The present invention relates to the field of multiplex based viral pathogen detection and analysis. More particularly, the present invention relates to detecting the presence of clade variants of SARS-COVID-2 virus in patient and environmental samples.
The COVID-19 pandemic has increased awareness that viral infection can be an existential threat to health, public safety and the US economy. More fundamentally, there is a recognition that the viral risks are exceedingly dangerous and complex and require new approaches to diagnostics and screening.
The next pandemic wave is expected to have more pronounced flu-like symptoms (seasonal influenza A and/or B) coupled with the COVID-19, or COVID-19 variants that will coexist with the Coronavirus already responsible for the common cold. These complexities are expected to pose significant challenges to public health and the healthcare system in diagnosing multi-symptom conditions accurately and efficiently.
The COVID-19 pandemic has also led to the realization of an additional level of complexity that the realization that human health and environmental contamination are linked in a fundamental way that affects collection efficiency and increases risk to the healthcare workers (1, 2). Alternatives to nasopharyngeal collection methods such as for example, saliva collection are needed to enable scalability among millions of individuals.
Q-RT-PCR technology has dominated COVID-19 diagnostics and public health screening. Independent of the test developer, Q-RT-PCR has been shown to have an unusually high false negative rate (15% up to 30%). As of May 2020, the CDC has recorded 613, 041 COVID-19 tests. With a 15% false negative rate, approximately 91, 956 people would thus be falsely classified as free of infection. Meta-analysis has shown that the false negative rate for Q-RT-PCR is high below day 7 of infection when viral load is still low. This renders Q-RT-PCR ineffective as a tool for early detection of weak symptomatic carriers while also lessening its value in epidemiology.
As for other organisms, genetic variations in SARS-COVID-2 are grouped into clades. There are over 52, 600 complete and high-coverage genomes available on the Global Initiative on Sharing Avian Influenza Data (GISAID). Presently, WHO has identified 10, 022 SARS-COVID-2 genomes from 68 different countries and detected 65, 776 variants and 5, 775 distinct variants that comprised missense mutations, synonymous mutations, mutations in non-coding regions, non-coding deletions, in-frame deletions, non-coding insertions, stop-gained variants, frameshift deletions and in-frame insertions among others. Identifying these clade variants in population and environmental samples while a daunting task, is critical for global public health management directed to controlling the pandemic.
When first identified, it was widely assumed that COVID-19 would mutate slowly, based on a relatively stable genome that would experience minimal genetic drift as the pandemic spread. Unfortunately, perhaps as a function of environmental selection pressure (crowding) physical selection pressure (PPE) and therapeutic selection pressure (vaccination) the original Wuhan clade has evolved into a very large number of clade variants. Consequently, in the past 3 months there has been an international effort to discover and track the full range of clade variant evolution.
Next Generation Sequencing (NGS), primarily Targeted Resequencing of the CoV-2 Spike gene, has been instrumental in elucidating the patterns of genetic variation which define the growing set of clade variants of present international concern (UK, South Africa, Brazil, India, US California, US NY, US Southern) with others emerging at an expanding rate. Whereas NGS is without equal as a discovery tool in genetic epidemiology, it is not ideally suited for field-deployed, public health screening at population scale due to complexities associated with purchasing and managing the kits supply chain, setting up and training personnel, especially when compared to Q-RT-PCR, which is the present standard for nucleic acid based COVID-19 screening. Conversely, while Q-RT-PCR (especially TaqMan) is now the clear standard in COVID-19 testing laboratories for simple positive/negative screening, its suitability for screening clade variants is limited. Deploying TaqMan for COVID-19 clade Identification requires running about 10-15 TaqMan kits on each sample to generate sequence content equivalent to Spike targeted NGS, thereby negating the benefits of costs and logistics with Q-RT-PCR.
Thus, there is a need in the art for superior tools to not only administer and stabilize sample collection for respiratory viruses from millions of samples in parallel obtained from diverse locations including, clinic, home, work, school and in transportation hubs, but also to detect and identify clade variants in the population at the highest levels of sensitivity and specificity. The present invention fulfills this longstanding need and desire in the art.
The present invention is directed to a method for detecting clade variants in the Coronavirus disease 2019 virus in a sample. The sample is obtained from which viruses are harvested. Total RNA is isolated from the harvested viruses. A combined reverse transcription and first amplification reaction is performed on the total RNA using at least one first primer pair selective for all COVID-19 viruses to generate COVID-19 virus cDNA amplicons. A second amplification is performed using the COVID-19 virus cDNA amplicons as template and at least one fluorescent labeled second primer pair selective for a target nucleotide sequence in the COVID-19 virus cDNA to generate at least one fluorescent labeled COVID-19 virus amplicon. The fluorescent labeled COVID-19 virus amplicons are hybridized to a plurality of nucleic acid probes. Each nucleic acid probe is attached to a solid microarray support, and has a sequence corresponding to a sequence determinant that discriminates among clade variants of the COVID-19 virus. After hybridization, the array is washed at least once and imaged to detect at least one fluorescent signal from the hybridized fluorescent labeled COVID-19 virus amplicons. The present invention is directed to a related method where prior to the harvesting step, the method further comprises mixing the sample with an RNA stabilizer.
The present invention is further directed to a method for detecting clade variants in the Coronavirus disease 2019 virus in a sample. The sample is obtained from which, viruses are harvested. Total RNA is isolated from the harvested viruses. A combined reverse transcription and first amplification reaction is performed on the total RNA using at least one fluorescent labeled primer pair comprising an unlabeled primer, and a fluorescently labeled primer, selective for a target sequence in all COVID-19 viruses to generate at least one fluorescent labeled COVID-19 virus amplicon. The fluorescent labeled COVID-19 virus amplicons are hybridized to a plurality of nucleic acid probes. Each nucleic acid probe is attached to a solid microarray support, and has a sequence corresponding to a sequence determinant that discriminates among clade variants of the COVID-19 virus. After hybridization, the array is washed at least once and imaged to detect at least one fluorescent signal from the hybridized fluorescent labeled COVID-19 virus amplicons. The present invention is directed to a related method where prior to the harvesting step, the method further comprises mixing the sample with an RNA stabilizer.
Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention. These embodiments are given for the purpose of disclosure.
So that the matter in which the above-recited features, advantages and objects of the invention, as well as others which will become clear, are attained and can be understood in detail, more particular descriptions and certain embodiments of the invention briefly summarized above are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate preferred embodiments of the invention and therefore are not to be considered limiting in their scope.
