment, pressure is applied in 5 minute periods of application and non-application.


The following pending applications, assigned to the same assignee as the present application is licensed, are also related to the use of vacuum to promote healing: U.S. patent application Ser. No. 09/369,113 filed Aug. 5, 1999, and titled Wound Treatment Apparatus, U.S. patent application Ser. No. 09/725,352 filed Nov. 29, 2000, and titled Vacuum Therapy and Cleansing Dressing for Wounds, and U.S. patent application Ser. No. 09/725,666 filed Nov. 29, 2000, and titled Wound Treatment Apparatus.


Various of prior art references teach the value of the vacuum bandage or the provision of vacuum to the surface of a chronic wound. Several Russian language articles exist that establish the efficacy of vacuum therapy. Examples of such prior art articles, each of which discusses the use of application of vacuum to a wound to promote healing, are as follows: Vacuum therapy in the treatment of acute suppurative diseases of soft tissues and suppurative wound, Davydov, et al. Vestn. Khir., September 1988 (“the September 1988 article”); Pathenogenic mechanism of the effect of vacuum therapy on the course of the wound process, Davydov, et al. Khirurigiia, June 1990 (“the June 1990 article”); and Vacuum therapy in the treatment of suppurative lactation mastitis, Davydov, et al., Vestn. Khir., November 1986 (“the November 1986 article”).


The Russian articles distinguish wound drainage from use of vacuum therapy for healing, and they report that vacuum therapy results in faster cleansing of the wound and more rapid detoxification than with the traditional incision-drainage method. The November 1986 article describes the vacuum therapy protocol as 0.8-1.0 atmosphere for 20 minutes at the time of surgery, and subsequent 1.5 to 3 hour treatments at a vacuum of 0.1 to 0.15 atmosphere, twice daily. These Russian articles teach that use of negative pressure accelerates healing. The Russian articles further teach using this vacuum method to decrease the number of microbes in the wound. The June 1990 article teaches that vacuum therapy provides a significant antibacterial effect. The June 1990 article describes the stepped up inflow of blood to the zone around the wound, which leads to an increase in the number of leukocytes reaching the focus of inflamation. Moreover, the Russian articles teach improvement of local blood circulation using vacuum therapy. The September 1988 article teaches improved inflow of blood into the wound zone, which intensifies the repair processes. The June 1990 article teaches that vacuum therapy promotes mobilization of blood plasma, intertissue fluid, and lymph into the wound. The June 1990 article reports that cellular and non-cellular elements of connective tissue appear twice as quickly in wounds treated with vacuum therapy. Subsequent articles and patents further develop the benefits obtained with vacuum therapy. The prior art, therefore, teaches the benefit and value of a vacuum bandage.


SUMMARY OF THE INVENTION

According to the present invention, a wound care bandage is provided that combines the advantages of SIS and vacuum therapy to control and enhance the flow of fluid from the wound bed and into the SIS material. The present invention, therefore, is a method for controllably drawing fluid from the surrounding tissue and into an SIS layer placed on the wound, thereby enhancing the healing and restructuring properties of the SIS.


The present invention comprises structure to provide a space above the SIS and the wound bed, in which space a vacuum is developed to cause blood flow from the wound bed into the SIS. Furthermore, the method contemplates controlling the vacuum level and the application time of the vacuum to present optimum blood flow from the wound bed into the SIS.


In preferred embodiments, the wound care bandage includes an SIS layer to be placed in contact with the wound bed. As mentioned above, the wound care bandage further includes a structure placed over the SIS layer to provide a vacuum space between the SIS layer and a cover placed over the structure and SIS layer. The cover is coupled to the patient's skin surrounding the wound to provide a sealed environment. A vacuum source is coupled to the wound covering for communication with the vacuum space created by the structure. The vacuum source is used to create a vacuum within the sealed environment in order to draw blood from the wound bed up through the SIS layer to promote the healing process. The vacuum suction is to be at a level sufficient to draw blood to the SIS layer, for example, 125 mm Hg. It will be appreciated, however, that varying levels of vacuum suction and varying protocols for the duration of application of vacuum are within the scope of the present invention.


In further embodiments, the space-providing structure is a porous or reticulated pad or other structure having air passageways extending from the SIS layer to the cover. In still further embodiments, the space-providing structure may be a foam ring, or it may be the cover itself, provided that the cover is sufficiently rigid.


Thus, in one aspect of this invention a wound care bandage is provided comprising a collagen matrix formed for placement on a wound, a cover configured for placement over the wound to provide a sealed environment around the wound and adapted for communication with a vacuum source, and a structure for placement between the collagen matrix and the cover and configured to provide a vacuum space. In preferred embodiments, the collagen matrix is a layer of submucosa.


In another aspect of this invention a wound care bandage is provided comprising an SIS layer adapted to be placed on a wound, and a cover configured to be placed over the wound and the SIS layer to provide a vacuum space between the SIS layer and an inside surface of the cover, the space-being connectable with a vacuum source.


Still another aspect of this invention includes a method for promoting wound healing comprising the steps of providing a wound care bandage having an SIS layer adapted to be placed on a wound, a cover to be placed over the wound to provide a vacuum space above the wound, a structure to define the vacuum space between the SIS layer and the cover, and creating a vacuum within the vacuum space to controllably draw blood from the wound into the SIS layer placed over the wound.


Yet another aspect of this invention is directed to a method for promoting wound healing comprising the steps of applying an SIS layer to a wound surface, placing a support structure over the SIS layer, placing a cover over the wound, SIS layer and support structure to define a vacuum space, connecting the cover to a vacuum source, and creating a vacuum within the vacuum space.


