The present invention relates to wound care and more particularly to the provision of an SIS wound care cover used in combination with a vacuum bandage. The invention contemplates both apparatus and a method for using the apparatus.
It is known to use small intestine submucosa (SIS) in wound care treatment, particularly the application of layers of SIS directly upon an open wound that has been debrided and cleaned. SIS is described in the following U.S. Pat. Nos. 5,855,619, 5,866,414, 5,753,267, 5,762,966, 5,755,791, 4,902,508, 4,956,178, 5,275,826, 5,281,422, 4,352,463, 5,372,821, 5,445,833, 5,516,533, 5,573,784, 5,645,860, 5,641,518, 5,711,969, and 5,695,998. These patents are hereby incorporated herein by reference for purposes of disclosing the nature of SIS.
SIS has been described as a natural acellular biomaterial used to repair, support, and stabilize a wide variety of anatomical defects and traumatic injuries. See, for example, Cook® Online New Release provided by Cook Biotech at “www.cookgroup.com”. The SIS material is a tissue engineered collagen matrix derived from porcine small intestinal submucosa that models the qualities of its host when implanted in human soft tissues. Further, it is taught that the SIS material provides a natural scaffold-like matrix with a three-dimensional structure and biochemical composition that attracts host cells and supports tissue remodeling. Surgisis™ Soft Tissue Repair Biomaterial and Oasis™ Wound Dressing Biomaterial are available for remodeling partial thickness skin injuries (Cook Biotech, Bloomington, Ind.). The Oasis™ Wound Dressing is provided in single thickness, fenestrated sheets. It will be appreciated that SIS is readily available for use as a wound dressing.
While small intestine submucosa is available, other sources of submucosa are known to be effective for tissue remodeling. These sources include, but are not limited to, stomach, bladder, alimentary, respiratory, or genital submucosa. See, e.g., U.S. Pat. Nos. 6,171,344, 6,099,567, and 5,554,389, hereby incorporated by reference. Further, it is known that these various submucosa materials may be derived from non-porcine sources, including bovine and ovine sources. Additionally, other collagen matrices are known, for example lamina propria and stratum compactum.
It is also known to use a vacuum treatment bandage for accelerating wound healing. A vacuum bandage is a bandage having a cover for sealing about the outer perimeter of the wound and under which a vacuum is established to act on the wound surface. This vacuum applied to the wound surface accelerates healing of chronic wounds. Typically, suction tubes are provided for drawing exudate away from the wound, and the suction tubes may be used to create the vacuum under the cover. If the cover is a flexible cover, which is typically more comfortable for the patient, a porous packing may be provided under the cover to provide the space in which the vacuum is formed. Additionally, it is known a heater within a wound treatment apparatus to promote healing. The following U.S. Pat. Nos. establish the nature of vacuum and/or heat treatment bandages and devices: U.S. Pat. Nos. 6,095,992, 6,080,189, 6,071,304, 5,645,081, 5,636,643, 5,358,494, 5,298,015, 4,969,880, 4,655,754, 4,569,674, 4,382,441, and 4,112,947. All of such references are incorporated herein by reference for purposes of disclosing the nature of such vacuum or heat treatment of wounds.
As shown, for example, in U.S. Pat. No. 5,645,081 (hereinafter the '081 patent), a method of treating tissue damage is provided by applying negative pressure to a wound. The negative pressure is provided in sufficient duration and magnitude to promote tissue migration in order to facilitate the closure of the wound. FIG. 1 of the '081 patent discloses an open cell polyester foam section covering the wound, a flexible hollow tube inserted into the foam section at one end and attached to a vacuum pump at another end, an adhesive sheet overlying the foam section, and tubing to adhere to the skin surrounding the wound in order to form a seal that allows the creation of a vacuum when the suction pump is operating. The '081 patent further teaches use of negative pressure between about 0.1 and 0.99 atmospheres, and that the pressure can be substantially continuous, wherein the pressure is relieved only to change the dressing on the wound. Alternatively, the '081 patent teaches use of a cyclic application of pressure in alternating periods of application and non-application. In a preferred embodiment, pressure is applied in 5 minute periods of application and non-application.
