Combination ventilated hood and microwave oven

Information

  • Patent Grant
  • 6469287
  • Patent Number
    6,469,287
  • Date Filed
    Monday, August 21, 2000
    23 years ago
  • Date Issued
    Tuesday, October 22, 2002
    21 years ago
Abstract
A combination microwave ventilated hood cooking system including a microwave oven with a cooking cavity; a magnetron for generating microwaves located adjacent the cooking cavity; and cooling fan outside the cooking cavity. The cooking cavity including at least two trays of different shapes and a stirrer for dispersing microwaves in the cooking cavity. A guide is between the stirrer and the cooling fan such that the guide has a downward slope from the cooling fan to the stirrer. During operation of the microwave, the cooling fan creates an air current, which is directed to the stirrer by the guide and drives the stirrer to disperse microwaves in the cooking cavity and direct an air current to cool the magnetron.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a combination ventilated hood and microwave oven, and more particularly, to a combination ventilated hood and microwave oven having a plurality of trays by which a large quantity of food is cooked at the same time.




2. Description of the Background Art




A general combination microwave oven and ventilated hood has a function of suctioning steam and smoke generated during the operation of a gas oven range positioned at a lower portion of the microwave oven.




The interior of a combination ventilated hood and microwave oven in the conventional art, as illustrated in

FIG. 1

, includes a cavity


102


, which is a cooking space for cooking foodstuffs by microwaves oscillated from a magnetron


106


. Usually, since the cavity


102


of the combination ventilated hood and microwave oven is installed across the width of an upper portion of the gas oven range, the horizontal length L of the cavity


102


is large as compared to the general stand alone microwave oven. Also, an exhaust motor


104


is installed in the cavity


102


to exhaust steam and smoke.




At the bottom surface of the cavity


102


, a circular rotary tray


108


for putting foodstuffs to be cooked on the top surface thereof, is installed. In addition, a rotary tray mounting unit


107


is connected to a lower portion of the rotary tray


108


so that the rotary tray


108


is mounted for rotation.




The rotary tray mounting unit


107


is positioned at the bottom surface of the cavity


102


and includes a driving source


103


with a power transmission device for rotating the rotary tray


108


.




However, in the conventional combination ventilated hood and microwave oven, the rotary tray


108


is installed at the center portion of the bottom surface of the cavity


102


, and the rotary tray mounting unit


107


for rotating the rotary tray


108


is also installed at a lower side of the center portion of the bottom surface of the cavity


102


.




Namely, in the conventional ventilated hood and microwave oven, although the horizontal length L of the cavity


102


is large as compared to the general microwave oven, the rotary tray


108


is mounted at the central portion of the cavity


102


in the same manner as the general microwave oven.




Therefore, in the conventional microwave oven and ventilated hood, the right and left side portions of the rotary tray in the cavity are not used as a cooking space. Also, although the size of the inner space of the cavity is large as compared to the general microwave oven, the actual space for putting foodstuffs thereon for cooking purposes has the same size as the general microwave oven, resulting in an inefficient use of the cooking space.




Meanwhile, as illustrated in

FIG. 2

, another microwave structure according to the conventional art is disclosed. The structure includes a first tray


210


and a second tray


220


each having a smaller size than the above-described rotary tray. The first tray


210


is installed at one side of the rotary tray (not shown) and the second tray


220


is installed on the other side of the rotary tray. Both the first tray


210


and the second tray


220


are to be driven by a motor


330


for driving the rotary tray.




Also, the structure includes a main gear


201


connected to the motor


330


for driving the rotary tray; a first slave gear


211


for driving the first tray


210


engaged with the main gear


201


; a second slave gear


221


for driving the second tray


220


is engaged with the main gear


201


and opposite the first slave gear


211


; and the axis of the motor


310


extends from the motor through the main gear


201


. Further, although not shown, the structure has a third tray.