As used herein, the term “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one, ” but it is also consistent with the meaning of “one or more, ” “at least one, ” and “one or more than one.” Some embodiments of the invention may consist of or consist essentially of one or more elements, method steps, and/or methods of the invention. It is contemplated that any method described herein can be implemented with respect to any other method described herein.
As used herein, the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or”.
As used herein, “comprise” and its variations, such as “comprises” and “comprising” will be understood to imply the inclusion of a stated item, element or step or group of items, elements or steps but not the exclusion of any other item, element or step or group of items, elements or steps unless the context requires otherwise. Similarly, “another” or “other” may mean at least a second or more of the same or different claim element or components thereof.
In one embodiment of the present invention there is provided a method for detecting clade variants in a Coronavirus disease 2019 virus (COVID-19) in a sample, comprising obtaining the sample; harvesting viruses from the sample; isolating a total RNA from the harvested viruses; performing a combined reverse transcription and first amplification reaction on the total RNA using at least one first primer pair selective for all COVID-19 viruses to generate COVID-19 virus cDNA amplicons; performing a second amplification using the COVID-19 virus cDNA amplicons as template and at least one fluorescent labeled second primer pair selective for a target nucleotide sequence in the COVID-19 virus cDNA to generate at least one fluorescent labeled COVID-19 virus amplicon; hybridizing the fluorescent labeled COVID-19 virus amplicons to a plurality of nucleic acid probes, each having a sequence corresponding to a sequence determinant that discriminates among the clade variants of the COVID-19 virus, where the nucleic acid probes are attached to a solid microarray support; washing the microarray at least once; and imaging the microarray to detect at least one fluorescent signal from the hybridized fluorescent labeled COVID-19 virus amplicons, thereby detecting the clade variants of the COVID-19 virus in the sample.
A total RNA potentially comprising RNA from COVID-19 virus and other contaminating pathogens and human cells is isolated from the sample. Commercially available RNA isolation kits such as for example, a Quick-DNA/RNA Viral MagBead Kit from Zymo Research are used for this purpose. The total RNA thus isolated is used without further purification. Alternatively, intact virus may be captured with magnetic beads, using kits such as that from Ceres Nanosciences (e.g., CERES NANOTRAP technology), or by first precipitating the virus with polyethylene glycol (PEG), followed by lysis of the enriched virus by heating with a “PCR-Friendly” lysis solution such as 1% NP40 in Tris-EDTA buffer and then used without additional purification.
The COVID-19 virus RNA in the total RNA isolate is used as a template for amplifying a COVID-19 virus specific sequence. This comprises first performing a combined reverse transcriptase enzyme catalyzed reverse transcription reaction and a first amplification reaction using a first primer pair selective for the virus to generate COVID-19 virus cDNA amplicons. In this embodiment, the first primer pairs have forward (odd numbers) and reverse (even number) sequences shown in SEQ ID NO: 1 to SEQ ID NO: 8 (Table 1).). Commercially available reverse transcriptase enzyme and buffers are used in this step. Controls including, but not limited to a RNAse P control having first primer pair (forward primer SEQ ID NO: 130, reverse primer SEQ ID NO: 131) are also used herein (Table 1). The COVID-19 virus cDNA amplicons generated in the first amplification reaction are used as a template for a second amplification that employs at least one fluorescent labeled second primer pair selective for a target nucleotide sequence in the COVID-19 virus cDNA to generate at least one fluorescent labeled COVID-19 virus amplicon.
The fluorescent labeled COVID-19 virus amplicons hybridize to the nucleic acid probes, which are attached at specific positions on a microarray support, for example, a 3-dimensional lattice microarray support. After hybridization, the microarray is washed at least once to remove unhybridized amplicons. Washed microarrays are imaged to detect a fluorescent signal from the hybridized fluorescent labeled COVID-19 virus amplicons to detect the Clade variants of the COVID-19 virus in the sample.
Further to this embodiment, prior to the harvesting step, the method comprises mixing the sample with an RNA stabilizer. A representative RNA stabilizer is a chemical stabilizer that protects the RNA from degradation during storage and transportation.
In both embodiments one or more of the at least one fluorescent labeled second primer pair is selective for a panel of target nucleotide sequences within a target region of a gene in the COVID-19 virus; and the nucleic acid probes are specific to the target region of the gene, whereby the at least one fluorescent labeled COVID-19 virus amplicon generated is hybridized to the nucleic acid probe thereby discriminating the clade variants of the COVID-19 virus in the sample. Further to this embodiment the method comprises detecting the at least one fluorescent signal from the hybridized at least one fluorescent labeled COVID-19 virus amplicons associated with the panel of target nucleotide sequences within the target region of the gene; and generating an intensity distribution profile unique to each of the clade variants, whereby each of the clade variants is distinguishable from others. Particularly, the gene may be a Spike gene.
In a non-limiting example, the target region may be in the Spike gene in the COVID-19 virus and the fluorescent labeled second primer pairs may have forward (odd numbers) and reverse (even number) sequences shown in SEQ ID NO: 9 to SEQ ID NO: 29 (Tables 2 and 11). Controls including, but not limited to a RNAse P control having primer pair (forward primer SEQ ID NO: 132, reverse primer SEQ ID NO: 133) are also used herein (Table 2).
Any fluorescent label may be used in the fluorescent labeled second primer pairs including, but not limited to, a CY3, a CY5, SYBR Green, a DYLIGHT™ DY647, a ALEXA FLUOR 647, a DYLIGHT™ DY547 and a ALEXA FLUOR 550.
In all embodiments the clade variants of the COVID-19 virus may be Denmark, UK (B.1.1.7), South African (B.1.351), Brazil/Japan (P1), Brazil (B1.1.28), California USA, L452R (1.429), India (N440K), or Wuhan, or a combination thereof. The COVID-19 virus is a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV 2) or a mutated form thereof. A combination of these variants also may be detected simultaneously.
Also in all embodiments the first primer pair may comprise the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, or SEQ ID NO: 3 and SEQ ID NO: 4, or SEQ ID NO: 5 and SEQ ID NO: 6, or SEQ ID NO: 7 and SEQ ID NO: 8, or a combination thereof. Sequences of the first primer pairs are shown in Table 1.