The following pending applications, assigned to the same assignee as the present application is licensed, are also specifically incorporated herein by reference: U.S. patent application Ser. No. 09/369,113 filed Aug. 5, 1999 and titled Wound Treatment Apparatus, now U.S. Pat. No. 6,458,109, U.S. patent application Ser. No. 09/725,352 filed Nov. 29, 2000 and titled Vacuum Therapy and Cleansing Dressing for Wounds, now U.S. Pat. No. 6,685,681, and U.S. patent application Ser. No. 09/725,666 filed Nov. 29, 2000 and titled Wound Treatment Apparatus, now U.S. Pat. No. 6,755,807.
Various of prior art references teach the value of the vacuum bandage or the provision of vacuum to the surface of a chronic wound. Several Russian language articles exist that establish the efficacy of vacuum therapy. Examples of such prior art articles, each of which discusses the use of application of vacuum to a wound to promote healing, are as follows: Vacuum therapy in the treatment of acute suppurative diseases of soft tissues and suppurative wound, Davydov, et al. Vestn. Khir., September 1988 (“the September 1988 article”); Pathenogenic mechanism of the effect of vacuum therapy on the course of the wound process, Davydov, et al Khirurigiia, June 1990 (“the June 1990 article”); and Vacuum therapy in the treatment of suppurative lactation mastitis, Davydov, et al., Vestn. Khir., November 1986 (“the November 1986 article”).
The Russian articles distinguish wound drainage from use of vacuum therapy for healing, and they report that vacuum therapy results in faster cleansing of the wound and more rapid detoxification than with the traditional incision-drainage method. The November 1986 article describes the vacuum therapy protocol as 0.8-1.0 atmosphere for 20 minutes at the time of surgery, and subsequent 1.5 to 3 hour treatments at a vacuum of 0.1 to 0.15 atmosphere, twice daily. These Russian articles teach that use of negative pressure accelerates healing. The Russian articles further teach using this vacuum method to decrease the number of microbes in the wound. The June 1990 article teaches that vacuum therapy provides a significant antibacterial effect. The June 1990 article describes the stepped up inflow of blood to the zone around the wound, which leads to an increase in the number of leukocytes reaching the focus of inflammation. Moreover, the Russian articles teach improvement of local blood circulation using vacuum therapy. The September 1988 article teaches improved inflow of blood into the wound zone, which intensifies the repair processes. The June 1990 article teaches that vacuum therapy promotes mobilization of blood plasma, intertissue fluid, and lymph into the wound. The June 1990 article reports that cellular and non-cellular elements of connective tissue appear twice as quickly in wounds treated with vacuum therapy. Subsequent articles and patents further develop the benefits obtained with vacuum therapy. The prior art, therefore, teaches the benefit and value of a vacuum bandage.
According to the present invention, a wound care bandage is provided that combines the advantages of SIS and vacuum therapy to control and enhance the flow of fluid from the wound bed and into the SIS material. The present invention, therefore, is a method for controllably drawing fluid from the surrounding tissue and into an SIS layer placed on the wound, thereby enhancing the healing and restructuring properties of the SIS.
The present invention comprises structure to provide a space above the SIS and the wound bed, in which space a vacuum is developed to cause blood flow from the wound bed into the SIS. Furthermore, the method contemplates controlling the vacuum level and the application time of the vacuum to present optimum blood flow from the wound bed into the SIS.
In preferred embodiments, the wound care bandage includes an SIS layer to be placed in contact with the wound bed. As mentioned above, the wound care bandage further includes a structure placed over the SIS layer to provide a vacuum space between the SIS layer and a cover placed over the structure and SIS layer. The cover is coupled to the patient's skin surrounding the wound to provide a sealed environment. A vacuum source is coupled to the wound covering for communication with the vacuum space created by the structure. The vacuum source is used to create a vacuum within the sealed environment in order to draw blood from the wound bed up through the SIS layer to promote the healing process. The vacuum suction is to be at a level sufficient to draw blood to the SIS layer, for example, 125 mm Hg. It will be appreciated, however, that varying levels of vacuum suction and varying protocols for the duration of application of vacuum are within the scope of the present invention.
In further embodiments, the space-providing structure is a porous or reticulated pad or other structure having air passageways extending from the SIS layer to the cover. In still further embodiments, the space-providing structure may be a foam ring, or it may be the cover itself, provided that the cover is sufficiently rigid.