However, although the above-described structure can have three trays, the rotary tray alone is driven during actual operation of the microwave oven. As illustrated in

FIG. 2

, only the first tray


201


and the second tray


202


must be driven in a state where the rotary state is escaped to the outside of the main frame. Consequently, there occurs a problem that the manufacturing cost is increased, and the space of a cooking chamber is not efficiently used.




Meanwhile,

FIG. 3

illustrates still another structure according to the conventional art. The structure includes a stirrer fan


312


driven by the motor


307


is installed at one side of the rotary tray


305


, and a base plate


319


on which a container


318


for containing a temperature probe


320


can be put on is installed at an upper side of the stirrer fan


312


. Thereby, it is possible to simultaneously carry out cooking using the rotary tray


305


and cooking using the temperature probe


320


.




The driving structure of the stirrer fan


312


driven by the motor


307


will now be described. The rotating shaft


306


of the rotary tray


305


is connected to the rotating shaft


308


of the motor


307


. A pulley


314


fixed to the rotating shaft


313


of the stirrer fan


312


and a pulley


315


fixed to the rotating shaft


308


of the motor


307


are connected with a belt


316


, thereby making it possible for the stirrer fan


312


to be driven by the motor


307


.




In addition, a wave guide


317


for transmitting microwaves generated from the magnetron


309


to the stirrer fan


312


is installed at one side wall of the cavity


302


, while a shelf-shaped base plate


319


for putting the temperature probe


320


on the top surface thereof is positioned at an upper side portion of the stirrer fan


312


at one side of the rotary tray


305


. Reference numeral


321


designates a bracket for fixing the motor.




However, in addition to the wave guide


310


installed at an upper portion of the cavity


302


, the wave guide


317


has to be installed in order to transmit microwaves to the stirrer fan


312


positioned at a lower portion of the cavity


302


. Thus, the wave guide must be longer and accordingly increases the manufacturing cost.




In addition, the bottom surface of the base plate


319


is positioned higher, than the bottom surface of the rotary tray


305


. Thus, making it inconvenient to clean the microwave oven and aggravating the aesthetic appearance of the microwave oven.




In addition, since the pulleys and belt are required for driving the stirrer fan, the manufacturing cost is increased. In particular, the diameter ratio of the pulley fixed to the rotating shaft of the motor for properly rotating the stirrer fan for cooking purposes to the pulley fixed to the rotating shaft of the stirrer fan must be increased, thus making the manufacturing process complicated and increasing the manufacturing cost.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a combination ventilated hood microwave oven having a plurality of trays and able to cook a large quantity of food at one time by making the most of a cooking space of the combination ventilated hood and microwave oven.




It is another object or me present invention to provide a combination ventilated hood and microwave oven having a plurality of trays by which microwaves supplied into a cavity can be uniformly penetrated through foodstuffs to be cooked.




To achieve the above objects, there is provided a combination microwave oven and ventilated hood having a plurality of trays which includes: a stirrer fan installed at an upper portion of the cavity at which the plurality of trays are installed; a coding fan installed at an upper portion of a machine chamber formed at one side of the cavity; and a guide unit for guiding parts of an airflow generated from the cooling fan towards the stirrer fan. Additional advantages, objects and features of the invention will become more apparent, from the description which follow.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will become better understood with reference to the accompanying drawings which are given only by way of illustration and thus are not limitative of the present invention, wherein:





FIG. 1

depicts a cross-sectional view of a combination ventilated hood and microwave oven according to the conventional art;





FIG. 2

depicts a partial cross-sectional view of another example of a combination ventilated hood and microwave oven according to the conventional art;





FIG. 3

depicts a partial cross-sectional view of still another example of a combination microwave oven and ventilated hood according to the conventional art;





FIG. 4

depicts a cross-sectional view of a combination ventilated hood and microwave oven having a plurality of trays according to a first embodiment of the present invention;





FIG. 5

depicts a top cross-sectional view of, the combination ventilated hood and microwave oven according to the first embodiment of the present invention as depicted in

FIG. 4

;