An additional aspect of this invention is directed to a method for promoting wound healing comprising the steps of applying a collagen matrix to a wound surface, creating a vacuum space in communication with the wound and the collagen matrix, and generating a vacuum within the vacuum space in a magnitude and duration sufficient to draw blood from the wound into the collagen matrix.


A final aspect of this invention is a kit for promoting wound healing, the kit comprising a submucosa layer for contacting the wound, a porous pad, and a cover for creating a seal around the wound and configured for communication with a vacuum source.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:



FIG. 1 is a sectional view of a debrided wound and a wound care bandage showing an SIS layer, a porous pad or filler, and a cover of the wound care bandage, and further showing the cover of the wound care bandage in communication with a tube adapted to lead to a vacuum source;



FIG. 2 is a plan view of the SIS layer shown in FIG. 1 showing fenestrations in the SIS layer;



FIG. 3 is a sectional view of another debrided wound and another wound care bandage including an SIS layer, a walled structure to provide a vacuum space, a covering, and a vacuum tube positioned to lie under the cover and in communication with the vacuum space at one end and a vacuum source an another end;



FIG. 4 is a sectional view of another embodiment of the present invention showing another wound care bandage over a debrided wound and showing the bandage including an SIS layer, a ring-shaped structure defining a vacuum space in communication with the vacuum source, and a cover positioned over the structure; and



FIG. 5 is a sectional view of another embodiment of the present invention showing the bandage including a semi-rigid walled structure for defining a vacuum space in communication with the vacuum source.





DETAILED DESCRIPTION OF THE DRAWINGS

A wound care bandage 10 is provided, as shown in FIGS. 1-5, for use with a debrided wound 12. Referring to FIG. 1, bandage 10 includes a small intestinal submucosa (SIS) layer 14 which lies adjacent to a wound surface 16 of wound 12. Bandage 10 further includes a cover 18 for placement over wound 12 and a structure 20, 120, 220, or 320 positioned between SIS layer 14 and cover 18 in order to create a vacuum space 22. Cover 18 is coupled to a portion of the patient's skin 24 surrounding wound 12 in order to enclose wound 12, SIS layer 14, and structure 20, 120, 220, or 320 within a sealed environment. Bandage 10 further includes a means for communicating vacuum space 22 with a vacuum source 26. The wound care bandage 10, therefore, combines the healing properties of the SIS layer 14 with the acceleration provided by the vacuum therapy.


SIS layer 14, which is applied directly to wound surface 16, may be fenestrated (or perforated) to prevent fluid accumulation below the SIS layer 14. Such fenestrations 28 are shown, for example, in FIG. 2. Equipment is available for fenestrating skin grafts and it is contemplated that such equipment could also be used to fenestrate SIS layer 14. These fenestrations 28, or perforations, in the SIS layer 14 permit blood from the wound 12 to migrate upwardly into the SIS layer 14 and deposit cells to start the tissue growth in the SIS framework of the SIS layer 14.


Further, SIS layer 14 may be formed to include one single sheet of SIS or multiple sheets of SIS. For SIS layer 14 including multiple SIS sheets, the sheets may be positioned in any number of orientations relative to each other. It is further within the scope of the disclosure for SIS layer 14 to have any reasonable thickness for its use in bandage 10. It is also known in the art that larger sheets of submucosa may be formed by fusing multiple strips of submucosa tissue. See U.S. Pat. No. 5,711,969. In a preferred embodiment, SIS layer 14 is sized to fit the wound and is flexible in order to allow the SIS layer 14 to conform to any complex wound or wound surface. Additionally, it is known to treat wounds with SIS provided in fresh, frozen, or lyophilized forms. Lyophilized SIS may be used in the dried form, or it may be hydrated prior to use.


In some optional embodiments, a biological glue 30 is provided between the debrided wound surface 16 and the SIS layer 14 in order to hold the SIS layer 14 in a stationary position against the wound surface 16, as shown, for example, in FIG. 1. One type of biological glue 30 used may be a fibrin sealant, for example. It is within the scope of this disclosure, however, to include any type of biological glue sufficient for holding the SIS layer 14 stationary relative to wound surface 16.


SIS is intended to identify porcine small intestine submucosa. While reference is made herein to SIS, it will be appreciated that small intestine submucosa may be obtained from other animal sources, including cattle, sheep, and other warm-blooded mammals. Further, other sources of submucosa from various tissue are known to be effective for tissue remodeling as well. These sources include, but are not limited to, stomach, bladder, alimentary, respiratory, and genital submucosa. Such submucosa-derived matrices comprise highly conserved collagens, glycoproteins, proteoglycans, and glycosaminoglycans. Additionally, other collagen matrices are known that can act as a biological scaffolds. Thus, it is understood that while the preferred embodiment uses SIS, other collagen matrices may be used within the scope of this invention.


The structure of bandage 10, is provided to form vacuum space 22 between SIS layer 14 and cover 18. A structure supports cover 18 while providing air passageways to the wound surface 16 and the SIS layer 14. As shown in FIG. 1, the structure is preferably a reticulated or porous filler or pad 20 having airflow passageways (not shown) extending throughout pad 20. It is preferred that pad 20 be rather flexible to conform to any complex wound or wound surface and to be comfortable for the patient. Further, it is preferred that the thickness of the structure is selected to provide proper vacuum access to all parts of the wound to be served. It is further preferred that a thickness, t, of the reticulated flexible pad 20 be approximately one to two centimeters. The reticulated or porous pad 20 may be cut by the surgeon to be larger than the SIS layer 14 and even larger than the wound 12.