Thus, in one aspect of this invention a wound care bandage is provided comprising a collagen matrix formed for placement on a wound, a cover configured for placement over the wound to provide a sealed environment around the wound and adapted for communication with a vacuum source, and a structure for placement between the collagen matrix and the cover and configured to provide a vacuum space. In preferred embodiments, the collagen matrix is a layer of submucosa.
In another aspect of this invention a wound care bandage is provided comprising an SIS layer adapted to be placed on a wound, and a cover configured to be placed over the wound and the SIS layer to provide a vacuum space between the SIS layer and an inside surface of the cover, the space being connectable with a vacuum source.
Still another aspect of this invention includes a method for promoting wound healing comprising the steps of providing a wound care bandage having an SIS layer adapted to be placed on a wound, a cover to be placed over the wound to provide a vacuum space above the wound, a structure to define the vacuum space between the SIS layer and the cover, and creating a vacuum within the vacuum space to controllably draw blood from the wound into the SIS layer placed over the wound.
Yet another aspect of this invention is directed to a method for promoting wound healing comprising the steps of applying an SIS layer to a wound surface, placing a support structure over the SIS layer, placing a cover over the wound, SIS layer and support structure to define a vacuum space, connecting the cover to a vacuum source, and creating a vacuum within the vacuum space.
An additional aspect of this invention is directed to a method for promoting wound healing comprising the steps of applying a collagen matrix to a wound surface, creating a vacuum space in communication with the wound and the collagen matrix, and generating a vacuum within the vacuum space in a magnitude and duration sufficient to draw blood from the wound into the collagen matrix.
A final aspect of this invention is a kit for promoting wound healing, the kit comprising a submucosa layer for contacting the wound, a porous pad, and a cover for creating a seal around the wound and configured for communication with a vacuum source.
The detailed description particularly refers to the accompanying figures in which:
A wound care bandage 10 is provided, as shown in
SIS layer 14, which is applied directly to wound surface 16, may be fenestrated (or perforated) to prevent fluid accumulation below the SIS layer 14. Such fenestrations 28 are shown, for example, in
Further, SIS layer 14 may be formed to include one single sheet of SIS or multiple sheets of SIS. For SIS layer 14 including multiple SIS sheets, the sheets may be positioned in any number of orientations relative to each other. It is further within the scope of the disclosure for SIS layer 14 to have any reasonable thickness for its use in bandage 10. It is also known in the art that larger sheets of submucosa may be formed by fusing multiple strips of submucosa tissue. See U.S. Pat. No. 5,711,969, already incorporated by reference. In a preferred embodiment, SIS layer 14 is sized to fit the wound and is flexible in order to allow the SIS layer 14 to conform to any complex wound or wound surface. Additionally, it is known to treat wounds with SIS provided in fresh, frozen, or lyophilized forms. Lyophilized SIS may be used in the dried form, or it may be hydrated prior to use.
In some optional embodiments, a biological glue 30 is provided between the debrided wound surface 16 and the SIS layer 14 in order to hold the SIS layer 14 in a stationary position against the wound surface 16, as shown, for example, in
SIS is intended to identify porcine small intestine submucosa. While reference is made herein to SIS, it will be appreciated that small intestine submucosa may be obtained from other animal sources, including cattle, sheep, and other warm-blooded mammals. Further, other sources of submucosa from various tissue are known to be effective for tissue remodeling as well. These sources include, but are not limited to, stomach, bladder, alimentary, respiratory, and genital submucosa. Such submucosa-derived matrices comprise highly conserved collagens, glycoproteins, proteoglycans, and glycosaminoglycans. Additionally, other collagen matrices are known that can act as a biological scaffolds. Thus, it is understood that while the preferred embodiment uses SIS, other collagen matrices may be used within the scope of this invention.