FIG. 6

depicts part of the construction of the combination ventilated hood and microwave oven having a plurality of trays according to the first embodiment of the present invention;





FIG. 7

depicts a partial vertical cross-sectional view of the construction of a driving apparatus for the combination ventilated hood and microwave oven having a plurality of trays according to the first embodiment of the present invention; and





FIG. 8

depicts a top cross-sectional view of a combination microwave oven and ventilated hood having a plurality of trays according to a second embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention includes a combination ventilated hood and microwave oven. As depicted in

FIG. 4

, the microwave oven includes a first tray mounting unit


12


for putting a first tray


12




a


on the top surface thereof and a second tray mounting unit


14


for putting a second tray


14


on the top surface thereof are installed.




The first tray mounting unit


12


is installed at a side portion in the cavity


10


, for example, at a position most adjacent to the utmost left side in the cavity


10


. The second tray mounting unit


14


is installed at the other side portion in the cavity


10


, for example, at a position most adjacent to the utmost right side in the cavity


10


.




In addition, the first tray mounting unit


12


and the second tray mounting unit


14


are positioned at a space formed on the bottom surface of the cavity


10


, respectively.




In a first embodiment of the present invention, as illustrated in

FIG. 5

, the first tray mounting unit


12


is installed so that the first tray


12




a


of a circular shape can be mounted, and is constructed so that the first tray


12




a


is rotatable during operation of the microwave oven. Additionally, the first tray mounting unit


12


includes a driving source for rotating the first tray


12




a


and a power transmission device for transmitting power from the driving source to the tray.




That is, according to the first embodiment of the present invention, the first tray


12




a


is constructed as a circular tray that can be rotated by the first tray mounting unit


12


, which is of similar construction to a general microwave oven.




Meanwhile, in the first embodiment of the present invention, the second tray


14




a


is formed in a rectangular shape, and is constructed in such a manner that it is fixed to the second tray mounting unit


14


.




That is, in the cavity


10


, the second tray


14




a


is connected to an upper portion of the second tray mounting unit


14


and maintained in a fixed state where it is not rotated during the operation of the microwave oven. Therefore, foodstuffs put on an upper portion of the second tray


14




a


are cooked without rotation.




Also, in the combination microwave oven and ventilated hood of the present invention, a stirrer fan


40


for dispersing microwaves to be uniformly penetrated through foodstuffs when the microwaves oscillated from a magnetron


20


are introduced into the cavity


10


through a wave guide (not shown) is installed at the. upright upper portion of the second tray


14




a.






That is, the foodstuffs put on the top surface of the second tray


14




a


can be also uniformly cooked by the stirrer fan


40


.




In the second embodiment of the present invention, as illustrated in

FIG. 8

, the second tray


24


is a non-square shape, and can be formed to have a large area in a predetermined shape within the range where it does not contact the first tray


12




a


. Further, the second tray


24


is installed to be rotatable during operation of the microwave oven, and the first tray


12




a


is installed in a fixed state during the operation of the microwave oven.




Hereinafter, the construction of the present invention is described in more detail, in particular, with respect to the stirrer fan


40


.




The stirrer fan


40


used in the combination ventilated hood and microwave oven having a plurality of trays of the present invention is not constructed to be rotated by a motor, but rather to be rotated by using parts of the flow of cooling air generated from the interior of the microwave oven.




As illustrated in

FIG. 4

, the magnetron


20


for supplying microwaves into the cavity


10


in which foodstuffs to be cooked is installed at a machine chamber


50


positioned at one side of the cavity


10


.




In addition, a cooling fan


30


for generating an air flow in order to cool the magnetron


20


and a high pressure trans (not shown) is installed at an upper portion of the machine chamber


50


.




In addition, the stirrer fan


40


is installed on the top surface of the cavity


10


adjacent to the machine chamber


50


. In detail, the stirrer fan


40


is installed to be rotatable at the inner side of a fan housing


42


, which is formed concave toward an upper portion of the case of the microwave oven on the top surface of the cavity


10


.