Although porous pad 20 has been described above, it is within the scope of this disclosure to include any such structure which functions to create a space between the SIS layer 14 and the cover 18 and permits air flow from the wound 12 to transmit negative pressure to the wound surface 16. As shown in FIG. 3, the structure 120 may be gauze, or, as shown in FIG. 4, the structure may be a foam ring 220 or other such ring to position cover 18 in spaced-apart relation to SIS layer 14. Ring 220 includes an aperture defined by an inner wall 221 of the ring 220. The vacuum space 22 is thus defined by the SIS layer 14, the cover 18, and the inner wall 221 of ring 220.


Further, as shown in FIG. 5, for example, the structure may be a rigid dome or a preferably semi-rigid dome 320 which supports the cover 18 above the SIS layer 14. Semi-rigid dome 320 includes a lower member 322 adapted to lie adjacent the patient's skin surrounding wound 12, an upper member 324 normally spaced-apart from SIS layer 14, and a middle member 326 for supporting the upper member 324 in spaced-apart relationship with the SIS layer 14. Semi-rigid dome 320 may be generally dome-shaped, for example, as well. Although such examples as porous pad 20, foam ring 220, and semi-rigid dome 320 have been provided as examples for the structure, it is within the scope of this disclosure for bandage 10 to include any space providing structure above the SIS layer 14 and below the cover 18 for communication with a vacuum service 26.


Cover 18 of the bandage 10 lies over the space-providing structure to fully enclose the structure, SIS layer 14, and wound 12. Cover 18 is coupled to the patient's skin 24 which surrounds the wound 12. For example, cover 18 may be a thin transparent, non-porous adhesive sheet to adhere to the surface of the skin 24 about the wound 12 to provide a vacuum enclosure. An adhesive 33 for coupling cover 18 to skin 24 is shown in FIGS. 1 and 3-5. A product such as Tegaderm™ (3M Health Care Ltd., (St. Paul, Minn.)) would be suitable for the cover, for example. It is within the scope of this disclosure, however, to include any suitable non-porous impermeable or semi-permeable sheet. While a flexible or semi-rigid sheet is preferred for patient comfort, a rigid cover, such as a glass dome, is within the scope of this invention. When a rigid cover is used, a separate space-providing structure is not needed, as the rigid cover may be configured to provide the vacuum space.


In order to encourage blood flow to the wound 12 and wound surface 16, vacuum space 22 of wound care bandage 10 is connected with vacuum source 26. A vacuum tube 32 may be provided, for example, for fluid communication with vacuum space 22 and vacuum source 26. As shown in FIG. 1, vacuum tube 32 is coupled to cover 18 and in communication with vacuum space 22. A first end 40 of tube 32 includes a collar 34 coupled to an aperture of the cover 18. As shown diagrammatically, a second end 42 of tube 32 is coupled to vacuum source 26.


In other embodiments, as shown in FIGS. 3-5, for example, tube 32 is placed under cover 18 and into vacuum space 22. Cover 18 is sealed around tube 32 in order create a sealed environment for the vacuum to function properly. The vacuum may be provided by a suction tube disposed in the space and configured to draw excess wound drainage away from the wound. Another type of fluid connection system between a wound dressing and a vacuum source is disclosed in U.S. Pat. No. 4,969,880. Furthermore, while first end 40 of tube 32 is shown in FIGS. 3 and 4 as being located in the structure 120 or 220, it is understood that first end 32 may be placed directly on the SIS layer 14. Additionally, it is understood that tube 32 may be a Jackson-Pratt type drain, with holes distributed along its length adjacent first end 32.


The vacuum may be provided in vacuum space 22 for controlled periods of time. For example, initially, the vacuum may be applied for a sufficient time to draw blood into the SIS layer 14, such as up to 125 mm Hg, for example. It will be appreciated that this invention contemplates developing different protocols for amounts of vacuum and application times. It will also be appreciated that the vacuum may be provided by a perforated tube positioned and configured to carry away excess wound drainage.


In treating wound 12, a caretaker first cleans and prepares the wound surface 16. Once wound surface 16 is prepared, bandage 10 is to be applied to the wound. SIS layer 14 is positioned over the wound 12 to cover the prepared wound surface 16. Structure 20, 120, 220, or 320 is placed over the SIS layer 14 to define the vacuum space and cover 18 is placed over the wound 12, SIS layer 14, and structure 20. Cover 18 is connected to a vacuum source 26. Finally, suction is applied to the vacuum space 22 in sufficient magnitude and duration to draw blood from the wound into the SIS layer 14. Optionally, a biological glue 30 may be placed on the wound surface 16 prior to application of the bandage 10.


Vacuum may be applied at any magnitude or duration to promote inflow of blood from the wound into the layer of SIS. Preferably, vacuum may be applied from 0.1 to 0.99 atmospheres, and more preferably 0.1 to 0.15 atmospheres. In one embodiment, vacuum is applied essentially continuously until healing takes place. In another embodiment, vacuum is used in periods of application and non-application, and the structure and cover may be removed during periods of non-application. These alternating periods may include one or two periods of application each day for several days. In another embodiment, the negative pressure is applied in 5 minute periods of application and non-application.


It is known that SIS can be integrated into the wound and restructured to resemble the surrounding tissue. Thus, while the magnitude and duration of application of vacuum may vary, in a preferred embodiment the SIS remains on the surface of the wound for the duration of treatment. In optional embodiments, additional layers of SIS may be added as the SIS is integrated into the wound. The additional layers may be smaller pieces to be placed on localized areas of integration, or, because the vacuum promotes blood flow into the SIS layer, may be full size pieces conforming to the size of the wound surface.


Thus, in one embodiment the present invention is a method for treating wounds comprising the steps of preparing the wound surface, applying a bandage to the wound, the bandage having an SIS layer secured over the wound and a cover above the wound and the SIS layer to define a vacuum space between the wound and SIS layer, and applying suction to the vacuum space to draw blood from the wound into the SIS layer.


