Histone deacetylase (HDAC) enzymes represent attractive therapeutic targets in multiple myeloma, but unfortunately non-selective HDAC inhibitors have led to dose-limiting toxicities in patients.
The immunomodulatory (IMiD) class of drugs, including lenalidomide and pomalidomide, exhibit striking anti-myeloma properties in a variety of multiple myeloma models, and have demonstrated significant clinical activity in multiple myeloma patients.
Prior studies have shown clinical activity of a combination of the non-selective HDAC inhibitor vorinostat with lenalidomide and dexamethasone in myeloma patients (Richter, et al., ASH, 2011). However, many patients experienced significant toxicities with this regimen that significantly limits its clinical utility.
Due to the dose-limiting toxicities of the above therapies, there is an ongoing need in the art for more efficacious and less toxic compositions and methods for the treatment of multiple myeloma. In order to meet these needs, provided herein are pharmaceutical combinations comprising a HDAC inhibitor and an immunomodulatory drug, and methods for the treatment of multiple myeloma. The combinations and methods of the invention are well tolerated and do not exhibit the dose-limiting toxicities of prior therapies.
Provided herein are pharmaceutical combinations for the treatment of multiple myeloma in a subject in need thereof. Also provided herein are methods for treating multiple myeloma in a subject in need thereof.
Provided in some embodiments are combinations comprising a histone deacetylase (HDAC) inhibitor and an immunomodulatory drug (IMiD) for the treatment of multiple myeloma in a subject in need thereof. In some specific embodiments, the combinations do not include dexamethasone. In other specific embodiments, the combinations further comprise an anti-inflammatory agent, such as dexamethasone.
For example, an embodiment of the invention provides a pharmaceutical combination for treating multiple myeloma comprising a therapeutically effective amount of a histone deacetylase 6 (HDAC6) specific inhibitor or a pharmaceutically acceptable salt thereof, and an immunomodulatory drug (IMiD) or a pharmaceutically acceptable salt thereof, wherein the combination does not include dexamethasone.
Provided in other embodiments are methods for treating multiple myeloma in a subject in need thereof comprising administering to the subject an effective amount of a combination comprising a histone deacetylase (HDAC) inhibitor and an immunomodulatory drug (IMiD). In some specific embodiments of the methods, the combinations do not include dexamethasone. In other specific embodiments of the methods, the combinations further comprise an anti-inflammatory agent, such as dexamethasone.
For example, an embodiment of the invention provides a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a pharmaceutical combination comprising a histone deacetylase 6 (HDAC6) specific inhibitor or a pharmaceutically acceptable salt thereof, and an immunomodulatory drug (IMiD) or a pharmaceutically acceptable salt thereof, wherein the combination does not include dexamethasone.
In specific embodiments, the HDAC6 specific inhibitor is a compound of Formula I:
In preferred embodiments, the compound of Formula I is:
In yet other embodiments, the compound of Formula I is:
In other specific embodiments, the HDAC6 specific inhibitor is a compound of Formula II:
and
In preferred embodiments, the compound of Formula II is:
In other preferred embodiments, the compound of Formula II is:
In some embodiments of the combinations and/or methods, the immunomodulatory drug is a compound of Formula III:
In preferred embodiments, the compound of Formula III is:
In yet other preferred embodiments, the compound of Formula III is:
In some embodiments, the HDAC inhibitor and the immunomodulatory drug are administered with a pharmaceutically acceptable carrier.
In some embodiments, the HDAC inhibitor and the immunomodulatory drug are administered in separate dosage forms. In other embodiments, the HDAC inhibitor and the immunomodulatory drug are administered in a single dosage form.
In some embodiments, the HDAC inhibitor and the immunomodulatory drug are administered at different times. In other embodiments, the HDAC inhibitor and the immunomodulatory drug are administered at substantially the same time.
In some embodiments, the combination of a HDAC inhibitor and an IMiD achieves a synergistic effect in the treatment of the subject in need thereof.
In some embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is a compound of Formula I:
the immunomodulatory drug is a compound of Formula III:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In some embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is a compound of Formula II:
and
the immunomodulatory drug is a compound of Formula III:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In some embodiments of the combinations and/or methods, the combinations can, optionally, further comprise an anti-inflammatory agent. In specific embodiments, the anti-inflammatory agent is dexamethasone.
In some embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is a compound of Formula I:
R is H or C1-6-alkyl;
the immunomodulatory drug is a compound of Formula III:
the anti-inflammatory agent is any anti-inflammatory agent.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In some embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is a compound of Formula II:
and
the immunomodulatory drug is a compound of Formula III:
the anti-inflammatory agent is any anti-inflammatory agent.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In specific embodiments of the combinations and/or methods, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In some embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are administered with a pharmaceutically acceptable carrier.
In some embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are administered in separate dosage forms. In other embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are administered in a single dosage form.
In some embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are administered at different times. In other embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are administered at substantially the same time.
In a some embodiments, the HDAC inhibitor, the immunomodulatory drug, and the anti-inflammatory agent are present in amounts that produce a synergistic effect in the treatment of multiple myeloma in a subject in need thereof.
In some embodiments, the subject may have been previously treated with lenalidomide or bortezomib, or a combination thereof.
An embodiment of the invention includes a method for decreasing cell viability of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for synergistically increasing apoptosis of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for decreasing cell proliferation of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for decreasing MYC and IRF4 expression in cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for increasing P21 expression in cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
Other objects, features, and advantages will become apparent from the following detailed description. The detailed description and specific examples are given for illustration only because various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. Further, the examples demonstrate the principle of the invention.
The instant application is directed, generally, to combinations comprising a histone deacetylase (HDAC) inhibitor and an immunomodulatory drug (IMiD), and methods for the treatment of multiple myeloma. The combinations and/or methods may, optionally, further comprise an anti-inflammatory agent, such as dexamethasone.
Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.
The term “about” generally indicates a possible variation of no more than 10%, 5%, or 1% of a value. For example, “about 25 mg/kg” will generally indicate, in its broadest sense, a value of 22.5-27.5 mg/kg, i.e., 25±2.5 mg/kg.
The term “alkyl” refers to saturated, straight- or branched-chain hydrocarbon moieties containing, in certain embodiments, between one and six, or one and eight carbon atoms, respectively. Examples of C1-6 alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tent-butyl, neopentyl, n-hexyl moieties; and examples of C1-8 alkyl moieties include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tent-butyl, neopentyl, n-hexyl, heptyl, and octyl moieties.
