The present invention relates to a venturi valve for suctioning a composition, such as ozone, into the fluid circulation system of a swimming pool, spa, or other recreational body of water. More specifically, the present invention relates to a valve for a fluid circulation system that includes any one of a plurality of different pumps having disparate pumping rates.
A venturi is an apparatus commonly used to draw a substance, e.g., a composition, into a fluid by use of a pressure difference. Referring to the prior art “full-flow set-up” of
Preferred embodiments of the invention overcome the disadvantages and shortcomings of the prior art by providing a combination venturi check valve. The preferred combination venturi check valve includes a fluid inlet, a fluid outlet, a bypass passage, and a venturi passage. The bypass passage is preferably provided with a check valve movable between a plurality of positions for automatically adjusting the flow rate of fluid through the bypass passage. The venturi passage can be provided with a suction inlet for suctioning a composition into a fluid flowing through the venturi passage.
In some aspects of the invention, the bypass and venturi passages may be inline between the fluid inlet and the fluid outlet, and, in some aspects of the invention, the bypass and venturi passages may share a common wall. In some aspects of the invention, the venturi passage may include a venturi passage inlet side parallel with the bypass passage, and, in some aspects of the invention, the venturi passage may include a venturi passage outlet side having an opening angled with respect to the bypass passage. In some aspects of the invention, the combination venturi check valve defines a mixing chamber positioned between the fluid outlet and the venturi and bypass passages.
Additional features, functions and benefits of the disclosed combination venturi check valve will be apparent from the detailed description which follows, particularly when read in conjunction with the accompanying figures.
For a more complete understanding of the present invention, reference is made to the following detailed description of exemplary embodiments considered in conjunction with the accompanying drawings, in which:
Referring to
In the embodiment of
The housing 12 is preferably monolithically formed from plastic or metal, though it is contemplated that the housing 12 can comprise a plurality of assembled components, such as an inlet half or portion and an outlet half or portion, for example. The housing 12 can be provided with means for securing the housing 12 in fluid communication with the fluid circulation system. As shown in
In some embodiments, the bypass passage 24 and venturi passage are provided inline with the fluid inlet 18 and the fluid outlet 20. For example, as shown in
In some embodiments of the invention, the common wall 22 can be provided to subdivide the interior of the pipe housing 12 into the bypass passage 24 and the venturi passage, and, in some embodiments, the common wall 22, which can be formed integrally as part of the housing 12, contributes to the compactness and portability of the combination venturi check valve 10. The venturi passage outlet side 28 preferably includes an angled opening 36 for inducing tangential flow from the venturi passage outlet side 28 to the mixing chamber 30.
The venturi passage is provided with means for suctioning a composition into fluid flowing through the venturi passage. For example, the venturi device 16 can be positioned within the venturi passage. In the example of
As shown in
In some aspects, the housing 12 and the means for suctioning can be formed of different materials. For example, while the housing 12 is preferably formed of a plastic or metal, it is contemplated that the venturi device 16, for example, can be formed of a material resistant to that composition that would be sucked therethrough. For example, in the case of ozone, the venturi device 16 can be formed of a material resistant to the corrosive properties of ozone, such as those materials manufactured by Kynar, e.g., polyvinylidene fluoride (PVDF). It is contemplated that the secondary check valve (not shown) positionable between the suction inlet 38 and composition reservoir can additionally or alternatively be formed of a Kynar material, e.g., PVDF.
Regarding the bypass passage 24, the combination venturi check valve 10 is provided with a mount 44 for securing the valve assembly 14 relative to the housing 12. In some embodiments, such as that embodiment shown in
The valve assembly 14 preferably includes a valve head 48, a valve stem 50, a compression spring 52, a spring retainer 54, and a fastener 56, each of which shall be discussed below with further detail. The valve head 48 is preferably sized and dimensioned to, when in a closed position, obstruct fluid flow from the bypass passage 24 to the fluid outlet 20 (and the mixing chamber 30), while allowing fluid flow from the venturi passage outlet side 28 to the fluid outlet 20. The bypass passage 24 and the valve head 48 are configured to form a seal in the closed position. The valve head 48 can include a valve head wall 58 defining an open area 60, and the valve head 48 is aligned with the passages such that the valve head wall 58 can alternatively obstruct and allow fluid flow from the bypass passage 24 to the fluid outlet 16, while the open area 60 continuously allows fluid flow from the venturi passage outlet side 28 to the fluid outlet 20. A keyed hole 62 can be formed in the valve head wall 58, and a complementary rib 64 can be formed in the housing 12 for guiding alignment of the valve head 48 and to facilitate reciprocation that is substantially linear.
The valve stem 50 extends from the valve head 48 and through a bore or opening formed in the spring seat 46 of the mount 44. The radius of the bore in the spring seat 46 is just greater than a radius of the valve stem 50 to guide sliding, linear reciprocation of the valve stem 50, while inhibiting lateral motion thereof. In this regard, the mount 44 can function to guide the valve. The valve stem 50 can be further configured so as to prevent or inhibit rotation of the valve head 48. For example, as shown in the example of
The valve stem 50 has a threaded hole opposing the spring seat 46 of the mount 44, and the fastener 56 extends through the hole to secure the spring retainer 54 to the valve stem 50. The radius of the valve stem 50 is less than the radius of the spring retainer 54 (and the radius of the valve stem 50 is less than the radius of the spring seat 46). The compression spring 52 is positioned about the valve stem 50 between the spring retainer 54 and the spring seat 46.