Although this invention has been described in detail with reference to certain embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.

Claims
  • 1. A method for promoting wound healing, the method comprising: applying a first small intestine submucosa (SIS) layer to a wound surface,creating a vacuum space in communication with the wound and the first SIS layer by placing a cover over the SIS layer,generating a vacuum within the vacuum space in a magnitude and duration sufficient to draw blood from the wound into the first SIS layer, wherein no sutures and no stapes are used to hold the SIS layer in place during communication of negative pressure to the vacuum space by the vacuum source,wherein creating the vacuum space includes positioning a structure between the first SIS layer and the cover to provide the vacuum space, andwherein the structure comprises a ring having an aperture defined by an inner wall of the ring and wherein the vacuum space is defined by the first SIS layer, the cover, and the inner wall of the ring.
  • 2. The method of claim 1, wherein the vacuum is generated in periods of application and non-application.
  • 3. The method of claim 1, wherein the SIS layer includes one or more sheets of SIS.
  • 4. The method of claim 1, wherein the SIS layer is fenestrated.
  • 5. The method of claim 1, wherein the vacuum is generated for a sufficient period of time to begin integration of the first SIS layer into the wound surface, and further comprising the step of placing a second SIS layer over the first SIS layer.
  • 6. The method of claim 1, wherein the ring comprises foam.
  • 7. The method of claim 1, wherein the wherein the ring has a thickness of approximately 1-2 centimeters.
  • 8. The method of claim 1, wherein the vacuum is generated with a vacuum source coupled to the cover by a vacuum tube.
  • 9. The method of claim 1, wherein the vacuum is generated at a constant rate to controllably draw blood from the wound into the SIS layer.
  • 10. The method of claim 1, wherein generating the vacuum includes generating a vacuum of about 0.1 to about 0.15 atmospheres.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a U.S. national counterpart application of international application Ser. No. PCT/US01/15611 filed May 15, 2001, which claims priority to U.S. provisional application Ser. No. 60/206,226 filed May 22, 2000, and is a divisional application of U.S. utility application Ser. No. 09/855,287 filed May 15, 2001.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US01/15611 5/15/2001 WO 00 11/18/2002
Publishing Document Publishing Date Country Kind
WO01/89431 11/29/2001 WO A
US Referenced Citations (529)
Number Name Date Kind
774529 Nieschang Nov 1904 A
1000001 Holz Aug 1911 A
1355846 Rannells Oct 1920 A
1385346 Taylor Jul 1921 A
1709520 Chandler Apr 1929 A
1936129 Fisk Nov 1933 A
2078180 Kronenberg Apr 1937 A
2195771 Estler Apr 1940 A
2221758 Elmquist Nov 1940 A
2305289 Coburg Dec 1942 A
2338339 LaMere et al. Jan 1944 A
2443481 Sene Jun 1948 A
2547758 Keeling Apr 1951 A
2560915 Bamberger Jul 1951 A
2573791 Howells Nov 1951 A
2577945 Atherton Dec 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jun 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3026874 Stevens Mar 1962 A
3066672 Crosby, Jr. et al. Dec 1962 A
3315665 MacLeod Apr 1967 A
3367332 Groves Feb 1968 A
3382867 Reaves May 1968 A
3430631 Abramson Mar 1969 A
3492991 Dyer, Jr. Feb 1970 A
3520300 Flower, Jr. Jul 1970 A
3528416 Chamberlain Sep 1970 A
3568675 Harvey Mar 1971 A
3585742 Tyler Jun 1971 A
3599639 Spotz Aug 1971 A
3610238 Rich, Jr. Oct 1971 A
3623087 Gallichotte Nov 1971 A
3626087 Tomioka Dec 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3683894 Villari Aug 1972 A
3721244 Elmaleh Mar 1973 A
3752158 Kariher Aug 1973 A
3753439 Brugarolas et al. Aug 1973 A
3782377 Rychlik Jan 1974 A
3812972 Rosenblum May 1974 A
3814095 Lubens Jun 1974 A
3823720 Tribble Jul 1974 A
3826254 Mellor Jul 1974 A
3831588 Rindner Aug 1974 A
3860008 Miner et al. Jan 1975 A
3874387 Barbieri Apr 1975 A
3903882 Augurt Sep 1975 A
3924624 Schachet Dec 1975 A
3935863 Kliger Feb 1976 A
3954105 Nordby et al. May 1976 A
3982546 Friend Sep 1976 A
4004590 Muriot Jan 1977 A
4013076 Puderbaugh et al. Mar 1977 A
RE29319 Nordby et al. Jul 1977 E