The number of carbon atoms in an alkyl substituent can be indicated by the prefix “Cx-y,” where x is the minimum and y is the maximum number of carbon atoms in the substituent. Likewise, a Cx chain means an alkyl chain containing x carbon atoms.
The term “alkoxy” refers to an —O-alkyl moiety.
The terms “cycloalkyl” or “cycloalkylene” denote a monovalent group derived from a monocyclic or polycyclic saturated or partially unsatured carbocyclic ring compound. Examples of C3-C8-cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; and examples of C3-C12-cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo [2.2.1] heptyl, and bicyclo [2.2.2] octyl. Also contemplated are monovalent groups derived from a monocyclic or polycyclic carbocyclic ring compound having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Examples of such groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like.
The term “aryl” refers to a mono- or poly-cyclic carbocyclic ring system having one or more aromatic rings, fused or non-fused, including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, idenyl and the like. In some embodiments, aryl groups have 6 carbon atoms. In some embodiments, aryl groups have from six to ten carbon atoms. In some embodiments, aryl groups have from six to sixteen carbon atoms.
The term “combination” refers to two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure. Such combination of therapeutic agensts may be in the form of a single pill, capsule, or intravenous solution. However, the term “combination” also encompasses the situation when the two or more therapeutic agents are in separate pills, capsules, or intravenous solutions. Likewise, the term “combination therapy” refers to the administration of two or more therapeutic agents to treat a therapeutic condition or disorder described in the present disclosure. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, or in separate containers (e.g., capsules) for each active ingredient. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner, either at approximately the same time or at different times. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the conditions or disorders described herein.
The term “heteroaryl” refers to a mono- or poly-cyclic (e.g., bi-, or tri-cyclic or more) fused or non-fused moiety or ring system having at least one aromatic ring, where one or more of the ring-forming atoms is a heteroatom such as oxygen, sulfur, or nitrogen. In some embodiments, the heteroaryl group has from about one to six carbon atoms, and in further embodiments from one to fifteen carbon atoms. In some embodiments, the heteroaryl group contains five to sixteen ring atoms of which one ring atom is selected from oxygen, sulfur, and nitrogen; zero, one, two, or three ring atoms are additional heteroatoms independently selected from oxygen, sulfur, and nitrogen; and the remaining ring atoms are carbon. Heteroaryl includes, but is not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzooxazolyl, quinoxalinyl, acridinyl, and the like.
The term “halo” refers to a halogen, such as fluorine, chlorine, bromine, and iodine.
The term “HDAC” refers to histone deacetylases, which are enzymes that remove the acetyl groups from the lysine residues in core histones, thus leading to the formation of a condensed and transcriptionally silenced chromatin. There are currently 18 known histone deacetylases, which are classified into four groups. Class I HDACs, which include HDAC1, HDAC2, HDAC3, and HDAC8, are related to the yeast RPD3 gene. Class II HDACs, which include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10, are related to the yeast Hda1 gene. Class III HDACs, which are also known as the sirtuins are related to the Sir2 gene and include SIRT1-7. Class IV HDACs, which contains only HDAC11, has features of both Class I and II HDACs. The term “HDAC” refers to any one or more of the 18 known histone deacetylases, unless otherwise specified.
The term “HDAC6 specific” means that the compound binds to HDAC6 to a substantially greater extent, such as 5×, 10×, 15×, 20× greater or more, than to any other type of HDAC enzyme, such as HDAC1 or HDAC2. That is, the compound is selective for HDAC6 over any other type of HDAC enzyme. For example, a compound that binds to HDAC6 with an IC50 of 10 nM and to HDAC1 with an IC50 of 50 nM is HDAC6 specific. On the other hand, a compound that binds to HDAC6 with an IC50 of 50 nM and to HDAC1 with an IC50 of 60 nM is not HDAC6 specific
The term “inhibitor” is synonymous with the term antagonist.
Provided herein are pharmaceutical combinations for the treatment of multiple myeloma in a subject in need thereof Also provided herein are methods for treating multiple myeloma in a subject in need thereof.
The combinations and methods of the invention comprise a histone deacetylase (HDAC) inhibitor. The HDAC inhibitor may be any HDAC inhibitor. Thus, the HDAC inhibitor may be selective or non-selective to a particular type of histone deacetylase enzyme. Preferably, the HDAC inhibitor is a selective HDAC inhibitor. More preferably, the HDAC inhibitor is an HDAC6 inhibitor.
In some embodiments, the HDAC6 specific inhibitor is a compound of Formula I:
Representative compounds of Formula I include, but are not limited to:
The preparation and properties of selective HDAC6 inhibitors according to Formula I are provided in International Patent Application No. PCT/US2011/021982, the entire contents of which is incorporated herein by reference.
In other embodiments, the HDAC6 specific inhibitor is a compound of Formula II:
and
Representative compounds of Formula II include, but are not limited to:
or pharmaceutically acceptable salts thereof.
The preparation and properties of selective HDAC6 inhibitors according to Formula II are provided in International Patent Application No. PCT/US2011/060791, the entire contents of which are incorporated herein by reference.
In some embodiments, the compounds described herein are unsolvated. In other embodiments, one or more of the compounds are in solvated form. As known in the art, the solvate can be any of pharmaceutically acceptable solvent, such as water, ethanol, and the like.
The combinations and methods of the invention comprise an immunomodulatory drug (IMiD). The IMiD may be any immunomodulatory drug. Preferably, the IMiD is a thalidomide of Formula III.
In some embodiments, the immunomodulatory drug is a compound of Formula III:
Representative compounds of Formula III include, but are not limited to:
The preparation and properties of the immunomodulatory drugs according to Formula III are provided in U.S. Pat. Nos. 5,635,517; 6,281,230; 6,335,349; and 6,476,052; as well as International Patent Application No. PCT/US97/013375, each of which is incorporated herein by reference in its entirety.
In some embodiments, the compounds described herein are unsolvated. In other embodiments, one or more of the compounds are in solvated form. As known in the art, the solvate can be any of pharmaceutically acceptable solvent, such as water, ethanol, and the like.
The combinations and methods of the invention may, optionally, further comprise an anti-inflammatory agent. The anti-inflammatory agent may be any anti-inflammatory agent. Preferably, the anti-inflammatory agent is dexamethasone.
In some embodiments, the compounds described herein are unsolvated. In other embodiments, one or more of the compounds are in solvated form. As known in the art, the solvate can be any of pharmaceutically acceptable solvent, such as water, ethanol, and the like.