In addition in all embodiments the fluorescent labeled second primer pair may comprise the nucleotide sequences of SEQ ID NO: 9 and SEQ ID NO: 10, or SEQ ID NO: 11 and SEQ ID NO: 12, or SEQ ID NO: 13 and SEQ ID NO: 14, or SEQ ID NO: 15 and SEQ ID NO: 16, or SEQ ID NO: 17 and SEQ ID NO: 18, SEQ ID NO: 19 and SEQ ID NO: 20, SEQ ID NO: 21 and SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24, SEQ ID NO: 25 and SEQ ID NO: 26, SEQ ID NO:
27 and SEQ ID NO: 28, SEQ ID NO: 29 and SEQ ID NO: 24, or a combination thereof. Sequences of the first primer pairs are shown in Table 2.
Furthermore, in all embodiments the nucleic acid probes may comprise at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 30-129. The nucleic acid probes may have a sequence corresponding to a sequence determinant that discriminates among the Clade variants of the COVID-19 virus. The nucleic acid probes are specific to the target region of the gene in the COVID-19 virus as discussed supra. This enables hybridization of the one fluorescent labeled COVID-19 virus amplicon generated to the Spike gene-specific nucleic acid probe thereby discriminating the Clade variants of the COVID-19 virus in the sample. In a non-limiting example, the target region is in a Spike gene in the COVID-19 virus and the nucleic acid probes have a sequence shown in SEQ ID NO: 30 to SEQ ID: 129 (Tables 3, 10 and 14). Controls including, but not limited to, a RNAse P control nucleic acid probe (SEQ ID NO: 68 and SEQ ID NO: 69) and a negative control nucleic acid probe (SEQ ID NO: 70) are also used herein (Table 3).
Further still in all embodiments the sample may comprise at least one of a nasopharyngeal swab, a nasal swab, a mouth swab, a mouthwash, an aerosol, or a swab from a hard surface. In one aspect the sample may be any sample obtained from a subject including, but not limited to, a nasopharyngeal swab, a nasal swab, a mouth swab, and a mouthwash (sample obtained by rinsing the subject's buccal cavity). A pooled sample obtained by combining two or more of these samples or by combining samples from multiple subjects also may be used. In another aspect, the sample is an environmental sample obtain from inanimate sources including but is not limited to an aerosol and a hard surface. The aerosol samples may be obtained using commercial air samplers such as for example a Coriolis Micro Air Sampler. A sample from a hard surface may be obtained using a swab. In both aspects, the viruses from samples obtained on swabs are dispersed in a liquid such as phosphate buffered saline. Aerosol samples are transferred into a volume of a liquid such as phosphate buffered saline.
In another embodiment of the present invention, there is provided a method for detecting Clade variants in the Coronavirus disease 2019 virus (COVID-19) in a sample, comprising obtaining the sample; harvesting viruses from the sample; isolating total RNA from the harvested viruses; performing a combined reverse transcription and asymmetric PCR amplification reaction on the total RNA using at least one fluorescent labeled primer pair comprising an unlabeled primer, and a fluorescently labeled primer, selective for a target sequence in all COVID-19 viruses to generate at least one fluorescent labeled COVID-19 virus amplicon; hybridizing the fluorescent labeled COVID-19 virus amplicons to a plurality of nucleic acid probes, each having a sequence corresponding to a sequence determinant that discriminates among the clade variants of the COVID-19 virus, where the nucleic acid probes are attached to a solid microarray support; washing the microarray at least once; and imaging the microarray to detect at least one fluorescent signal from the hybridized fluorescent labeled COVID-19 virus amplicons, thereby detecting the clade variants of the COVID-19 virus in the sample.
The total RNA is isolated as described supra and any COVID-19 virus RNA in the total RNA isolate is used as a template in a combined reverse transcription/amplification reaction (RT-PCR). In this step, the nucleic acid sequences in the COVID-19 virus RNA are transcribed using a reverse transcriptase enzyme to generate COVID-19 complementary DNA (cDNA) that is amplified in the same reaction using COVID-19 virus selective fluorescent labeled primer pairs to generate fluorescent labeled COVID-19 virus amplicons. Each fluorescent labeled primer pair comprises an unlabeled primer and a fluorescently labeled primer in about 4-fold to about 8-fold excess of the unlabeled primer whereby, upon completion of the reaction, the fluorescently labelled amplicon is primarily single stranded (that is, the reaction is a type of “asymmetric PCR”).
Hybridization of the fluorescent labeled COVID-19 virus amplicons to the plurality of nucleic acid probes attached at specific positions on a microarray support is performed as described supra. The nucleic acid probes may have a sequence corresponding to a sequence determinant that discriminates among the Clade variants of the COVID-19 virus and are specific to the target region of the gene in the COVID-19 virus, as discussed supra. This enables hybridization of the one fluorescent labeled COVID-19 virus amplicon generated to the Spike gene-specific nucleic acid probe thereby discriminating the Clade variants of the COVID-19 virus in the sample. In a non-limiting example, the target region is in a Spike gene in the COVID-19 virus and the nucleic acid probes have a sequence shown in SEQ ID NO: 31 to SEQ ID: 63 (Table 3). Controls are as described supra and shown in (Table 3).
Further to this embodiment, prior to the harvesting step, the method comprises mixing the sample with an RNA stabilizer. A representative RNA stabilizer is a chemical stabilizer, as described supra.
In both embodiments one or more of the at least one fluorescent labeled second primer pair is selective for a panel of target nucleotide sequences within a target region of a gene in the COVID-19 virus; and the nucleic acid probes are specific to the target region of the gene, whereby the at least one fluorescent labeled COVID-19 virus amplicon generated is hybridized to the nucleic acid probe thereby discriminating the clade variants of the COVID-19 virus in the sample. Further to this embodiment the method comprises detecting the at least one fluorescent signal from the hybridized at least one fluorescent labeled COVID-19 virus amplicons associated with the panel of target nucleotide sequences within the target region of the gene; and generating an intensity distribution profile unique to each of the clade variants, whereby each of the clade variants is distinguishable from others. Particularly, the gene may be the Spike gene.
In a non-limiting example, the target region may be in the Spike gene in the COVID-19 virus and the fluorescent labeled second primer pairs may have forward (odd numbers) and reverse (even number) sequences shown in SEQ ID NO: 9 to SEQ ID NO: 18 (Table 2). Controls including, but not limited to a RNAse P control having a primer pair with forward primer SEQ ID NO: 66 and reverse primer SEQ ID NO: 67 are also used herein (Table 2).