RE29321 Holbrook Jul 1977 E
4058123 May Nov 1977 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4112947 Nehring Sep 1978 A
4149541 Gammons et al. Apr 1979 A
4165748 Johnson Aug 1979 A
4178974 Levin Dec 1979 A
4184510 Murry et al. Jan 1980 A
4191204 Nehring Mar 1980 A
4219021 Fink Aug 1980 A
4224941 Stivala Sep 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4250882 Adair Feb 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4341209 Schaar Jul 1982 A
4364394 Wilkinson Dec 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4399816 Spangler Aug 1983 A
4419097 Rowland Dec 1983 A
4445897 Ekbladh et al. May 1984 A
4457755 Wilson Jul 1984 A
4460370 Allison et al. Jul 1984 A
4465062 Versaggi et al. Aug 1984 A
4465485 Kashmer et al. Aug 1984 A
4469092 Marshall et al. Sep 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4508533 Abramson Apr 1985 A
4525156 Benusa et al. Jun 1985 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4533352 Van Beek et al. Aug 1985 A
4533419 Pieslak et al. Aug 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4553967 Ferguson et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4569674 Phillips et al. Feb 1986 A
4573965 Russo Mar 1986 A
4579555 Russo Apr 1986 A
4596564 Spetzler et al. Jun 1986 A
4608041 Nielsen Aug 1986 A
4614794 Easton et al. Sep 1986 A
4624656 Clark et al. Nov 1986 A
4633863 Filips et al. Jan 1987 A
4637819 Oullette et al. Jan 1987 A
4640688 Hauser Feb 1987 A
4641643 Greer Feb 1987 A
4645492 Weeks Feb 1987 A
4655210 Edenbaum et al. Apr 1987 A
4655754 Richmond et al. Apr 1987 A
4661093 Beck et al. Apr 1987 A
4664652 Weilbacher May 1987 A
4664662 Webster May 1987 A
4667666 Frysliie May 1987 A
4679590 Hergenroeder Jul 1987 A
4704102 Guthery Nov 1987 A
4710165 McNeil et al. Dec 1987 A
4713051 Steppe et al. Dec 1987 A
4717332 Edens Jan 1988 A
4717379 Ekholmer Jan 1988 A
4733659 Edenbaum et al. Mar 1988 A
4735606 Davison Apr 1988 A
4735610 Akkas et al. Apr 1988 A
4737148 Blake Apr 1988 A
4740202 Stacey et al. Apr 1988 A
4743232 Kruger May 1988 A
4747166 Kuntz May 1988 A
4758220 Sundblom et al. Jul 1988 A
4759354 Quarfoot Jul 1988 A
4765316 Marshall Aug 1988 A
4778446 Jensen Oct 1988 A
4778456 Lokken Oct 1988 A
4787888 Fox Nov 1988 A
4798578 Ranford Jan 1989 A
4820265 DeSatnick et al. Apr 1989 A
4820284 Hauri Apr 1989 A
4826494 Richmond et al. May 1989 A
4826949 Stanko May 1989 A
4834110 Richard May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4841962 Berg et al. Jun 1989 A
4850350 Jackson Jul 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4890608 Steer Jan 1990 A
4897081 Poirier et al. Jan 1990 A
4900302 Newton Feb 1990 A
4902508 Badylak et al. Feb 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4915694 Yamamoto et al. Apr 1990 A
4917112 Kalt Apr 1990 A
4919654 Kalt Apr 1990 A
4921492 Schultz et al. May 1990 A
4930997 Bennett Jun 1990 A
4941882 Ward et al. Jul 1990 A
4950230 Kendell Aug 1990 A
4953565 Tachibana et al. Sep 1990 A
4956178 Badylak et al. Sep 1990 A
4957492 McVay Sep 1990 A
4969880 Zamierowski Nov 1990 A
4969881 Viesturs Nov 1990 A
4970298 Silver et al. Nov 1990 A
4985019 Michelson Jan 1991 A
4988336 Kohn Jan 1991 A
4990144 Blott Feb 1991 A
4991574 Pocknell Feb 1991 A
4994022 Steffler et al. Feb 1991 A
4997425 Shioya et al. Mar 1991 A
5000172 Ward Mar 1991 A
5000741 Kalt Mar 1991 A
5002528 Palestrant Mar 1991 A
5002529 Cunningham Mar 1991 A
5003971 Buckley Apr 1991 A
5034003 Denance Jul 1991 A
5034006 Hosoda et al. Jul 1991 A
5035865 Inaba et al. Jul 1991 A
5037397 Kalt et al. Aug 1991 A
5042978 Quenin et al. Aug 1991 A
5045777 Itagaki Sep 1991 A
5060662 Farnswoth, III Oct 1991 A
5071409 Rosenberg Dec 1991 A
5073172 Fell Dec 1991 A
5080650 Hirsch et al. Jan 1992 A
5086170 Luheshi et al. Feb 1992 A
5086763 Hathman Feb 1992 A
5086764 Gilman Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100395 Rosenberg Mar 1992 A
5100396 Zamierowski Mar 1992 A
5101808 Kobayashi et al. Apr 1992 A
5106362 Gilman Apr 1992 A
5106629 Cartmell et al. Apr 1992 A
5108364 Takezawa et al. Apr 1992 A
5134994 Say Aug 1992 A
5135518 Vera Aug 1992 A
5146925 Snow Sep 1992 A
5147338 Lang et al. Sep 1992 A
5149331 Ferdman et al. Sep 1992 A
5152757 Eriksson Oct 1992 A
5160322 Scheremet et al. Nov 1992 A
5167613 Karami et al. Dec 1992 A