Provided herein are combinations for the treatment of multiple myeloma in a subject in need thereof. Provided in some embodiments are combinations comprising a histone deacetylase (HDAC) inhibitor and an immunomodulatory drug (IMiD) for the treatment of multiple myeloma in a subject in need thereof. In some specific embodiments, the combinations do not include dexamethasone. In other specific embodiments, the combinations may, optionally, further comprise an anti-inflammatory agent, such as dexamethasone.
In some embodiments of the combinations, the HDAC inhibitor is an HDAC6 inhibitor. In specific embodiments, the HDAC6 specific inhibitor is a compound of Formula I:
In preferred embodiments, the compound of Formula I is:
In yet other embodiments, the compound of Formula I is:
In other specific embodiments, the HDAC6 specific inhibitor is a compound of Formula II:
In preferred embodiments, the compound of Formula II is:
In other preferred embodiments, the compound of Formula II is:
In some embodiments of the combinations, the immunomodulatory drug is a compound of Formula III:
In preferred embodiments, the compound of Formula III is:
In yet other preferred embodiments, the compound of Formula III is:
In one embodiment, provided herein is a combination therapy comprising an HDAC6 specific inhibitor and an immunomodulatory drug, wherein the HDAC6 specific inhibitor is a compound of Formula I:
the immunomodulatory drug is a compound of Formula III:
As described in further detail below, some embodiments of this combination include an anti-inflammatory agent, while other embodiments of this combination do not include dexamethasone.
In specific embodiments of the combinations, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In some embodiments, when the combination includes Compound A and Compound E, the combination does not include dexamethasone. Similarly, when the combination includes Compound A and Compound F, some embodiments of the combination exclude dexamethasone. However, when the combination includes Compound A and Compound F, some embodiments of the combination include an anti-inflammatory agent, such as dexamethasone.
In another embodiment, provided herein is a combination therapy comprising an HDAC6 specific inhibitor and an immunomodulatory drug, wherein the HDAC6 specific inhibitor is a compound of Formula II:
and
the immunomodulatory drug is a compound of Formula III:
In specific embodiments of the combinations, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
In some embodiments of the combinations, the combinations may, optionally, further comprise an anti-inflammatory agent. In specific embodiments, the anti-inflammatory agent is dexamethasone.
In one embodiment, provided herein is a combination therapy comprising an HDAC6 specific inhibitor, an immunomodulatory drug, and an anti-inflammatory agent, wherein the HDAC6 specific inhibitor is a compound of Formula I:
the immunomodulatory drug is a compound of Formula III:
the anti-inflammatory agent is any anti-inflammatory agent.
In specific embodiments of the combinations, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
In another embodiment, provided herein is a combination therapy comprising an HDAC6 specific inhibitor, an immunomodulatory drug, and an anti-inflammatory agent, wherein the HDAC6 specific inhibitor is a compound of Formula II:
and
the immunomodulatory drug is a compound of Formula III:
R2 is H or C1-6-alkyl; and
the anti-inflammatory agent is any anti-inflammatory agent.
In specific embodiments of the combinations, the HDAC6 specific inhibitor is:
the immunomodulatory drug is:
the anti-inflammatory agent is dexamethasone.
Although the compounds of Formulas I, II, and III are depicted in their neutral forms, in some embodiments, these compounds are used in a pharmaceutically acceptable salt form. As used herein, “pharmaceutically acceptable salts” refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts of the present invention include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17.sup.th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418 and Journal of Pharmaceutical Science, 66, 2 (1977), each of which is incorporated herein by reference in its entirety.
In some embodiments, the HDAC inhibitor (a compound of Formula I or II) is administered simultaneously with the immunomodulatory drug (a compound of Formula III). Simultaneous administration typically means that both compounds enter the patient at precisely the same time. However, simultaneous administration also includes the possibility that the HDAC inhibitor and the IMiD enter the patient at different times, but the difference in time is sufficiently miniscule that the first administered compound is not provided the time to take effect on the patient before entry of the second administered compound. Such delayed times typically correspond to less than 1 minute, and more typically, less than 30 seconds. In one example, wherein the compounds are in solution, simultaneous administration can be achieved by administering a solution containing the combination of compounds. In another example, simultaneous administration of separate solutions, one of which contains the HDAC inhibitor and the other of which contains the IMiD, can be employed. In one example wherein the compounds are in solid form, simultaneous administration can be achieved by administering a composition containing the combination of compounds. Alternatively, simultaneous administration can be achieved by administering two separate compositions, one comprising the HDAC inhibitor and the other comprising the IMiD.
In other embodiments, the HDAC inhibitor and the IMiD are not administered simultaneously. In some embodiments, the HDAC inhibitor is administered before the IMiD. In other embodiments, the IMiD is administered before the HDAC inhibitor. The time difference in non-simultaneous administrations can be greater than 1 minute, five minutes, 10 minutes, 15 minutes, 30 minutes, 45 minutes, 60 minutes, two hours, three hours, six hours, nine hours, 12 hours, 24 hours, 36 hours, or 48 hours. In other embodiments, the first administered compound is provided time to take effect on the patient before the second administered compound is administered. Generally, the difference in time does not extend beyond the time for the first administered compound to complete its effect in the patient, or beyond the time the first administered compound is completely or substantially eliminated or deactivated in the patient.
In some embodiments, one or both of the HDAC inhibitor and immunomodulatory drug are administered in a therapeutically effective amount or dosage. A “therapeutically effective amount” is an amount of HDAC6 inhibitor (a compound of Formula I or II) or an immunomodulatory drug (a compound of Formula III) that, when administered to a patient by itself, effectively treats the multiple myeloma. An amount that proves to be a “therapeutically effective amount” in a given instance, for a particular subject, may not be effective for 100% of subjects similarly treated for the disease or condition under consideration, even though such dosage is deemed a “therapeutically effective amount” by skilled practitioners. The amount of the compound that corresponds to a therapeutically effective amount is strongly dependent on the type of cancer, stage of the cancer, the age of the patient being treated, and other facts. In general, therapeutically effective amounts of these compounds are well-known in the art, such as provided in the supporting references cited above.
In other embodiments, one or both of the HDAC inhibitor and immunomodulatory drug are administered in a sub-therapeutically effective amount or dosage. A sub-therapeutically effective amount is an amount of HDAC inhibitor (a compound of Formula I or II) or an immunomodulatory drug (a compound of Formula III) that, when administered to a patient by itself, does not completely inhibit over time the biological activity of the intended target.