In all embodiments the COVID-19 gene, the clade variants of the COVID-19 virus, the at least one fluorescent labeled primer pair, the fluorescent label, the nucleic acid probes, and the samples are as described supra. Also in all embodiments the fluorescently labeled primer may be in an excess of about 4-fold to about 8-fold over the unlabeled primer in the fluorescent labeled primer pair. Exemplary nucleotide sequences for the fluorescent labeled primer pairs including, for example, RNAse P controls, are shown in Table 2. Exemplary nucleotide sequences for the nucleic acid probes, including, for example, RNAse P controls and negative controls, are shown in Table 3.
Provided herein are methods of nucleic acid analysis to detect stable genetic variation such as a clade variation in a viral pathogen which is based on simultaneous analysis of multiple sequence domains in a gene, such as for example the Spike gene in the RNA genome of CoV-2, to measure clade variation in SARS-CoV-2. In one method for detecting the stable genetic variation, total RNA from the harvested viruses is isolated and used in a combined reverse transcription and first amplification reaction (RT-PCR) to generate COVID-19 virus cDNA amplicons. These amplicons are used as template in a second amplification reaction that uses fluorescent labeled second primer pair selective for a panel of target nucleotide sequences within a target region of a gene in the COVID-19 virus such as for example, the gene for the Spike protein, to generate fluorescent labeled COVID-19 virus amplicons. In a second method, a combined reverse transcription and asymmetric PCR amplification reaction is performed using at least one fluorescent labeled primer pair selective for the panel of target nucleotide sequences within a target region of a gene in the COVID-19 virus to generate fluorescent labeled COVID-19 virus amplicons. In either method, the fluorescent labeled COVID-19 virus amplicons are hybridized to nucleic acid probes attached at specific positions on a microarray.
This method allows positive hybridization signals to be validated on each sample tested based on internal “mismatched” and “sequence specific” controls. Additionally, at least one fluorescent signal from the hybridized amplicons associated with the panel of target nucleotide sequences within the target region of the gene is detected and an intensity distribution profile unique to each of the Clade variants generated, whereby each of the Clade variants is distinguishable from others.
In the embodiments described supra, the solid microarray support is made of any suitable material known in the art including but not limited to borosilicate glass, a thermoplastic acrylic resin (e.g., poly(methyl methacrylate-VSUVT) a cycloolefin polymer (e.g. ZEONOR 1060R), a metal including, but not limited to gold and platinum, a plastic including, but not limited to polyethylene terephthalate, polycarbonate, nylon, a ceramic including, but not limited to TiO2, and Indium tin oxide (ITO) and engineered carbon surfaces including, but not limited to graphene. A combination of these materials may also be used. The solid support has a front surface and a back surface and is activated on the front surface by chemically activatable groups for attachment of the nucleic acid probes. In this embodiment, the chemically activatable groups include but are not limited to epoxysilane, isocyanate, succinimide, carbodiimide, aldehyde and maleimide. These materials are well known in the art and one of ordinary skill in this art would be able to readily functionalize any of these supports as desired. In a preferred embodiment, the solid support is epoxysilane functionalized borosilicate glass support.
The nucleic acid probes are attached either directly to the solid microarray support, or indirectly attached to the support using bifunctional polymer linkers. In this embodiment, the bifunctional polymer linker has a top domain and a bottom end. On the bottom end is attached a first reactive moiety that allows covalent attachment to the chemically activatable groups in the solid support. Examples of first reactive moieties include but are not limited to an amine group, a thiol group and an aldehyde group. In one aspect the first reactive moiety is an amine group. On the top domain of the bifunctional polymer linker is provided a second reactive moiety that allows covalent attachment to the oligonucleotide probe. Examples of second reactive moieties include but are not limited to nucleotide bases like thymidine, adenine, guanine, cytidine, uracil and bromodeoxyuridine and amino acid like cysteine, phenylalanine, tyrosine glycine, serine, tryptophan, cystine, methionine, histidine, arginine and lysine. The bifunctional polymer linker may be an oligonucleotide such as OLIGOdT, an amino polysaccharide such as chitosan, a polyamine such as spermine, spermidine, cadaverine and putrescine, a polyamino acid, with a lysine or histidine, or any other polymeric compounds with dual functional groups which can be attached to the chemically activatable solid support on the bottom end, and the nucleic acid probes on the top domain. Preferably, the bifunctional polymer linker is OLIGOdT having an amine group at the 5′ end.
The bifunctional polymer linker may be unmodified with a fluorescent label. Alternatively, the bifunctional polymer linker has a fluorescent label attached covalently to the top domain, the bottom end, or internally. The second fluorescent label is different from the fluorescent label in the fluorescent labeled primers. Having a fluorescent label (fluorescent tag) attached to the bifunctional polymer linker is beneficial since it allows the user to image and detect the position of the individual nucleic acid probes (“spot”) printed on the microarray. By using two different fluorescent labels, one for the bifunctional polymer linker and the second for the amplicons generated from the viral RNA being queried, the user can obtain a superimposed image that allows parallel detection of those nucleic acid probes which have been hybridized with amplicons. This is advantageous since it helps in identifying the virus comprised in the sample using suitable computer and software, assisted by a database correlating nucleic acid probe sequence and microarray location of this sequence with a known RNA signature in viruses. Examples of fluorescent labels include, but are not limited to CYS, DYLIGHT™ DY647, ALEXA FLUOR 647, CY3, DYLIGHT™ DY547, or ALEXA FLUOR 550. The fluorescent labels may be attached to any reactive group including but not limited to, amine, thiol, aldehyde, sugar amido and carboxy on the bifunctional polymer linker. In one aspect, the bifunctional polymer linker is CY5-labeled OLIGOdT having an amino group attached at its 3′terminus for covalent attachment to an activated surface on the solid support.
Moreover, when the bifunctional polymer linker also is fluorescently labeled a second fluorescent signal image is detected in the imaging step. Superimposing the first fluorescent signal image and second fluorescent signal image allows identification of the virus by comparing the sequence of the nucleic acid probe at one or more superimposed signal positions on the microarray with a database of signature sequence determinants for a plurality of viral RNA. This embodiment is particularly beneficial since it allows identification of more than one type of virus in a single assay.
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.
Provided herein is a method of nucleic acid analysis to detect stable genetic variation in a pathogen which is based on simultaneous analysis of multiple sequence domains in a gene, such as the Spike gene in the RNA genome of CoV-2, to measure clade variation in SARS-CoV-2. For CoV-2, the sequence domains are processed for nucleic acid analysis by converting them into a set of amplicons via a multiplex RT-PCR reaction. In a present preferred implementation, the sequence of those multiplex RT-PCR products is identified relative to that of the underlying CoV-2 Spike gene, by the Horizontal Black Bars in the bottom of Tables 4-8.