5167622 Muto Dec 1992 A
5170781 Loomis Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5176663 Svedman et al. Jan 1993 A
5181908 Bell Jan 1993 A
5189609 Tivig et al. Feb 1993 A
5197948 Ghodsian Mar 1993 A
5215522 Page et al. Jun 1993 A
5215539 Schoolman Jun 1993 A
5224929 Remiszewski Jul 1993 A
5228431 Giarretto Jul 1993 A
5230350 Fentress Jul 1993 A
5232453 Plass et al. Aug 1993 A
5238654 Nohl et al. Aug 1993 A
5249121 Baum et al. Sep 1993 A
5256418 Kemp et al. Oct 1993 A
5261893 Zamierowski Nov 1993 A
5263922 Sova et al. Nov 1993 A
5265605 Afflerbach Nov 1993 A
5275826 Badylak et al. Jan 1994 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5291887 Stanley et al. Mar 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5306298 Godley, III Apr 1994 A
5314409 Sarosiek et al. May 1994 A
5330452 Zook Jul 1994 A
5335651 Foster et al. Aug 1994 A
5338293 Jeppsson et al. Aug 1994 A
5342293 Zanger Aug 1994 A
5342301 Saab Aug 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5349965 McCarver Sep 1994 A
5352463 Badylak et al. Oct 1994 A
5358494 Svedman Oct 1994 A
5370610 Reynolds Dec 1994 A
5372821 Badylak et al. Dec 1994 A
5374254 Buma Dec 1994 A
5376252 Ekstrom et al. Dec 1994 A
5380280 Peterson Jan 1995 A
5395315 Griep Mar 1995 A
5409013 Clement Apr 1995 A
5413788 Edwards et al. May 1995 A
5419768 Kayser May 1995 A
5431622 Pyrozyk et al. Jul 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5439452 McCarty Aug 1995 A
5445604 Lang Aug 1995 A
5445833 Badylak et al. Aug 1995 A
5447505 Valentine et al. Sep 1995 A
5449383 Chatelier et al. Sep 1995 A
5451215 Wolter Sep 1995 A
5451373 Lewis et al. Sep 1995 A
5478333 Asherman, Jr. Dec 1995 A
5484420 Russo Jan 1996 A
5484427 Gibbons Jan 1996 A
5484428 Drainville et al. Jan 1996 A
5487889 Eckert et al. Jan 1996 A
5516533 Badylak et al. May 1996 A
5520652 Peterson May 1996 A
5527293 Zamierowski Jun 1996 A
5531670 Westby et al. Jul 1996 A
5533981 Mandro et al. Jul 1996 A
5534346 Robinson Jul 1996 A
5540668 Wilson et al. Jul 1996 A
5542918 Atkinson Aug 1996 A
5554389 Badylak et al. Sep 1996 A
5556375 Ewall Sep 1996 A
5558639 Gangemi et al. Sep 1996 A
5573784 Badylak et al. Nov 1996 A
5578022 Scherson et al. Nov 1996 A
5578662 Bennett et al. Nov 1996 A
5607388 Ewall Mar 1997 A
5621035 Lyles et al. Apr 1997 A
5624418 Shepard Apr 1997 A
5628735 Skow May 1997 A
5629186 Yasukawa et al. May 1997 A
5631011 Wadstrom May 1997 A
5635201 Fabo Jun 1997 A
5636643 Argenta et al. Jun 1997 A
5641518 Badylak et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5645860 Knapp et al. Jul 1997 A
5655258 Heintz Aug 1997 A
5656027 Ellingboe Aug 1997 A
5662598 Tobin Sep 1997 A
5662624 Sundstrom et al. Sep 1997 A
5662625 Westwood Sep 1997 A
5669892 Keogh et al. Sep 1997 A
5672151 Calderon-Garcidueñas Sep 1997 A
5674193 Hayes Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5681290 Alexander Oct 1997 A
5690815 Krasnoff et al. Nov 1997 A
5695998 Badylak et al. Dec 1997 A
5697920 Gibbons Dec 1997 A
5711969 Patel et al. Jan 1998 A
5718955 McGuire Feb 1998 A
5735833 Olson Apr 1998 A
5738656 Wagner Apr 1998 A
5741237 Walker Apr 1998 A
5749842 Cheong et al. May 1998 A
5753267 Badylak et al. May 1998 A
5755791 Whitson et al. May 1998 A
5759570 Arnold Jun 1998 A
5762640 Kajiwara et al. Jun 1998 A
5762966 Knapp et al. Jun 1998 A
5780281 Yasukawa et al. Jul 1998 A
5782871 Fujiwara et al. Jul 1998 A
5795584 Totakura et al. Aug 1998 A
5800383 Chandler et al. Sep 1998 A
5817145 Augustine et al. Oct 1998 A
5827246 Bowen Oct 1998 A
5827296 Morris et al. Oct 1998 A
5855619 Caplan et al. Jan 1999 A
5866414 Badylak et al. Feb 1999 A
5881723 Wallace et al. Mar 1999 A
5891111 Ismael Apr 1999 A
5902874 Roby et al. May 1999 A
5902875 Roby et al. May 1999 A
5911222 Lawrence et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5921972 Skow Jul 1999 A
5928174 Gibbins Jul 1999 A
5931304 Hammond Aug 1999 A
5941859 Lerman Aug 1999 A
5942496 Bonadio et al. Aug 1999 A
5947914 Augustine Sep 1999 A
5951295 Lyles et al. Sep 1999 A
5954680 Augustine Sep 1999 A
5961480 Augustine Oct 1999 A
5962427 Goldstein et al. Oct 1999 A
5964721 Augustine Oct 1999 A
5964723 Augustine Oct 1999 A
5986163 Augustine Nov 1999 A
5997568 Liu Dec 1999 A
6010527 Augustine et al. Jan 2000 A
6013048 Podany et al. Jan 2000 A