Accordingly, parts of an air flow generated by driving the cooling fan


30


to cool the magnetron


20


during operation of the microwave oven are guided towards the stirrer fan


40


for thereby driving the stirrer fan


40


.




At one side surface of the fan housing


42


, a plurality of air vents are formed so that air blowing from the cooling fan


30


can be passed through them.




Hereinafter, the construction for driving the stirrer fan


40


will be described.




As illustrated in

FIG. 4

, the cooling fan


30


installed at an upper end portion of the machine chamber


50


is installed higher than the stirrer fan


40


.




More specifically, at a lower portion of the cooling fan


30


, a guide


32


is extended to a part of the circumference of the cooling fan


30


in order to guide parts of the air flow generated from the cooling fan


30


. The air flow having collided with the guide


32


is guided through the interior of a guide duct


32




a


air-permeably connected to the guide


32


.




Continuously, the air flow guided through the interior of the guide duct


32




a


is introduced towards the stirrer fan


40


through the air vents


44


formed at one side surface of the fan housing


42


, and is contacted by the stirrer fan


40


. Thereby, the stirrer fan


40


is rotated.




The air flow that has rotated the stirrer fan


40


is discharged through the air vents


46


formed on the other side surface of the fan housing


42


.




In this manner, the air discharged through the fan housing


42


is mixed with air exhausted from a first exhaust unit


47


for exhausting air in the cavity


10


, and then is completely exhausted through a second exhaust unit


48


of a front grill of the combination ventilated hood and microwave oven.




Regarding the overall air flow formed according to the present invention, the air flow generated from the cooling fan


30


forms an air flow at least as far as the stirrer fan


40


, and thus, from a relatively upper position to a relatively lower position.




That is, in the present invention, because the cooing fan


30


is installed higher than the stirrer fan


40


, there is no portion moving upwardly in the path of the air flow guided from the cooling fan


30


to the stirrer fan


40


, resulting in decrease of energy toss due to path resistance. Therefore, the air flow colliding with the stirrer fan


40


has a high potential energy, and thus it is possible to rotate the stirrer fan


40


by much stronger power.




As described above, in the combination ventilated hood and microwave oven having a plurality of trays, a large quantity of food can be cooked at one time by making the most efficient use of a cooking space. Thereby, the overall cooking time is reduced.




Consequently, a wide variety of pairs of dishes can be cooked (for example, simultaneous warming up of bread and milk).




In addition, microwaves are uniformly penetrated through food put on a non-rotating tray without any additional motor during operation of the microwave oven. Thereby, the manufacturing cost and occurrence of failures of the microwave oven are reduced.




In addition, the cooling fan


30


is installed higher than the stirrer fan


40


, and accordingly the energy loss due to path resistance can be reduced, thereby reducing the maintenance cost during the operation of the microwave oven.




As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the meets and bounds of the claims, or equivalencies of such meets and bounds are therefore intended to be embraced by the appended claims.