Whether administered in therapeutic or sub-therapeutic amounts, the combination of the HDAC inhibitor and the immunomodulatory drug should be effective in treating multiple myeloma. For example, a sub-therapeutic amount of a compound of Formula III (immunomodulatory drug) can be an effective amount if, when combined with a compound a compound of Formula I or II (HDAC inhibitor), the combination is effective in the treatment of multiple myeloma.
In some embodiments, the combination of compounds exhibits a synergistic effect (i.e., greater than additive effect) in the treatment of the multiple myeloma. The term “synergistic effect” refers to the action of two agents, such as, for example, a HDAC inhibitor and an IMiD, producing an effect, for example, slowing the symptomatic progression of cancer or symptoms thereof, which is greater than the simple addition of the effects of each drug administered by themselves. A synergistic effect can be calculated, for example, using suitable methods such as the Sigmoid-Emax equation (Holford, N. H. G. and Scheiner, L. B., Clin. Pharmacokinet. 6: 429-453 (1981)), the equation of Loewe additivity (Loewe, S. and Muischnek, H., Arch. Exp. Pathol Pharmacol. 114: 313-326 (1926)) and the median-effect equation (Chou, T. C. and Talalay, P., Adv. Enzyme Regul. 22: 27-55 (1984)). Each equation referred to above can be applied to experimental data to generate a corresponding graph to aid in assessing the effects of the drug combination. The corresponding graphs associated with the equations referred to above are the concentration-effect curve, isobologram curve and combination index curve, respectively.
In different embodiments, depending on the combination and the effective amounts used, the combination of compounds can inhibit cancer growth, achieve cancer stasis, or even achieve substantial or complete cancer regression.
While the amounts of a HDAC inhibitor and an IMiD should result in the effective treatment of multiple myeloma, the amounts, when combined, are preferably not excessively toxic to the patient (i.e., the amounts are preferably within toxicity limits as established by medical guidelines). In some embodiments, either to prevent excessive toxicity and/or provide a more efficacious treatment of multiple myeloma, a limitation on the total administered dosage is provided. Typically, the amounts considered herein are per day; however, half-day and two-day or three-day cycles also are considered herein.
Different dosage regimens may be used to treat multiple myeloma. In some embodiments, a daily dosage, such as any of the exemplary dosages described above, is administered once, twice, three times, or four times a day for three, four, five, six, seven, eight, nine, or ten days. Depending on the stage and severity of the cancer, a shorter treatment time (e.g., up to five days) may be employed along with a high dosage, or a longer treatment time (e.g., ten or more days, or weeks, or a month, or longer) may be employed along with a low dosage. In some embodiments, a once- or twice-daily dosage is administered every other day.
In some embodiments, each dosage contains both an HDAC inhibitor and an IMiD to be delivered as a single dosage, while in other embodiments, each dosage contains either a HDAC inhibitor and an IMiD to be delivered as separate dosages.
Compounds of Formula I, II, or III, or their pharmaceutically acceptable salts or solvate forms, in pure form or in an appropriate pharmaceutical composition, can be administered via any of the accepted modes of administration or agents known in the art. The compounds can be administered, for example, orally, nasally, parenterally (intravenous, intramuscular, or subcutaneous), topically, transdermally, intravaginally, intravesically, intracistemally, or rectally. The dosage form can be, for example, a solid, semi-solid, lyophilized powder, or liquid dosage forms, such as for example, tablets, pills, soft elastic or hard gelatin capsules, powders, solutions, suspensions, suppositories, aerosols, or the like, preferably in unit dosage forms suitable for simple administration of precise dosages. A particular route of administration is oral, particularly one in which a convenient daily dosage regimen can be adjusted according to the degree of severity of the disease to be treated.
As discussed above, the HDAC inhibitor and the IMiD of the pharmaceutical combination can be administered in a single unit dose or separate dosage forms. Accordingly, the phrase “pharmaceutical combination” includes a combination of two drugs in either a single dosage form or a separate dosage forms, i.e., the pharmaceutically acceptable carriers and excipients described throughout the application can be combined with an HDAC inhibitor and an IMiD in a single unit dose, as well as individually combined with a HDAC inhibitor and an IMiD when these compounds are administered separately.
Auxiliary and adjuvant agents may include, for example, preserving, wetting, suspending, sweetening, flavoring, perfuming, emulsifying, and dispensing agents. Prevention of the action of microorganisms is generally provided by various antibacterial and antifungal agents, such as, parabens, chlorobutanol, phenol, sorbic acid, and the like. Isotonic agents, such as sugars, sodium chloride, and the like, may also be included. Prolonged absorption of an injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin. The auxiliary agents also can include wetting agents, emulsifying agents, pH buffering agents, and antioxidants, such as, for example, citric acid, sorbitan monolaurate, triethanolamine oleate, butylated hydroxytoluene, and the like.
Solid dosage forms can be prepared with coatings and shells, such as enteric coatings and others well-known in the art. They can contain pacifying agents and can be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedded compositions that can be used are polymeric substances and waxes. The active compounds also can be in microencapsulated form, if appropriate, with one or more of the above-mentioned excipients.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs. Such dosage forms are prepared, for example, by dissolving, dispersing, etc., the HDAC inhibitors or immmunomodulatory drugs described herein, or a pharmaceutically acceptable salt thereof, and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol and the like; solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethyl formamide; oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan; or mixtures of these substances, and the like, to thereby form a solution or suspension.
Generally, depending on the intended mode of administration, the pharmaceutically acceptable compositions will contain about 1% to about 99% by weight of the compounds described herein, or a pharmaceutically acceptable salt thereof, and 99% to 1% by weight of a pharmaceutically acceptable excipient. In one example, the composition will be between about 5% and about 75% by weight of a compound described herein, or a pharmaceutically acceptable salt thereof, with the rest being suitable pharmaceutical excipients.
Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art. Reference is made, for example, to Remington's Pharmaceutical Sciences, 18th Ed., (Mack Publishing Company, Easton, Pa., 1990).
The invention relates to methods for treating multiple myeloma in a subject in need thereof comprising administering to the subject a pharmaceutical combination of the invention. Thus, provided herein are methods for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a combination comprising an HDAC inhibitor and an immunomodulatory drug. In specific embodiments of the methods, the combinations may, optionally, further comprise an anti-inflammatory agent, such as dexamethasone.
The subject considered herein is typically a human. However, the subject can be any mammal for which treatment is desired. Thus, the methods described herein can be applied to both human and veterinary applications.