6017493 Cambron et al. Jan 2000 A
6039724 Seifert et al. Mar 2000 A
6045518 Augustine Apr 2000 A
6045541 Matsumoto et al. Apr 2000 A
6051747 Lindqvist et al. Apr 2000 A
6056730 Greter May 2000 A
6071254 Augustine Jun 2000 A
6071267 Zamierowski Jun 2000 A
6071304 Augustine et al. Jun 2000 A
6080189 Augustine et al. Jun 2000 A
6080243 Insley et al. Jun 2000 A
6093160 Augustine et al. Jul 2000 A
6093230 Johnson, III et al. Jul 2000 A
6095992 Augustine Aug 2000 A
6099567 Badylak et al. Aug 2000 A
6110197 Augustine et al. Aug 2000 A
6113561 Augustine Sep 2000 A
6117111 Fleischmann Sep 2000 A
6135116 Vogel et al. Oct 2000 A
6142982 Hunt et al. Nov 2000 A
6143945 Augustine et al. Nov 2000 A
6149614 Dunshee et al. Nov 2000 A
6171344 Atala Jan 2001 B1
6174306 Fleischmann Jan 2001 B1
6203563 Fernandez Mar 2001 B1
6206931 Cook et al. Mar 2001 B1
6207875 Lindqvist et al. Mar 2001 B1
6213965 Augustine et al. Apr 2001 B1
6213966 Augustine Apr 2001 B1
6217535 Augustine Apr 2001 B1
6235009 Skow May 2001 B1
6235047 Augustine et al. May 2001 B1
6241697 Augustine Jun 2001 B1
6241698 Augustine Jun 2001 B1
6241747 Ruff Jun 2001 B1
6244311 Hand et al. Jun 2001 B1
6248084 Augustine et al. Jun 2001 B1
6254557 Augustine et al. Jul 2001 B1
6254580 Svedman Jul 2001 B1
6259067 Faries, Jr. et al. Jul 2001 B1
6264622 Augustine Jul 2001 B1
6264979 Svedman Jul 2001 B1
6267740 Augustine et al. Jul 2001 B1
6283931 Augustine Sep 2001 B1
6284941 Cox et al. Sep 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290685 Insley et al. Sep 2001 B1
6293917 Augustine et al. Sep 2001 B1
6325798 Edwards et al. Dec 2001 B1
6345623 Heaton et al. Feb 2002 B1
6364853 French et al. Apr 2002 B1
6394142 Woelfel et al. May 2002 B1
6398767 Fleischmann Jun 2002 B1
6410427 Hu Jun 2002 B1
6440427 Wadstrom Aug 2002 B1
6458109 Henley et al. Oct 2002 B1
6471685 Johnson Oct 2002 B1
6472581 Muramatsu Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6491682 Paderni Dec 2002 B2
6491693 Lytinas Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
6520982 Boynton et al. Feb 2003 B1
6553998 Heaton et al. Apr 2003 B2
6557704 Randolph May 2003 B1
6559773 Berry May 2003 B1
6599277 Neubert Jul 2003 B2
6626891 Ohmstede Sep 2003 B2
6638270 Johnson Oct 2003 B2
6648862 Watson Nov 2003 B2
6663349 Discenzo et al. Dec 2003 B1
6685681 Lockwood et al. Feb 2004 B2
6691047 Fredericks Feb 2004 B1
6695823 Lina et al. Feb 2004 B1
6695824 Howard et al. Feb 2004 B2
6719779 Daoud Apr 2004 B2
6749592 Lord Jun 2004 B2
6752794 Lockwood et al. Jun 2004 B2
6755807 Risk, Jr. et al. Jun 2004 B2
6764462 Risk, Jr. et al. Jul 2004 B2
6767334 Randolph Jul 2004 B1
6800074 Henley et al. Oct 2004 B2
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6856821 Johnson Feb 2005 B2
6936037 Bubb et al. Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
6966889 Saab Nov 2005 B2
6979324 Bybordi et al. Dec 2005 B2
6994702 Johnson Feb 2006 B1
7004915 Boynton et al. Feb 2006 B2
7022113 Lockwood et al. Apr 2006 B2
7070584 Johnson et al. Jul 2006 B2
7077832 Fleischmann Jul 2006 B2
7108683 Zamierowski Sep 2006 B2
7117869 Heaton et al. Oct 2006 B2
7128735 Weston Oct 2006 B2
7144390 Hannigan et al. Dec 2006 B1
7195624 Lockwood et al. Mar 2007 B2
7245291 Sharif et al. Jul 2007 B2
7276051 Henley et al. Oct 2007 B1
7338482 Lockwood et al. Mar 2008 B2
7381211 Zamierowski Jun 2008 B2
7422576 Boynton et al. Sep 2008 B2
7524286 Johnson Apr 2009 B2
7534927 Lockwood et al. May 2009 B2
20010029956 Argenta et al. Oct 2001 A1
20010034499 Sessions et al. Oct 2001 A1
20010043943 Coffey Nov 2001 A1
20010052681 Deavila Dec 2001 A1
20020065494 Lockwood et al. May 2002 A1
20020077661 Saadat Jun 2002 A1
20020082567 Lockwood et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020085952 Ellingboe et al. Jul 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020115952 Johnson et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20020161317 Risk et al. Oct 2002 A1
20020183702 Henley et al. Dec 2002 A1
20020193723 Batdorf et al. Dec 2002 A1
20030032951 Rittman, III et al. Feb 2003 A1
20030077311 Vyakarnam et al. Apr 2003 A1
20030093041 Risk, Jr. et al. May 2003 A1
20030143352 Yang et al. Jul 2003 A1
20030219469 Johnson et al. Nov 2003 A1
20030225441 Boynton et al. Dec 2003 A1
20040039415 Zamierowski Feb 2004 A1
20040064111 Lockwood et al. Apr 2004 A1