The structure of bandage 10, is provided to form vacuum space 22 between SIS layer 14 and cover 18. A structure supports cover 18 while providing air passageways to the wound surface 16 and the SIS layer 14. As shown in
Although porous pad 20 has been described above, it is within the scope of this disclosure to include any such structure which functions to create a space between the SIS layer 14 and the cover 18 and permits air flow from the wound 12 to transmit negative pressure to the wound surface 16. As shown in
Further, as shown in
Cover 18 of the bandage 10 lies over the space-providing structure to fully enclose the structure, SIS layer 14, and wound 12. Cover 18 is coupled to the patient's skin 24 which surrounds the wound 12. For example, cover 18 may be a thin transparent, non-porous adhesive sheet to adhere to the surface of the skin 24 about the wound 12 to provide a vacuum enclosure. An adhesive 33 for coupling cover 18 to skin 24 is shown in FIGS. 1 and 3-5. A product such as Tegaderm™ (3 M Health Care Ltd., (St. Paul, Minn.)) would be suitable for the cover, for example. It is within the scope of this disclosure, however, to include any suitable non-porous impermeable or semi-permeable sheet. While a flexible or semi-rigid sheet is preferred for patient comfort, a rigid cover, such as a glass dome, is within the scope of this invention. When a rigid cover is used, a separate space-providing structure is not needed, as the rigid cover may be configured to provide the vacuum space.
In order to encourage blood flow to the wound 12 and wound surface 16, vacuum space 22 of wound care bandage 10 is connected with vacuum source 26. A vacuum tube 32 may be provided, for example, for fluid communication with vacuum space 22 and vacuum source 26. As shown in
In other embodiments, as shown in
The vacuum may be provided in vacuum space 22 for controlled periods of time. For example, initially, the vacuum may be applied for a sufficient time to draw blood into the SIS layer 14, such as up to 125 mm Hg, for example. It will be appreciated that this invention contemplates developing different protocols for amounts of vacuum and application times. It will also be appreciated that the vacuum may be provided by a perforated tube positioned and configured to carry away excess wound drainage.
In treating wound 12, a caretaker first cleans and prepares the wound surface 16. Once wound surface 16 is prepared, bandage 10 is to be applied to the wound. SIS layer 14 is positioned over the wound 12 to cover the prepared wound surface 16. Structure 20, 120, 220, or 320 is placed over the SIS layer 14 to define the vacuum space and cover 18 is placed over the wound 12, SIS layer 14, and structure 20. Cover 18 is connected to a vacuum source 26. Finally, suction is applied to the vacuum space 22 in sufficient magnitude and duration to draw blood from the wound into the SIS layer 14. Optionally, a biological glue 30 may be placed on the wound surface 16 prior to application of the bandage 10.
Vacuum may be applied at any magnitude or duration to promote inflow of blood from the wound into the layer of SIS. Preferably, vacuum may be applied from 0.1 to 0.99 atmospheres, and more preferably 0.1 to 0.15 atmospheres. In one embodiment, vacuum is applied essentially continuously until healing takes place. In another embodiment, vacuum is used in periods of application and non-application, and the structure and cover may be removed during periods of non-application. These alternating periods may include one or two periods of application each day for several days. In another embodiment, the negative pressure is applied in 5 minute periods of application and non-application.
It is known that SIS can be integrated into the wound and restructured to resemble the surrounding tissue. Thus, while the magnitude and duration of application of vacuum may vary, in a preferred embodiment the SIS remains on the surface of the wound for the duration of treatment. In optional embodiments, additional layers of SIS may be added as the SIS is integrated into the wound. The additional layers may be smaller pieces to be placed on localized areas of integration, or, because the vacuum promotes blood flow into the SIS layer, may be full size pieces conforming to the size of the wound surface.
Thus, in one embodiment the present invention is a method for treating wounds comprising the steps of preparing the wound surface, applying a bandage to the wound, the bandage having an SIS layer secured over the wound and a cover above the wound and the SIS layer to define a vacuum space between the SIS layer and the cover, and applying suction to the vacuum space to draw blood from the wound into the SIS layer.
Although this invention has been described in detail with reference to certain embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/242,543, filed Oct. 3, 2005, which is a continuation of U.S. patent application Ser. No. 09/855,287, filed May 15, 2001, which claims the benefit of U.S. Provisional Application Ser. No. 60/206,226, filed May 22, 2000, both of which are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
8747887 | Coffey | Jun 2014 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Apr 1992 | JP |
71559 | Mar 1999 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
Entry |
---|
N. A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20140330226 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
60206226 | May 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11242543 | Oct 2005 | US |
Child | 14272291 | US | |
Parent | 09855287 | May 2001 | US |
Child | 11242543 | US |