The terms “treating” or “treatment” indicates that the method has, at the least, mitigated abnormal cellular proliferation. For example, the method can reduce the rate of myeloma growth in a patient, or prevent the continued growth or spread of the myeloma, or even reduce the overall reach of the myeloma.
As such, in one embodiment, provided herein is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound A and Compound E. The combination in this method does not include dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound A and Compound F. When the combination in this method includes Compound A and Compound F, some embodiments of the combination exclude dexamethasone. However, when the combination includes Compound A and Compound F, some embodiments of the combination include an anti-inflammatory agent, such as dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound B and Compound E. In some embodiments, this combination in this method does not include dexamethasone. However, in some embodiments, this combination includes an anti-inflammatory agent, such as dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound B and Compound F. In some embodiments, this combination in this method does not include dexamethasone. However, in some embodiments, this combination includes an anti-inflammatory agent, such as dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound C and Compound E.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound C and Compound F.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound D and Compound E.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound D and Compound F.
As stated previously, the methods may further comprise an anti-inflammatory agent.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound A, Compound F, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound B, Compound E, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound B, Compound F, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound C, Compound E, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound C, Compound F, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound D, Compound E, and dexamethasone.
In another embodiment is a method for treating multiple myeloma in a subject in need thereof comprising administering to the subject a therapeutically effective amount of Compound D, Compound F, and dexamethasone.
An embodiment of the invention includes a method for decreasing cell viability of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for synergistically increasing apoptosis of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for decreasing cell proliferation of cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for decreasing MYC and IRF4 expression in cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
An embodiment of the invention includes a method for increasing P21 expression in cancer cells by administering a histone deacetylase (HDAC) specific inhibitor and an immunomodulatory drug (IMiD).
In other embodiments, kits are provided. Kits according to the invention include package(s) comprising compounds or compositions of the invention. In some embodiments, kits comprise a HDAC inhibitor, or a pharmaceutically acceptable salt thereof, and an IMiD or a pharmaceutically acceptable salt thereof.
The phrase “package” means any vessel containing compounds or compositions presented herein. In some embodiments, the package can be a box or wrapping. Packaging materials for use in packaging pharmaceutical products are well-known to those of skill in the art. Examples of pharmaceutical packaging materials include, but are not limited to, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment.
The kit can also contain items that are not contained within the package, but are attached to the outside of the package, for example, pipettes.
Kits can further contain instructions for administering compounds or compositions of the invention to a patient. Kits also can comprise instructions for approved uses of compounds herein by regulatory agencies, such as the United States Food and Drug Administration. Kits can also contain labeling or product inserts for the compounds. The package(s) and/or any product insert(s) may themselves be approved by regulatory agencies. The kits can include compounds in the solid phase or in a liquid phase (such as buffers provided) in a package. The kits can also include buffers for preparing solutions for conducting the methods, and pipettes for transferring liquids from one container to another.
Examples have been set forth below for the purpose of illustration and to describe certain specific embodiments of the invention. However, the scope of the claims is not to be in any way limited by the examples set forth herein. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, subtitutents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims. Definitions of the variables in the structures in the schemes herein are commensurate with those of corresponding positions in the formulae presented herein.
The synthesis of the compounds of Formula I is provided in PCT/US2011/021982, which is incorporated herein by reference in its entirety. The synthesis of compounds of Formula II is provided in PCT/US2011/060791, which is incorporated herein by reference in its entirety. The synthesis of the compounds of Formula III is provided in U.S. Pat. Nos. 5,635,517; 6,281,230; 6,335,349; and 6,476,052; and in International Patent Application No. PCT/US97/013375, each of which is incorporated herein by reference in its entirety.
A mixture of aniline (3.7 g, 40 mmol), ethyl 2-chloropyrimidine-5-carboxylate 1 (7.5 g, 40 mmol), K2CO3 (11 g, 80 mmol) in DMF (100 ml) was degassed and stirred at 120° C. under N2 overnight. The reaction mixture was cooled to rt and diluted with EtOAc (200 ml), then washed with saturated brine (200 ml×3). The organic layer was separated and dried over Na2SO4, evaporated to dryness and purified by silica gel chromatography (petroleum ethers/EtOAc=10/1) to give the desired product as a white solid (6.2 g, 64%).
A mixture of the compound 2 (6.2 g, 25 mmol), iodobenzene (6.12 g, 30 mmol), CuI (955 mg, 5.0 mmol), Cs2CO3 (16.3 g, 50 mmol) in TEOS (200 ml) was degassed and purged with nitrogen. The resulting mixture was stirred at 140° C. for 14 h. After cooling to rt, the residue was diluted with EtOAc (200 ml) and 95% EtOH (200 ml), NH4F-H2O on silica gel [50 g, pre-prepared by the addition of NH4F (100 g) in water (1500 ml) to silica gel (500 g, 100-200 mesh)] was added, and the resulting mixture was kept at rt for 2 h, the solidified materials was filtered and washed with EtOAc. The filtrate was evaporated to dryness and the residue was purified by silica gel chromatography (petroleum ethers/EtOAc=10/1) to give a yellow solid (3 g, 38%).
2N NaOH (200 ml) was added to a solution of the compound 3 (3.0 g, 9.4 mmol) in EtOH (200 ml). The mixture was stirred at 60° C. for 30 min. After evaporation of the solvent, the solution was neutralized with 2N HCl to give a white precipitate. The suspension was extracted with EtOAc (2×200 ml), and the organic layer was separated, washed with water (2×100 ml), brine (2×100 ml), and dried over Na2SO4. Removal of solvent gave a brown solid (2.5 g, 92%).
A mixture of compound 4 (2.5 g, 8.58 mmol), aminoheptanoate 5 (2.52 g, 12.87 mmol), HATU (3.91 g, 10.30 mmol), DIPEA (4.43 g, 34.32 mmol) was stirred at rt overnight. After the reaction mixture was filtered, the filtrate was evaporated to dryness and the residue was purified by silica gel chromatography (petroleum ethers/EtOAc=2/1) to give a brown solid (2 g, 54%).
A mixture of the compound 6 (2.0 g, 4.6 mmol), sodium hydroxide (2N, 20 mL) in MeOH (50 ml) and DCM (25 ml) was stirred at 0° C. for 10 min. Hydroxylamine (50%) (10 ml) was cooled to 0° C. and added to the mixture. The resulting mixture was stirred at rt for 20 min. After removal of the solvent, the mixture was neutralized with 1M HCl to give a white precipitate. The crude product was filtered and purified by pre-HPLC to give a white solid (950 mg, 48%).