Claims
  • 1. A combination ventilated hood and microwave oven system comprising:a cooking cavity in the microwave oven and having a first exhaust unit for exhausting air therein; a cooling fan installed in the microwave oven and separate from the cooking cavity; a magnetron located adjacent the cooking cavity, the magnetron being operable to generate microwaves, the magnetron being cooled by a first airflow generated by the cooling fan; a housing located on a top surface of the cooking cavity and having air vents; a stirrer rotatably mounted in the housing; a guide connected between the cooling fan and the housing for directing a second airflow from the cooling fan to the housing, the guide sloping downwardly from the cooling fan to the housing, the guide directing the second airflow from the cooling fan separately from the first air flow cooling the magnetron, for driving the stirrer; and a second exhaust unit for exhausting air discharged through the first exhaust unit and the air vents of the housing.
  • 2. The system of claim 1, wherein the cooling fan is installed at a position relatively higher than the stirrer.
  • 3. The system of claim 1, wherein the stirrer directs the air current to disperse the microwaves in the cooking.
  • 4. The system of claim 1, wherein a machine chamber is separated from the cooking cavity in the microwave oven and the cooling fan is located at a position relatively higher than the magnetron in the machine chamber to cool the magnetron.
  • 5. A microwave oven system comprising:a cooking cavity in the microwave oven; a magnetron located adjacent the cooking cavity, the magnetron being operable to generate microwaves; at least two. trays laterally adjacent to each other and in the cooking cavity; at least two depressions formed into a lower surface of the cooking cavity, the depressions:creating tray mounting areas; a drive positioned in a first tray mounting area, the drive for rotating a first tray of the at least two trays; and a stirrer located directly above a non-rotating second tray of the at least two trays and dispersing the microwaves in the cooking cavity.
  • 6. The system of claim 5, wherein the first tray is shaped differently than the second tray.
  • 7. The system of claim 6, wherein the first tray is circular and the second tray is polygonal.
  • 8. The system of claim 5, wherein the trays are laterally adjacent and do not contact each other.
  • 9. A combination ventilated hood and microwave oven system comprising:a cooking cavity in the microwave oven, the cooking cavity having at least two trays; a magnetron located adjacent the cooking cavity, the magnetron generating microwaves; a stirrer located on a top surface of the cooking cavity and dispersing the microwave in the cooking cavity; a cooling fan installed in the microwave oven and outside the cooking cavity; a guide connected between the cooling fan and the stirrer such that the guide has a downward slope from the cooling fan to the stirrer; at least two tray mounting areas formed in the lower surface of the cooking cavity; a drive positioned in a first tray mounting area of the at least two tray mounting areas, the drive being capable of rotating a tray; a first tray placed over the drive; and a second tray placed over a second tray mounting area of the at least two tray mounting areas, said second tray mounting area being without provision of a drive, wherein the drive rotates. the first tray during operation of the microwave oven and the second tray remains fixed.
  • 10. The system of claim 9, wherein the at least two trays includes a first tray and a second tray having different shapes.
  • 11. The system of claim 10, wherein the first tray is circular and the second tray is polygonal.
  • 12. The system of claim 11, wherein the second tray is rectangular.
  • 13. The system of claim 9, wherein the trays are not in contact with each other.
  • 14. The system of claim 9, wherein the cooling fan is installed at a position relatively higher than the stirrer.
  • 15. The system of claim 9, further comprising:a machine chamber separate from the cooking cavity, the chamber containing the cooling fan.
  • 16. The system of claim 9, wherein:the guide does not have a portion with an upward slope from the cooling fan to the stirrer.
  • 17. The system of claim 9, wherein the stirrer is located directly above the second tray.
  • 18. The system of claim 9, wherein the magnetron is not within the path of the air from the cooling fan to the stirrer.
  • 19. The system of claim 9, further comprising:a first exhaust unit formed on the cooking cavity, for exhausting air in the cooking cavity; and a second exhaust unit for exhausting air discharged through the first exhaust unit and the stirrer.
  • 20. The system of claim 9, wherein the stirrer is enclosed in a housing.
Priority Claims (2)
Number Date Country Kind
99-34841 Aug 1999 KR
99-59238 Dec 1999 KR
US Referenced Citations (6)
Number Name Date Kind
3991295 Akiyoshi Nov 1976 A
4286134 Nakata et al. Aug 1981 A
4296297 Miller Oct 1981 A
4334137 Takagi et al. Jun 1982 A
4743728 Nagafusa May 1988 A
6013909 Aramaki et al. Jan 2000 A
Foreign Referenced Citations (8)
Number Date Country
52-11442 Jan 1977 JP
53-122948 Oct 1978 JP
53-148748 Dec 1978 JP
57-210226 Dec 1982 JP
1-167531 Jul 1989 JP
2-10024 Jan 1990 JP
2-18889 Jan 1990 JP
4-9529 Jan 1992 JP