This invention relates generally to heating apparatus and in particular to combination water heating and space heating apparatus.
Combination water heating and space heating systems, wherein hot water is used for both domestic and space heating purposes, are known in the art. See for example, the combination systems described and shown in U.S. Pat. Nos. 4,371,111; 4,541,410; 4,584,987; 4,641,631; 4,766,883; and 5,544,645. In such combination systems, in response to a demand for heating in an indoor space, heated water is circulated between a hot water storage tank and a hydronic heat exchanger coil located in an air supply duct, to heat air passing over the coil, thereby providing heated air to the space. Heated water in the tank is also used to satisfy a demand for domestic hot water (e.g., showers, laundry, dishwasher, etc.).
If there is a concomitant demand for space heating and for domestic hot water, the hot water supply in the tank may be insufficient to satisfy both demands. Accordingly, priority must be given to either the space heating demand or the domestic hot water demand.
U.S. Pat. No. 4,584,987 teaches a fireplace boiler system for heating water, primarily for space heating use. The hot water is available for domestic use only after a space heating demand is satisfied. Therefore, hot water is not available for domestic use at the same time that there is a demand for space heating.
U.S. Pat. No. 5,544,645 discloses a combination water heating and space heating apparatus in which priority is given to a demand for domestic hot water in the event of a low temperature condition in the hot water storage tank. The control system tries to prevent this problem by anticipating the increased demand for hot water by raising the setpoint of the hot water storage tank in response to a demand for space heating.
Combination water heating and space heating apparatus includes a water heating unit and a space heating unit. The water heating unit has a water storage tank, a heating device for heating water stored in the tank, and a first sensor for sensing temperature of water stored in the tank. The space heating unit includes an air duct for supplying air to an indoor space, a heat exchanger for heating air supplied to the space, an air mover for moving air over the heat exchanger, and a second sensor for sensing temperature of air in the space. A water circulating device is provided for circulating water between the tank and the heat exchanger.
The apparatus further includes a control device adapted to control the heating device to heat the water in the tank in response to the first sensor sensing a water temperature in the tank that is below a predetermined first temperature, which corresponds to a demand for water heating in the tank. The control device is further adapted to control the water circulating device to supply heated water from the tank to the heat exchanger and the air mover to move air over the heat exchanger in response to the second sensor sensing an air temperature in the space that is below a predetermined second temperature, which corresponds to a demand for space heating, whereby air to be supplied to the indoor space is heated. In accordance with the present invention, the control device is operable to disable the air mover in response to a predetermined water temperature condition, even when there is a demand for space heating.
In accordance with one aspect of the invention, the control device is operable to disable the air mover in response to the predetermined water temperature condition without disabling the water circulating device when there is a demand for space heating. In accordance with another aspect of the invention, the control device is operable to re-enable the air mover to move air over the heat exchanger in response to a demand for space heating, when the predetermined water temperature condition is no longer present.
In accordance with yet another aspect of the invention, the control device includes a third sensor external to the water storage tank for sensing temperature of the heated water supplied by the water circulating device from the tank to the heat exchanger in response to a demand for space heating and for disabling the air mover in response to the temperature of the heated water supplied by the water circulating device being below a predetermined third temperature, even when there is a demand for space heating. In one embodiment, the third sensor is located to sense temperature of the heated water in a conduit through which the heated water is supplied from the tank to the heat exchanger.
In accordance with a preferred embodiment of the invention, the air mover is an electrically operable blower and the third sensor is a thermostat having a setpoint corresponding to the predetermined third temperature. The thermostat is operable to inhibit electrical power from being supplied to the blower in response to the temperature of the heated water supplied by the water circulating device being below the thermostat setpoint. The thermostat is preferably located to sense temperature of the heated water in a conduit through which heated water is supplied from the tank to the heat exchanger by the water circulating device.
In accordance with the present invention, priority is given to using the heated water for domestic use over space heating use. If the temperature of the heated water supplied to the heat exchanger drops below a predetermined temperature when there is a demand for space heating, the control will disable the air mover from moving air across the heat exchanger, but will allow the water circulating device to continue to circulate water between the heat exchanger and the tank. When the temperature of the heated water supplied to the heat exchanger recovers above the predetermined temperature, the air mover is re-enabled to move air across the heat exchanger, provided that a demand for space heating is still present.
The best mode for carrying out the invention will now be described with reference to the accompanying drawings. Like parts are marked in the specification and drawings with the same respective reference numbers. In some instances, proportions may have been exaggerated in order to depict certain features of the invention.
Referring now to
Water heating unit 12 includes a water storage tank 18 and a burner 20 proximate to tank 18 for heating water stored in tank 18. Burner 20 is preferably a conventional gas burner. Water heating unit 12 is used to supply water for space heating purposes to space heating unit 14 and to supply potable water for domestic use via a conduit 21.
Space heating unit 14 includes a heat exchanger coil 22, which is preferably a conventional hydronic coil with a plurality of tubes (not shown) and fins (not shown) between the tubes. Unit 14 also includes a water circulation pump 24 for drawing heated water from tank 18 through coil 22 via a supply conduit 26. The direction of flow of the heated water in supply conduit 26 is indicated by arrow 27. The heated water makes multiple passes through coil 22 and is returned to tank 18 via a return conduit 28. The direction of flow of water in return conduit 28 is indicated by arrow 29. Air to be supplied to an indoor space (not shown) is blown by blower 16 across the outside of coil 22 in heat exchange relationship with the heated water inside coil 22, whereby heat is transferred from the water inside the tubes of coil 22 to the air passing over the outside of coil 22.
A thermostat 30 is located in supply conduit 26 for measuring the temperature of the heated water supplied to coil 22. Thermostat 30 is preferably a thermostat of the “well immersion” type. When the temperature of the heated water in supply line 26 falls below a predetermined setpoint (e.g., 135° F.) by a predetermined amount (e.g., by 7° F. or more), thermostat 30 disables blower 16 until the temperature of the water in supply line 26 recovers to the setpoint. Therefore, thermostat 30 functions as a priority thermostat to give priority to a domestic hot water demand over a space heating demand when water heating unit 12 is unable to effectively satisfy both demands.
Referring also to
Space heating unit 14 includes a space heating control module 48. Control module 48 receives inputs from a thermostat 50, which indicates a demand for heating in an indoor space when the temperature in the space drops below the setpoint of thermostat 50. Referring also to
As can be best seen in
Even when blower 16 is disabled by priority thermostat 30, pump 24 will continue to circulate water between coil 22 and tank 18 in response to a demand for space heating. It is advantageous to continue to circulate water between coil 22 and tank 18, even when blower 16 is disabled, so that thermostat 30 can continue to monitor the temperature of the heated water in supply conduit 26 to determine when the temperature has recovered to the setpoint of thermostat 30, which indicates that blower 16 can be activated in response to a demand for space heating.
The best mode for carrying out the invention has now been described in detail. Since changes in and additions to the above-described best mode can be made without departing from the nature, spirit and scope of the invention, the invention is not to be limited to the above-described best mode, but only by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4371111 | Pernosky | Feb 1983 | A |
4541410 | Jatana | Sep 1985 | A |
4584987 | Rotili | Apr 1986 | A |
4641631 | Jatana | Feb 1987 | A |
4700888 | Samulak | Oct 1987 | A |
4766883 | Cameron et al. | Aug 1988 | A |
5544645 | Armijo et al. | Aug 1996 | A |
6332580 | Enander et al. | Dec 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040227003 A1 | Nov 2004 | US |