The product of that multiplex RT-PCR reaction is analyzed by hybridization to a matrix of synthetic oligonucleotide probes positioned as a microarray test (see the boxes in Tables 4-8). As seen in Tables 4-8, in a preferred implementation of the present invention for CoV-2, there are (15) such Spike Gene Target Regions containing meaningful local sequence variation. (See top Row of Tables 4-8 for their identification).
In terms of detailed test design, the oligonucleotide probes resident at each Target Region of the Spike surface protein are each produced as 3 closely related probe variants, which may be referred to as “Wild Type”, “Mutant” and “Universal”.
In the present invention, a “Wild Type” probe refers to an oligonucleotide probe sequence, generally 14-25 bases long that is specific to the Wuhan progenitor Clade sequence. The pattern of Multiplex RT-PCR amplicon binding to such Wild Type Probes in the present invention are displayed as superscript “2” in Table 4 and as superscript “1” in Table 6.
“Mutant” probes correspond to an oligonucleotide probe sequence, also 15-25 bases long specific to the Sequence Change relative to the Wuhan progenitor manifest at the Spike gene location of interest are displayed as superscript “1” in Table 4 and as superscript “1” in Table 5.
A “Universal” probe refers to an oligonucleotide probe sequence (15-30 bases long) which has been designed to bind to both “Wild Type” and “Mutant” sequences at each site with similar affinity. The patterns of Multiplex RT-PCR amplicon binding to such “Universal” Probes in the present invention are displayed are displayed as superscript “1” in Table 7.
1AA mutation - hybridizes to mutation specific probe
2AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124) Hybridizes to reference specific probe
3Potential probe target
1AA mutation - hybridizes to mutation specific probe
1AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124) Hybridizes to reference specific probe
1Both Mutant and Wuhan reference sequence virus hybridize to Locus specific probe
HV1
1AA of hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124)
2AA Identical to (WIV04) - hybridizes to Wuhan reference probe
3AA mutation - hybridizes to mutation specific probe
4Potential probe target identical to (WIV04)
5Potential AA mutation probe target
The oligonucleotide probes of the microarray and the PCR primers to generate RT-PCR amplicons were developed to accommodate a specific CoV-2 Clade Variant set of international interest in 2021, as specified in the Left-most Column in Tables 4-8. But, as can already be seen among the Clade Variant strain these tables, the pattern of local sequence change manifest in each Clade Variant comprises a unique combination derived from a larger set of specific local sequence variation chosen at discrete sites in the Spike gene.
For the Spike protein of the CoV-2 virus and for pathogens more universally, spontaneous local mutation in a surface protein such as Spike is likely to inactivate the protein, thus disabling the pathogen. As such, most spontaneous mutations in surface proteins do not propagate and hence go undetected.
On occasion, however, such random mutation produces a surface protein change that confers a selective advantage to a pathogen, such as enhanced infectivity, better resistance to vaccination or drug therapy and thus the mutation propagates in an infection and ultimately be detected at population scale. Such positively selected local mutational changes are generally rare and thus localized to a relatively small number of discrete segments within a pathogen surface protein such as Spike, often localized to specific sites where the protein contacts host cells, or sites which present peptides for interaction with a protective host antibody or sites where a drug might bind. In many cases such altered surface protein features may function in an additive way (enhanced cell binding+diminished neutralizing antibody binding may be selected for, concurrently) to produce a Clade Variant presenting a combination derived from the set of available local sequence changes that confer functional superiority to the pathogen.
The present invention takes advantage of the fundamental matrix-like character of such selectable (discrete, local) surface protein changes and the ability of a matrix of hybridization probes (as in a microarray) to query many sites of local surface protein sequence change simultaneously (Tables 4-7). As such, this oligonucleotide probe set can interrogate (at the nucleic acid level) many possible combinations of such surface protein change as a single combinatorial test.
Based on the core design test design embodied in Tables 4-7, new, as-yet unknown, functionally relevant local sequence change can be added, once known, as new probes to the microarray (cells with superscript “3” in Table 4). It is expected that many other CoV-2 Clades could be detected and discriminated, in a similar combinatorial fashion, via such relatively minor expansion of the core invention depicted in Table 4.
The present implementation of such an oligonucleotide probe panel for analysis of the CoV-2 Spike gene is based upon detection of 15 positively selected local mutational changes in the Spike gene, i.e. Tables 4-7, each with 3 probe sequence variants at each site, “Mutant”, “Wild Type”, “Universal”, thus generating a set of 15×3=45 oligonucleotide probes to be used for the purpose of combinatorial Clade Variant Analysis.
In the present implementation, if that set of 45 probes is manufactured in triplicate, a 3×45=135 probe microarray is thus generated, which when printed along with positive and negative controls appropriate for CoV-2 testing (such as RNAse P) the present Clade Chip Assay consumes the full microarray content capacity presented by the standard 150 probe, 96-Well format described in applications U.S. Ser. No. 16/950,171 and U.S. Ser. No. 16/950,210, both hereby incorporated by reference in their entireties.
It is useful to note that the information content of such a 150-probe microarray becomes resident in a single well of the 96-well microarray format and thus generates information content similar to that of re-sequencing of the entire gene and content that is equivalent to that obtained from 150 q-RT-PCR assays performed in parallel. As seen below, a first preferred implementation of such a Clade Chip prototype has been fabricated via standard mass production methods described in the above-referenced patent applications.
In a first preferred implementation, the sample preparation methods of the Clade Chip are optimized for both NP-Swab and Saliva collection and designed to detect CoV-2 at 5 virus/RT-PCR reaction sensitivity (500 cp/ml) and resolve multiple CoV-2 Clade variants of present international concern (Denmark, UK, S Africa, Brazil/Japan, India, CA L452R, Wuhan), as depicted in Tables 4-7.
So long as any new CoV-2 Clade may be detected and discriminated via its pattern of Spike gene gRNA sequence change, that additional Clade sequence content (cells with superscript “3” in Table 4) can be designed and added to the manufacture of the present invention in less than 2-weeks, as the need for new or broader-range CoV-2 Clade Variant detection emerges.