Synthesis of Intermediate 2: See synthesis of intermediate 2 in Example 1.
Synthesis of Intermediate 3: A mixture of compound 2 (69.2 g, 1 equiv.), 1-chloro-2-iodobenzene (135.7 g, 2 equiv.), Li2CO3 (42.04 g, 2 equiv.), K2CO3 (39.32 g, 1 equiv.), Cu (1 equiv. 45 μm) in DMSO (690 ml) was degassed and purged with nitrogen. The resulting mixture was stirred at 140° C. Work-up of the reaction gave compound 3 at 93% yield.
Synthesis of Intermediate 4: See synthesis of intermediate 4 in Example 1.
Synthesis of Intermediate 6: See synthesis of intermediate 6 in Example 1.
Synthesis of 2-((2-chlorophenyl)(phenyl)amino)-N-(7-(hydroxyamino)-7-oxoheptyl)pyrimidine-5-carboxamide (Compound B): See synthesis of Compound A in Example 1.
To a solution of 2-(3-fluorophenyl)acetonitrile (100 g, 0.74 mol) in Dry DMF (1000 ml) was added 1,5-dibromopentane (170 g, 0.74 mol), NaH (65 g, 2.2 eq) was added dropwise at ice bath. After addition, the resulting mixture was vigorously stirred overnight at 50° C. The suspension was quenched by ice water carefully, extracted with ethyl acetate (3*500 ml). The combined organic solution was concentrate to afford the crude which was purified on flash column to give 1-(3-fluorophenyl)cyclohexanecarbonitrile as pale solid (100 g, 67%).
To a solution of 1-(3-fluorophenyl)cyclohexanecarbonitrile (100 g, 0.49 mol) in PPA (500 ml) was heated at 110° C. for about 5-6 hours. After completed, the resulting mixture was carefully basified with sat.NaHCO3 soultion until the PH=8-9. The precipitate was collected and washed with water (1000 ml) to afford 1-(3-fluorophenyl)cyclohexanecarboxamide as white solid (95 g, 87%).
To a solution of 1-(3-fluorophenyl)cyclohexanecarboxamide (95 g, 0.43 mol) in n-BuOH (800 ml) was added NaClO (260 ml, 1.4 eq), then 3N NaOH (400 ml, 2.8 eq) was added at 0° C. and the reaction was stirred overnight at r.t. The resulting mixture was extracted with EA (2*500 ml), the combined organic solution was washed with brine, dried to afford the crude which was further purification on treating with HCl salt as white powder (72 g, 73%).
To a solution of 1-(3-fluorophenyl)cyclohexanamine hydrochloride (2.29 g 10 mmol) in Dioxane (50 ml) was added ethyl 2-chloropyrimidine-5-carboxylate (1.87 g, 1.0 eq) and DIPEA (2.58 g, 2.0 eq). The mixture was heated overnight at 110-120° C. The resulting mixture was directly purified on silica gel column to afford the coupled product as white solid (1.37 g, 40%)
To a solution of ethyl 2-(1-(3-fluorophenyl)cyclohexylamino)pyrimidine-5-carboxylate (100 mg, 0.29 mmol) in MeOH/DCM(10 ml, 1:1) was added 50% NH2OH in water (2 ml, excess), then sat. NaOH in MeOH (2 ml, excess) was added at 0° C. and the reaction was stirred for 3-4 hours. After completed, the resulting mixture was concentrated and acidified with 2N HCl to the PH=4-5. The precipitate was collected and washed by water (10 ml) to remove the NH2OH and dried to afford 2-((1-(3-fluorophenyl)cyclohexyl)amino)-N-hydroxypyrimidine-5-carboxamide as white powder (70 mg, 73%).
Synthesis of Intermediate 2: A solution of compound 1, benzonitrile, (250 g, 1.0 equiv.), and Ti(OiPr)4 (1330 ml, 1.5 equiv.) in MBTE (3750 ml) was cooled to about −10 to —5 ° C. under a nitrogen atmosphere. EtMgBr (1610 ml, 3.0M, 2.3 equiv.) was added dropwise over a period of 60 min., during which the inner temperature of the reaction was kept below 5° C. The reaction mixture was allowed to warm to 15-20° C. for 1 hr. BF3-ether (1300 ml, 2.0 equiv.) was added dropwise over a period of 60 min., while the inner temperature was maintained below 15° C. The reaction mixture was stirred at 15-20° C. for 1-2 hr. and stopped when a low level of benzonitrile remained. 1N HCl (2500 ml) was added dropwise while maintaining the inner temperature below 30° C. NaOH (20%, 3000 ml) was added dropwise to bring the pH to about 9.0, while still maintaining a temperature below 30° C. The reaction mixture was extracted with MTBE (3 L×2) and EtOAc (3 L×2), and the combined organic layers were dried with anhydrous Na2SO4 and concentrated under reduced pressure (below 45° C.) to yield a red oil. MTBE (2500 ml) was added to the oil to give a clear solution, and upon bubbling with dry HCl gas, a solid precipitated. This solid was filtered and dried in vacuum yielding 143 g of compound 2.
Synthesis of Intermediate 4: Compound 2 (620 g, 1.0 equiv) and DIPEA (1080 g, 2.2 equiv. were dissolved in NMP (3100 ml) and stirred for 20 min. Compound 3 (680 g, 1.02 equiv.) was added and the reaction mixture was heated to about 85-95° C. for 4 hrs. The solution was allowed to slowly cool to r.t. This solution was poured onto H2O (20 L) and much of the solid was precipitated out from the solution with strong stirring. The mixture was filtered and the cake was dried under reduced pressure at 50° C. for 24 hr., yielding 896 g of compound 4 (solid, 86.8%).
(Compound D): A solution of MeOH(1000 ml) was cooled to about 0-5° C. with stirring. NH2OH HCl (1107 g, 10 equiv.) was added, followed by careful addition of NaOCH3 (1000 g, 12.0 equiv.) The resulting mixture was stirred at 0-5° C. for one hr, and was filtered to remove the solid. Compound 4 (450 g, 1.0 equiv.) was added to the reaction mixture in one portion, and stirred at 10° C. for two hours until compound 4 was consumed. The reaction mixture was adjusted to a pH of about 8.5-9 through addition of HCl (6N), resulting in precipitation. The mixture was concentrated under reduced pressure. Water (3000 ml) was added to the residue with intense stirring and the precipitate was collected by filtration. The product was dried in an oven at 45° C. overnight (340 g, 79% yield).