20040167482 Watson Aug 2004 A1
20040225208 Johnson Nov 2004 A1
20040243073 Lockwood et al. Dec 2004 A1
20040249353 Risk, Jr. et al. Dec 2004 A1
20040260230 Randolph Dec 2004 A1
20050004534 Lockwood et al. Jan 2005 A1
20050010153 Lockwood et al. Jan 2005 A1
20050033197 Cottler Feb 2005 A1
20050065484 Watson, Jr. Mar 2005 A1
20050070858 Lockwood et al. Mar 2005 A1
20050085795 Lockwood et al. Apr 2005 A1
20050090787 Risk, Jr. et al. Apr 2005 A1
20050131327 Lockwood et al. Jun 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050182446 DeSantis Aug 2005 A1
20050234485 Seegert et al. Oct 2005 A1
20050234510 Zamierowski Oct 2005 A1
20050240220 Zamierowski Oct 2005 A1
20050283105 Heaton et al. Dec 2005 A1
20060015087 Risk, Jr. et al. Jan 2006 A1
20060029650 Coffey Feb 2006 A1
20060029675 Ginther Feb 2006 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060129137 Lockwood et al. Jun 2006 A1
20060149170 Boynton et al. Jul 2006 A1
20060149171 Vogel et al. Jul 2006 A1
20060173253 Ganapathy et al. Aug 2006 A1
20060189910 Johnson et al. Aug 2006 A1
20060213527 Argenta et al. Sep 2006 A1
20070005028 Risk, Jr. et al. Jan 2007 A1
20070014837 Johnson et al. Jan 2007 A1
20070021697 Ginther et al. Jan 2007 A1
20070021698 Fleischmann Jan 2007 A1
20070032778 Heaton et al. Feb 2007 A1
20070038172 Zamierowski Feb 2007 A1
20070156104 Lockwood et al. Jul 2007 A1
20070233022 Henley et al. Oct 2007 A1
20090082740 Lockwood et al. Mar 2009 A1
20100063483 Adahan Mar 2010 A1
Foreign Referenced Citations (117)
Number Date Country
550575 May 1983 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
1127488 Jul 1982 CA
2005436 Jun 1990 CA
2303085 Mar 1999 CA
372727 Mar 1923 DE
2640413 Mar 1978 DE
28 09 828 Sep 1978 DE
3102674 Sep 1982 DE
3539533 May 1987 DE
4012232 Oct 1991 DE
4111122 Apr 1993 DE
4306478 Sep 1994 DE
29504378 Oct 1995 DE
29715634 Nov 1997 DE
19722075 Oct 1998 DE
64055 Oct 1945 DK
0 100 148 Feb 1984 EP
0117632 Sep 1984 EP
0 161 865 Nov 1985 EP
0 358 302 Mar 1990 EP
0424165 Apr 1991 EP
0485657 May 1992 EP
0547496 Jun 1993 EP
0853 950 Jul 1998 EP
0 777 504 Oct 1998 EP
0 880 953 Dec 1998 EP
1 088 569 Apr 2001 EP
1 100 574 May 2001 EP
1 190 732 Mar 2002 EP
1 018 967 Aug 2004 EP
1 726 276 Nov 2006 EP
500253 Mar 1920 FR
1303238 Jul 1962 FR
3090 Jun 1902 GB
641061 Aug 1950 GB
692578 Jun 1953 GB
1549756 Aug 1979 GB
1584772 Feb 1981 GB
2195255 Apr 1988 GB
2197789 Jun 1988 GB
2220357 Jan 1990 GB
2235877 Mar 1991 GB
2307180 May 1997 GB
2329127 Mar 1999 GB
2333965 Aug 1999 GB
2336546 Oct 1999 GB
2342584 Apr 2000 GB
2344531 Jun 2000 GB
2351025 Dec 2000 GB
2356148 May 2001 GB
199304 Jan 1989 HU
51150 Apr 1990 HU
205557 Apr 1990 HU
P9006526 Jan 1993 HU
P9302966 Jul 1996 HU
76351 Aug 1997 HU
215563 Aug 1997 HU
1666 Dec 1999 HU
57-177758 Nov 1982 JP
4-129436 Apr 1992 JP
6-327761 Nov 1994 JP
84485 Oct 1935 SE
71559 Apr 2002 SG
587941 Jan 1978 SU
1268175 Nov 1986 SU
WO 8002182 Oct 1980 WO
WO 8704626 Aug 1987 WO
WO 8904158 May 1989 WO
WO 9010424 Sep 1990 WO
WO 9011795 Oct 1990 WO
WO 9100718 Jan 1991 WO
WO 9108793 Jun 1991 WO
WO 9116030 Oct 1991 WO
WO 9212750 Aug 1992 WO
WO9219313 Nov 1992 WO
WO 9220299 Nov 1992 WO
WO 9309715 May 1993 WO
WO 9309727 May 1993 WO
WO 9400090 Jan 1994 WO
WO 9420041 Sep 1994 WO
WO 9605873 Feb 1996 WO
WO 9615745 May 1996 WO
WO9718007 May 1997 WO
WO 9802205 Jan 1998 WO
WO 9838944 Sep 1998 WO
WO 9901173 Jan 1999 WO
WO 9913793 Mar 1999 WO
WO 9923990 May 1999 WO
WO 9959816 Nov 1999 WO
WO 0007653 Feb 2000 WO
WO 0015277 Mar 2000 WO
WO 0021586 Apr 2000 WO
WO 0026100 May 2000 WO
WO 0028890 May 2000 WO
WO 0030567 Jun 2000 WO
WO 0032247 Jun 2000 WO
WO 0038552 Jul 2000 WO
WO 0038755 Jul 2000 WO
WO 0042958 Jul 2000 WO
WO 0059418 Oct 2000 WO
WO 0059424 Oct 2000 WO
WO 0061206 Oct 2000 WO
WO 0064394 Nov 2000 WO
WO 0134223 May 2001 WO
WO 0137922 May 2001 WO
WO 0149233 Jul 2001 WO
WO 0185248 Nov 2001 WO
WO 0189431 Nov 2001 WO
WO 0238091 May 2002 WO
WO 0243634 Jun 2002 WO
WO 03005943 Jan 2003 WO
WO 03045492 Jun 2003 WO
WO 03057071 Jul 2003 WO
WO 03057307 Jul 2003 WO
WO 03101508 Dec 2003 WO
Related Publications (1)
Number Date Country
20030208149 A1 Nov 2003 US
Provisional Applications (1)
Number Date Country
60206226 May 2000 US
Divisions (1)
Number Date Country
Parent 09855287 May 2001 US
Child 10276778 US