The Clade-Chip Assay in the present preferred implementation is based on a standard 96-well plate microarray processing workflow already described in applications having U.S. Ser. No. 16/950,171 and U.S. Ser. No. 16/950,210 both hereby incorporated by reference in their entireties and is deployed in that standard 96-well format as a manual or automated test. However, the matrix of oligonucleotide probes of the present invention to detect CoV-2 Clade Variants via Combinatorial Analysis could, in principle, be implemented by other methods of microarray manufacture or via alternative methods of bead-based solution phase nucleic acid hybridization. Additionally, the same principles of Combinatorial Analysis could be used to develop analogous tests for clade variation in other viruses, bacterial and fungi in the microarray or other hybridization formats.
The Clade Chip Test Design summary is shown in Table 9 and is suited for combinatorial analysis among multiple Spike Targets. The following are its features;
A Clade Chip Probe layout was set up in duplicate. The probe content included three (3) probes for each Spike target site (Universal, Mutant, Wild Type). Validation testing was used to pick the best” of the two closely related “redundant” lead designs for each of the three probes. In addition to the core set of 11 spike targets, new probe designs were included to expand the content of the assay. The full set of redundant probe content was printed in duplicate as a 12 x 16 probe array in a 96-well format (Table 10). The forward (odd numbers) and reverse (even numbers) primer sequences for each amplimer employed in this assay are shown in Table 11.
1AA mutation - hybridizes to mutation specific probe
2AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124). Hybridizes to reference specific probe
3Potential probe target
4No Probe Adjustment Necessary
5Minor Probe Adjustment Necessary
Samples Used for Testing. Analysis was performed with a highly characterized, purified Wuhan gRNA standard (Quantitative Standard obtained from ATCC-BEI) or with synthetic “mutant” targets designed by PDx, obtained by SGI fabrication (IDT).
RT-PCR Conditions. RT-PCR was performed using the [UNG+One-Step RT-PCR] protocol. As is customary in optimization of multiplex RT-PCR, the data presented comprise the use of Single PCR primer pairs as a single reaction. Based on these data multiplex RT-PCR conditions are optimized.
Clade Array Hybridization & Imaging. Conditions of Hybridization, Washing and Imaging were exactly as described. Following the completion of the multiplex RT-PCR, the DNA microarray was prepared for hybridization with brief water washes, and an incubation in prehybridization buffer (0.6M NaCl, 0.06M sodium citrate solution, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin). Following aspiration of the prehybridization buffer, a mixture of amplicon and hybridization buffer (0.6M NaCl, 0.06M sodium citrate solution, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin) was added to the DNA microarray and allowed to incubate for 2 hours. The microarray was prepared for imaging with one quick wash of wash buffer (22.5 mM NaCl, 2.25mM sodium citrate solution) and a 10-minute incubation (22.5 mM NaCl, 2.25 mM sodium citrate solution). The microarray plate was then spun dry for 5 minutes at 2200 rpm. The underside of the plate was wiped clean with 70% ethanol and lens tissue until all dust particles were removed. The plate was scanned on the Sensospot utilizing Sensovation software. Cy5 exposure time was set at 312 ms, and the Cy3 exposure times at 115 ms and 578 ms. Upon image scanning completion, the folder containing all of the scanned data was saved to a thumb drive and uploaded to Dropbox for Augury Analysis.
Data Analysis. Data for all (11) Core Spike Target Sites are presented in
The Clade Array Probe Content was found to be fully functional. An optimized shorter probe was seen to improve Cov-2 mutant analysis at target sites D80A and E484K.
A second 15 Plate Manufacturing Run (#2) of DETECTX-Cv, similar to the one described in Experiment 1 above was implemented to complete validation of the Multiplex assay. In this assessment, print quality passed the test for all 96 (160 probe) arrays among all 15 plates.
The second set of validation tests sought to evaluate the preferred method of multiplexing of the RT-PCR reaction, using the UNG combined with One Step RT-PCR condition. The primary goal was to deliver a first RT-PCR Multiplex capable of distinguishing the five prevalent Clade Variants—UK (B.1.1.7), S Africa (B.1.351) Brazil (P.1) Brazil (P.2) US California (B.1.429) shown in Table 12. The validation materials comprised a purified Wuhan gRNA reference (ATCC-BEI). The data obtained subsequent to RT-PCR, hybridization and washing revealed that an initial deployment of a specific 4-plex RT-PCR reaction, comprising amplimers [2, 3, 6, 8] was sufficient to distinguish, as a single multiplex assay, these five prevalent Clade variants (
A third round of validation was performed to evaluate the preferred method of multiplexing of the RT-PCR reaction, using the UNG combined with One Step RT-PCR condition. The primary goal was to deliver a second (N=5) RT-PCR Multiplex capable of distinguishing the six (6) prevalent US Clade Variants—UK (B.1.1.7), S Africa (B.1.351) Brazil (P.1) Brazil (P.2) a second redundant target in US California (B.1.429) and India N440K. shown in Table 12. The validation materials comprised a purified Wuhan gRNA reference (ATCC-BEI). The data obtained subsequent to RT-PCR, hybridization and washing revealed that a second deployment of a specific 5-plex RT-PCR reaction, comprising a N=5 multiplex of amplimers [2, 3, 5, 6, 8] was sufficient to distinguish, as a single multiplex assay, these six prevalent Clade Variants (
1AA mutation - hybridizes to mutation specific probe
2AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124)
3Potential probe target
4No Probe Adjustment Necessary
5Minor Probe Adjustment Necessary
Table 13 shows the information content for the fully multiplexed (2, 3, 5, 6, 8) data obtained via the multiplex RT-PCR reaction in this DETECTX-Cv assay, which is sufficient to discriminate the five clade variants (superscript “1”). It was determined that including Amplimer 5 to the multiplex adds redundancy (superscript “2”) thereby allowing unambiguous discrimination of the India Mutant (B.1.36.29). Similarly, addition of amplimer 4 (for NY B.1.526) and Q677P/H probes (for Southern US B.1.596/13.1.2) to the multiplex enabled discrimination of Southern US and NY Clade variants (superscript “3”). Importantly, the emerging Southern US Clade variants (B.1.596/1.1.2) does not require modification of the present multiplex reaction since inclusion of probes at Q677P/H would be sufficient. Analytical specificity was established as described earlier via analysis of both wild type (Wuhan) gRNA and synthetic, Clade specific fragments.