Compounds for testing were diluted in DMSO to 50 fold the final concentration and a ten point three fold dilution series was made. The compounds were diluted in assay buffer (50 mM HEPES, pH 7.4, 100 mM KCl, 0.001% Tween-20, 0.05% BSA, 20 μM TCEP) to 6 fold their final concentration. The HDAC enzymes (purchased from BPS Biosciences) were diluted to 1.5 fold their final concentration in assay buffer. The tripeptide substrate and trypsin at 0.05 μM final concentration were diluted in assay buffer at 6 fold their final concentration. The final enzyme concentrations used in these assays were 3.3 ng/ml (HDAC1), 0.2 ng/ml (HDAC2), 0.08 ng/ml (HDAC3) and 2 ng/ml (HDAC6). The final substrate concentrations used were 16 μM (HDAC1), 10 μM (HDAC2), 17 μM (HDAC3) and 14 μM (HDAC6). Five μl of compound and 20 μl of enzyme were added to wells of a black, opaque 384 well plate in duplicate. Enzyme and compound were incubated together at room temperature for 10 minutes. Five μl of substrate was added to each well, the plate was shaken for 60 seconds and placed into a Victor 2 microtiter plate reader. The development of fluorescence was monitored for 60 min and the linear rate of the reaction was calculated. The IC50 was determined using Graph Pad Prism by a four parameter curve fit.
MM.1s cells were cultured for 48 hours with 0, 0.6, 1.25, or 2.5 μM lenalidomide (Compound E) or 0, 0.6, 1.25, or 2.5 μM pomalidomide (Compound F), with 0, 1, 2, or 4 μM Compound A. Cell growth was assessed by MTT assay. The Combination Index (CI) was calculated using CompuSyn software.
The data show that when Compound A was combined with either Compound E (lenalidomide) (see
These above results from Experiment 1 were further confirmed by using a highly selective HDAC6 inhibitor, Compound C, in the same experiment. Data not shown.
MM.1s cells were cultured for 48 hours with 0, 1.25, or 2.5 μM lenalidomide (Compound E) and 0, 1, 2, or 4 μM Compound A, with (50 nM) or without (0 nM) dexamethasone. Cell growth was assessed by MTT assay. The Combination Index (CI) was calculated using CompuSyn software.
The data show that when Compound A was combined with Compound E (lenalidomide) (see
In this experiment, it is shown that combining an HDAC6 inhibitor (Compound A or Compound B) with either lenalidomide or pomalidomide leads to synergistic decreases in the viability of two different multiple myeloma cell lines in vitro (MM.1s and H929). The relevance of inhibition of HDAC6 to this synergistic effect was validated by demonstrating synergistic interactions of either IMiD molecule with Compound C, which is more than 300-fold selective for HDAC6 over class I HDAC's. Additionally, staining of H929 cells for markers of apoptosis demonstrated that treatment with a combination of Compound A plus an IMiD led to an approximately 1.6-2 fold increase in cells entering apoptosis relative to cells treated with either agent alone. Further, the combination of Compound A, lenalidomide, and dexamethasone was well tolerated in vivo with no overt evidence of toxicity (
Briefly, for viability assays, cells were seeded in 384-well plates and treated in quadruplicate in a dose-matrix format with an HDAC6 inhibitor (Compound A, Compound B, or Compound C) in combination with lenalidomide or pomalidomide. After incubating these cells for 48 hr, total cell viability was assessed via an MTS assay (Aqueous One, Promega). The fraction affected (Fa) was subsequently determined for each dose combination and the combination index (CI) was assessed using the method of Chou-Talalay. CI values less than one represent a synergistic effect, values equal to one suggest an additive effect, and values greater than two indicate an antagonistic effect. As can be seen in the Fa-CI plots in
To test for the induction of apoptosis, H929 cells were treated with DMSO, 0.7 uM Compound A, 0.4 uM lenalidomide, or the combination of both drugs for 72 hours. Alternatively, H929 cells were treated for 72 hours with DMSO, 0.7 uM Compound A, 0.02 uM pomalidomide, or the combination of both drugs. Cells were then harvested and stained with Annexin V (which recognizes an epitope on cells in the early stages of apoptosis) and propidium iodide (which is excluded from cells with intact membranes, thus marking only dead cells). Flow cytometry analysis was then used to measure the number of healthy and apoptotic cells under each treatment condition. While treatment with low doses of each compound individually did not result in the induction of apoptosis, combination treatment with Compound A plus an IMiD resulted in an approximate doubling in the percentage of cells undergoing apoptosis. See
For animal studies, MM.1s cells were implanted subcutaneously in immunocompromised mice. Upon establishment of tumors, the animals were separated into groups and treated with vehicle alone, Compound A alone (30 mpk IP), lenalidomide (15 mpk IP) plus dexamethasone (1 mpk IP), or lenalidomide and dexamethasone plus Compound A delivered either orally (100 mpk BID PO) or intraperitoneally (30 mpk IP). While treatment with lenalidomide plus dexamethasone delayed tumor growth in this model, the addition of Compound A to this combination resulted in even greater tumor growth inhibition. Together, these results (see
MM.1s cells were cultured for 48 hours with Compound E (1 μM) and Compound A (
The data from the initial mechanistic studies showed that the induction of synergistic cytotoxicity by the combination treatment of Compound A and Compound E was due to increased apoptosis, as evidenced by caspase-3/PARP cleavage (see
Compound A is the first selective HDAC6 inhibitor in clinical trials and is well-tolerated as a monotherapy up to 360 mg/day, the maximum dose examined. A pharmacologically relevant Cmax≥1 μM was achieved at dose levels >80 mg. Unlike the nonselective HDAC inhibitors, which are associated with severe fatigue, vomiting, diarrhea, and myelosuppression, dose limiting toxicities (DLTs) were not observed with Compound A. Compound A synergizes in vitro with lenalidomide (Compound E) in multiple myeloma cell lines, thus providing the rationale to conduct a Phase 1b trial of Compound A in combination with lenalidomide in patients who have progressed on at least one prior treatment regimen, who have a creatinine clearance >50 mg/mL/min, and adequate bone marrow and hepatic function. In Part A of the trial, patients were treated with escalating doses of oral Compound A in combination with a standard dose and schedule of lenalidomide and dexamethasone on days 1-5 and 8-12 of a 28 day cycle. For example, the patients in cohort 1 received 40 mg of Compound A, 15 mg of Compound E, and 40 mg of dexamethasone per day; the patients in cohort 2 received 40 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone per day; the patients in cohort 3 received 80 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone per day; the patients in cohort 4 received 160 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone per day; and the patients in cohort 5 received 240 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone per day. In Part B of the trial, the schedule includes Compound A on days 15-19 and subsequent cohorts will explore twice daily dosing as tolerated based on emerging clinical, pharmacokinetic (PK), and pharmacodynamic (PD) data. For example, the patients in cohort 6 received 160 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone per day; the patients in cohort 7 received 160 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone twice daily; and the patients in cohort 8 received 240 mg of Compound A, 25 mg of Compound E, and 40 mg of dexamethasone twice daily. Peripheral blood samples were obtained for PK and PD analysis at specified time points. PD assessment measured the fold increase of acetylated tubulin (a marker of HDAC6 inhibition) and acetylated histones (a marker of class 1 HDAC inhibition) in peripheral blood mononuclear cells (PBMC).