In use, the fluid inlet 18 of the combination venturi check valve 10 is secured in fluid communication with an outlet of the fluid circulation system, and the fluid outlet 20 of the combination venturi check valve 10 is secured in fluid communication with an inlet of the fluid circulation system. As fluid flows through the fluid inlet 18, the fluid flow path diverges into the venturi passage inlet side 26 and the bypass passage 24. The valve assembly 14 is movable from a closed position, in which fluid flow from the bypass passage 24 to the fluid outlet 20 (and the mixing chamber 30) is obstructed, to one of a plurality of open positions, such as a partially-open position or a fully-open position, in which varying amounts of fluid flow are allowed to flow from the bypass passage 24 to the fluid outlet 20 (and the mixing chamber 30). The venturi passage outlet side 28 preferably includes the angled opening 36 so as to provide a tangential flow for enhancing mixing and homogeneity, preferably prior to exit of the fluid through the fluid outlet.
The position of the valve assembly 14 is dependent at least in part on the force of the fluid pressure against the valve head wall 58 of the valve head 48, which is in turn at least partially dependent on fluid flow rate, and which is in turn at least partially dependent upon the pumping rate of that pump which has been included as part of the fluid circulation system. Though any number of configurations are contemplated, it is preferred that the compression spring 52 have a spring rate between about forty pounds per inch (40 lbs/in) and about fifty-five pounds per inch (55 lbs/in) for an operational flow rate between about ten gallons per minute (10 GPM) to about one-hundred-and-ten gallons per minute (110 GPM) and a venturi air suction of about six cubic feet per hour (6 SCFH) to about seven cubic feet per hour (7 SCFH).
The valve assembly 14 or other valve/throttle mechanism is preferably contained within the pipe housing 12 and inserted into the mount 44. The valve assembly 14 or other valve/throttle mechanism is capable of moving within the housing 12 between an open and closed position. The movement of the valve assembly 14, for example, is regulated by the compression spring 52 held in place by the spring retainer 54 that is attached to the valve stem 50 of the valve assembly 14. It is contemplated that the spring retainer 54 can be adjustable such that the compression spring 52 can be preloaded with compression to change the opening rate of the valve assembly 14 so as to enable the valve assembly 14 or other valve/throttle mechanism to resist opening due to flow in order to maintain pressure for the venturi. As pressure increases, the valve/throttle mechanism, e.g., the valve assembly 14, will open based on the spring rate of the compression spring 52. In this regard, a wide range of flows and pressures are contemplated, while meeting a desired minimum venturi suction rate, and while reducing the amount of back pressure created at higher flow rates. The flow exiting the bypass passage 24 is preferably directed into the path of the flow from the venturi passage outlet side 28 at a chamber in the housing 12 proximal the fluid outlet 20. By directing the flow from the valve assembly 14, a higher velocity flow is promoted for better mixture between the two passages prior to exiting the fluid outlet 20.
By containing a venturi and a pressure-operated valve within a single unit, for example, many drawbacks of the prior art can be overcome. For example, with respect to the embodiment of
Thus, in some aspects of the invention, apparatus and methods are provided for maintaining a relatively constant venturi inlet pressure by use of a pressure sensitive check valve in an “all-in-one” unit. A fluid traveling at a given pressure enters the apparatus, such as the combination venturi check valve 10 of
In some aspects, the combination venturi check valve 10 inhibits excess back pressure created through the venturi and the fluid circulation system to maintain a substantially constant suction rate. Flow from the outlet of the bypass area, such as the bypass passage 24 of
Embodiments of the invention additional to those shown in
With respect to the valve/throttle mechanism, it is contemplated that valve means in addition to or alternative to the valve assembly 14 and/or components thereof can be utilized. For example, the valve means can be provided as a throttle plate capable of rotating as flow increases. The amount of rotation between a closed position and a plurality of open positions can be regulated by a torsion spring that resists the flow of fluid through a bypass passage. Additionally or alternatively, the throttle plate can be provided as an impeller shaped to induce a rotational effect for facilitating mixing.
It is also contemplated that a combination venturi check valve can be provided such that a venturi can be contained within a valve placed at the center of the housing in a parallel path to the bypass area of the housing. The bypass area is regulated by means of the sliding valve that restricts flow up to a given pressure. The movement of this valve between open and closed position is controlled by a compression spring that resists the fluids path. As the valve opens the venturi's suction inlet grows in diameter. An increase in flow would result in an increase in suction.
It will be understood that the embodiments of the present invention described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and the scope of the invention. All such variations and modifications, including those discussed above, are intended to be included within the scope of the invention as defined by the appended claims.
The present application claims the benefit of priority to U.S. Provisional Patent Application No. 61/126,643, filed May 6, 2008.
Number | Date | Country | |
---|---|---|---|
61126643 | May 2008 | US |