Current deployment of Augury software was modified to include automated capacity for determining “Wild-Type” vs “Mutant” at each of the (11) Spike target sites of the present DETECTX-Cv assay described above (the columns in Table 12. As modified, Augury is capable of calling the identity of the clade variant, based on the pattern of mutant presentation among the sites (that is, a “look-up” table comprising the pattern of each row of Table 12). Coding to enable such autonomous calling is based on allelotyping methods previously developed for HLA allelotyping. In the present case, the clade variant test is also an exercise in spike gene allelotyping. Such spike gene allelotypes (the rows in Table 12) have already been determined as being the preferred marker for CoV-2 Clade Variation.
The current deployment of the Augury software for wild type COV-2 was modified to include automated capacity for determining “Wild-Type” vs “Mutant” at each of the Spike target sites of the DETECTX-Cv assay (the columns in Table 15) and to identify the Clade variant based on the pattern of mutant presentation among the sites (the rows in Tables 15 and 16). Coding for the software is based on allelotyping formalism previously developed for HLA allelotyping.
All DETECTX-Cv probe sequences and their information content were added to a database (“Dot Score” file) within Augury. This database defined the DETECTX-Cv probe content (Mutant, Wild Type, Universal) at each of the eleven (11) Spike target regions (the columns in Table 15).
The Augury Software is configured to read the bar code associated with each 96-well plate of microarrays for DETECTX-Cv and use the information in the bar code to create a “Dot Score” file for the probe content introduced into DETECTX-Cv. Further, Augury is configured to incorporate a new “Dot Score” file as appropriate for any new Clade Variant content with additional probes in the array (Table 15). Additionally, Augury is intrinsically cloud enabled and configured to deploy software modification downloaded from the cloud. When useful for analysis of DETECTX-Cv, data such as those from the RADx Rosalind initiative can also be introduced directly into Augury autonomously, to update the list of prevalent clade variants.
The core functionality of Augury has been used as a manual product for deployment at TriCore. This version of Augury automatically is enabled to read DETECTX-Cv plate bar codes, perform microarray image analysis, create “Dot Score” files and present the resulting averaged, background subtracted DETECTX-Cv data as a spread sheet matrix, which can be compared to the Clade Variant Hybridization patterns such as described in Table 15. This manual deployment version has been tested on DETECTX-Cv synthetic Clade variant standards.
All prevalent Cov-2 Clades have been programmed into Augury to generate a “Look-up Table” (equivalent in content to the pattern of boxes having superscript 1 and 2 in Table 15). The Augury internal “Lookup Table” is formatted to function as part of a Boolean pattern search as developed previously for allelotype analysis of all genes.
3Q2
1AA mutation - hybridizes to mutation specific probe
2AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124)
3Potential probe target
4No Probe Adjustment Necessary
5Minor Probe Adjustment Necessary
1Information obtained by adding Amplimers 2, 3, 6 and 8
2Information obtained by adding Amplimer 5
3Information obtained by adding Potential probe content
4Information obtained by adding Amplimer 4 + New Clade variant probes
Multiplex RT-PCR [2, 3, 5, 6, 8] were performed in the absence of template (0 copies/reaction) to obtain the mean and STD from the mean for LoB signals. This “blank” data collection data is used by Augury to obtain the analytical threshold for each probe (3.2×STD+Mean) to yield Mutant threshold (Tm), Wild Type threshold (Tw) and Universal threshold (Tu) values for all thirty-three (33) probes comprising the content of DETECTX-Cv.
Threshold values were introduced as constants into Augury for autonomous Mutant vs Wild Type determination at all eleven (11) sites. This was performed using the following relationship analytical approach;
Delta=([RFUm−Tm]/Tm)−([RFUw−Tw]/Tw) (Equation 1)
where,
If Delta>0, within experimental accuracy, then “Mutant” (i.e. boxes having superscript 1 in Table 15). If Delta<0, within experimental accuracy, then “Wild Type” (i.e. boxes having superscript 2 in Table 15).
1. Analytical LoD Determination. A first determination of analytical LoD was performed for DETECTX-Cv, among all eleven (11) Spike target sites deployed using the [UNG+One Step RT-PCR] conditions. For this analysis, validation materials comprised a purified Wuhan gRNA reference (ATCC-BEI) and a cocktail of five (5) synthetic fragments designed by PathogenDx and fabricated by Integrated DNA Technologies, Inc. (IDT, Coralville, Iowa), comprising each region targeted for amplification via the [2, 3, 5, 6, 8] multiplex RT-PCR reaction (deployed as N=5 multiplex).
To support the multiplex reaction, all 5 synthetic CoV-2 fragments were mixed [1:1:1:1:1] in strand equivalents. Copy number values listed in Table 15 refer to the copy number of each fragment (in the equimolar mix) applied to the RT-PCR reaction. The primary goal here is to deploy the (N=5) RT-PCR multiplex to obtain a preliminary analytical LoD in units of copies/reaction for each of the probes comprising the set associated with each of the (n) target sites—LoDn (Universal), LoDn (Wild Type), LoDn (Mutant). The analytical LoD associated with the Universal probes (LoDn) were lower than that of either LoDn or LoDn, due to the intentionally longer probe sequence for the universal probe, which is associated with a higher affinity for its complementary amplicon sequence.
Subsequent to RT-PCR the DNA microarray was prepared for hybridization with brief water washes, and an incubation in prehybridization buffer (0.6M NaCl, 0.06M sodium citrate solution, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin). Following aspiration of the prehybridization buffer, a mixture of amplicon and hybridization buffer (0.6M NaCl, 0.06M sodium citrate, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin) was added to the DNA microarray and allowed to incubate for 2 hours. The microarray is then washed with wash buffer (22.5 mM NaCl, 2.25 mM sodium citrate) and dried via centrifugation. The glass portion of the microarray was cleaned with lens tissue and 70% ethanol and images were acquired on the Sensospot. Images were then uploaded for Augury analysis. Following image acquisition and upload to Augury, it was found that the 5-plex RT-PCR reaction, comprising a N=5 multiplex of amplimers [2, 3, 5, 6, 8] was sufficient to obtain a first determination of analytical LODs [LoDn (Universal), LoDn (Wild Type), and LoDn (Mutant)].
§LoDn (Wild Type). Analytical LoD Values for Analysis of Wild Type (Wuhan)as defined from the input target density (measured in copies per RT-PCR reaction) at which the signal obtained from the Wild Type probe becomes indistinguishable from background.
¶LoDn (Mutant). Analytical LoD Values for Analysis of Mutant (Synthetic Fragment)as defined from the input target density (measured in copies per RT-PCR reaction) at which the signal obtained from the Mutant probe becomes indistinguishable from background.