15 patients who progressed after 1 to >3 prior therapies were enrolled; 8 were relapsed, and 7 were relapsed-and-refractory. Patients were treated daily at up to 240 mg of Compound A. Fourteen patients had received prior lenalidomide, of which 6 were previously refractory as defined by having less than a minimal response (MR) to therapy (1) or progressive disease on either full dose or maintenance therapy (5). Patients have completed 0 to 11+ cycles of therapy with 10 patients continuing on therapy. Five patients have discontinued therapy due to progressive disease (PD) (3), travel difficulties (1), or missed doses of lenalidomide (1). The latter patient was replaced.
The most common treatment emergent events were fatigue (43%), upper respiratory infection (36%), anemia and peripheral edema (21% each), neutropenia (29%), and muscle spasms (21%). Most were grade 1 and 2, and there was no dose relationship to Compound A. There were 9 grade 3 and 4 events in 6 patients, primarily hematologic and also including fatigue and asymptomatic laboratory investigations. Only 1, neutropenia, was considered possibly related to Compound A by the investigator.
PK and PD data is available from 12 patients up to 160 mg dose level. PK for Compound A is similar to the analogous dose levels in phase 1a monotherapy suggesting coadministration of lenalidomide does not significantly impact the PK of Compound A. Maximal levels were ≥1 μM at ≥80 mg correlating with measurable increases >2× in acetylated tubulin with a minimal increase in acetylated histones.
Twelve patients, at doses up to 160 mg of Compound A, are evaluable for response (after at least two cycles). In addition, 1 patient who discontinued therapy after one cycle has response data available. Nine patients (69%) have ≥PR, including 1 CR, 4 VGPR, 3 PR, and 1 PRu. Two patients each had MR and SD as the best response. Reponses are durable up to 1130 cycles of therapy. Of the patients who were refractory to lenalidomide, there were 1 PR, 1 VGPR, 2 MR, and 2 SD.
Thus, Compound A can be combined with lenalidomide at doses that have biological activity, as determined by PD data in PBMC. Responses are observed, including in patients previously refractory to lenalidomide.
This example shows that the combination of HDAC6 inhibitors and IMiDs results in synergistic decreases in myeloma cell growth and viability.
H929 (
This example shows that treatment of multiple myeloma cells with Compound A and/or IMiDs results in decreased cell cycle progression.
H929 (
This example shows that treatment of multiple myeloma cells with Compound A plus IMiDs results in synergistic increases in cellular apoptosis.
H929 (
This example shows that the expression level of MYC, IRF4, and CRBN are decreased by treatment with Compound A and IMiDs, while expression of P21 is increased by treatment with this combination.
H929 myeloma cells were treated with DMSO, Compound A (2 Lenalidomide (1 μM), Pomalidomide (1 μM), or combinations of Compound A with either IMiD, and total RNA was harvested 24, 48, and 72 hours later. Quantitative reverse transcription PCR was then performed to assess the relative transcript levels of MYC (
This example shows that the combination of an HDAC6 inhibitor, an IMiD, and dexamethasone is well tolerated in mice.
SCID-beige mice were treated with Vehicle, Compound A alone, lenalidomide plus dexamethasone, or the triple combination of lenalidomide, dexamethasone, and Compound A. Percent body weight change was determined relative to the start of dosing, and the mean change ±SD was plotted. All treatments were dosed five days per week for 3 cycles: Compound A at 100 mpk PO BID, lenalidomide at 15 mpk IP QD, and dexamethasone at 5 mpk IP QD. All treatments were well tolerated with no overt evidence of toxicity and complete recovery after minimal body weight loss. See
Histone deacetylase (HDAC) enzymes represent attractive therapeutic targets in MM, but non-selective HDAC inhibitors have led to dose-limiting toxicities in patients, particularly in combination with other therapeutic agents. Ricolinostat (Compound A), a first-in-class orally available HDAC inhibitor that is 11-fold selective for HDAC6, synergizes in vitro and in vivo with bortezomib in preclinical models of MM (Blood, 20[210]: 4061), and has thus far demonstrated an improved safety and tolerability profile in Phase I trials (Raje, et al, EHA, 2014). Based on these findings, Compound B is being developed as a second generation, orally available, isoform selective inhibitor of HDAC6 for clinical evaluation in MM.
In support of the ongoing clinical development program for Compound B in MM, it is shown here that combining Compound B with either IMiD leads to synergistic decreases in the viability of MM cells in vitro.
Time course studies demonstrated accumulation of cell cycle arrest in cells after prolonged exposure to either IMiD, as well as progressive induction of apoptosis in these cells. Notably, though, the addition of Compound B to either IMiD resulted in synergistic increases in the percentage of MM cells undergoing apoptosis.
At the molecular level, MM cells are known to be dependent on expression of the MYC and IRF4 transcription factors.
Mice carrying H929 tumor xenografts were treated with DMSO, Compound B (50 mg/kg IP QD), pomalidomide (1 mg/kg IP QD), or the combination of Compound B (50 mg/kg IP QD) and pomalidomide (1 mg/kg IP QD) daily for up to 42 days. The combination showed increased overall survival relative to either single agent. See
By demonstrating a similar tolerability and efficacy profile to ricolinostat (Compound A), these findings provide support for the clinical evaluation of Compound B in combination with IMiDs in MM patients.
The contents of all references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties. Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
This application is a continuation of U.S. application Ser. No. 14/508,072, filed Oct. 7, 2014, which application claims priority to U.S. Provisional Application Ser. No. 61/889,640, filed Oct. 11, 2013, and U.S. Provisional Application Ser. No. 61/911,089, filed Dec. 3, 2013, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61911089 | Dec 2013 | US | |
61889640 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14508072 | Oct 2014 | US |
Child | 16684809 | US |