The (N=5) RT-PCR Multiplex (2, 3, 5, 6, 8) described in Example 7 was deployed to obtain a full eleven (11) site Clade variant profile using standard hybridization and wash procedures described above.
A set of five (5) different “Synthetic Clade Variant Standards” corresponding to UK (B.1.1.7), SA (B.1.351), CA452 (B.1.429), Brazil (P.1) and India N440K (B.1.36.29) were prepared each containing a synthetic gene fragment (IDT, Coralville, Iowa) identical to each of the Spike domains amplified by the present RT-PCR multiplex.
Data were obtained at 100 copies/reaction for each of the five (5) synthetic cocktails. Hybridization analysis was performed, and the hybridization data thus obtained was plotted as described above.
Raw data from this analysis presented in
Clinical LoD Range Finding and Clinical LoD analysis were performed on contrived samples, comprising clinical negatives from healthy volunteers, collected in PURE-SAL™ collection device (OASIS DIAGNOSTICS° Corporation, WA). The samples were contrived with heat attenuated CoV-2 (Wuhan, BEI).
Contrived samples were subjected to viral gRNA capture and purification on Zymo silica magnetic beads or Ceres magnetic beads. Five microliters of purified RNA was added to the RT-PCR mix in a PCR plate. The plate was sealed and placed in a thermocycler to undergo 20 minutes of reverse transcription and 45 cycles of asymmetric PCR. Upon PCR completion, the DNA microarray was prepared for hybridization with brief water washes, and an incubation in prehybridization buffer (0.6M NaCl, 0.06M sodium citrate solution, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin). Following aspiration of the prehybridization buffer, a mixture of amplicon and hybridization buffer (0.6M NaCl, 0.06M sodium citrate, 0.1% Ficoll, 0.1% Polyvinylpyrrolidone 0.1% Bovine Serum Albumin) was added to the DNA microarray and allowed to incubate for 2 hours. The microarray is then washed with wash buffer (22.5 mM NaCl, 2.25mM sodium citrate) and dried via centrifugation. The glass portion of the microarray was cleaned with lens tissue and 70% ethanol and images were acquired on the Sensospot. Images were then uploaded for Augury analysis.
Clinical LoD Results: Clinical LoD range finding was performed as described above (N=6 repeats) using clinically negative saliva samples (PURE-SAL™) to which were added heat inactivated CoV-2 that were processed using Zymo bead capture.
The ability to pool CoV-2 contrived clinical negative PURE-SAL™ saliva samples was tested. Contrived clinical negative samples were pooled at (1) Positive Clinical Sample (100 L)+(4) Clinical samples (100 (L each), to yield a final pooled sample where the viral complement of the original contrived clinical positive is diluted 5×. The entire pooled specimen was then subjected to Zymo magnetic bead purification, RT-PCR and Hybridization to DETECTX-Cv as described above. The results shown in
DETECTX-Cv analysis was performed by hands-free, autonomous analysis of raw DETECTX-microarray data obtained from Sensovation Scans to generate “Mutant” vs “Wild Type” calls among the ten (10) Spike target sites Table 19. These calls were subsequently used for Clade identification. The autonomous analysis is presented here along with manual Augury analysis.
The following multiple functional modules were added to Augury to enable autonomous analysis of DETECTX-Cv data as follows;
Five (5) synthetic Clade variant standards described earlier (UK, SA, CA452, Brazil P.1, India, Examples 8 and 9) were used for on-site validation. Each standard contained a synthetic gene fragment (IDT) identical to each of the Spike domains amplified by the RT-PCR multiplex. DETECTX-Cv data were obtained at TriCore at 100 copies/reaction for each of the five (5) synthetic cocktails. Analysis of the hybridization data were plotted as described previously. Table 20 shows a plate map, PCR recipe and cycling conditions for this analysis. DNA fragment cocktails were utilized as reference.
1AA mutation - hybridizes to mutation specific probe
2AA identical to hCoV-19/Wuhan/WIV04/2019 (WIV04) - official reference sequence employed by GISAID (EPI_ISL_402124)
3Potential probe target
The Biomerieux EASYMAG® Magnetic Bead platform (bioMérieux, St. Louis, Mo.) was used to extract Covid-19 RNA from 28 clinical positive (NP-VTM) samples (positivity previously determined by Cobas 6800 analysis). The extracted RNA (5 L) was processed using the DETECTX-Cv method. Table 22 shows a plate map for 28 SARS-CoV-2 positive clinical samples. The PCR recipe and cycling conditions were as described in Table 20.
Results
Sixty (60) clinical positive NP-VTM samples collected by TriCore were sent to PathogenDx for DETECTX-Cv analysis. RNA was extracted from these samples using the Zymo Magnetic Bead platform. The extracted RNA (5 L) was processed using the DETECTX-Cv method. The PCR recipe and cycling conditions were as described in Table 20.
Described here is a “DETECTX-Cv” technology designed to combine the practicality of field deployable Q-RT-PCR testing with the high-level information content of targeted NGS. Population scale deployment of DETECTX-Cv is enabled in a way that is simple enough that it can be “drop-shipped” with minimal set up cost and training into any laboratory performing conventional Q-RT-PCR based COVID-19 screening. Initial field deployment demonstrated the ability of DETECTX-Cv to identify clinical positives per shift per Q-RT-PCR screening and analysis without additional sample prep for a large panel of CoV-2 clade variants (UK, Denmark, South Africa, Brazil, US (CA, NY, Southern US) and Wuhan) incorporated into the content of the assay.
In conclusion, the technology encompassed in this invention enables DETECTX-Cv to perform very low-cost microarray analyses in a field-deployable format. DETECTX-Cv is based on proprietary technology of PathogenDx for designing DNA microarray probes and so, the resulting microarrays can be mass produced to deliver >24,000 tests/day. DETECTX-Cv also enables sequence-based testing on these microarrays via open-format room temperature hybridization and washing, much like the processing of ELISA assays. Like an ELISA plate, DETECTX-Cv is mass produced in a 96-well format, ready for manual or automated fluid handling and has the capability to handle up to 576 probe spots per well, at full production scale.
DETECTX-Cv is a combinatorial assay with several targets in the CoV-2 Spike gene comprising an exceptionally large set of gain-of-function Spike mutants, which are believed to be selected for enhanced infectivity or resistance to natural or vaccine induced host immunity. Based on analysis of the rapidly growing CoV-2 resequencing effort (600,000 genomes in GISAID, April 2021) “terminal differentiation” of the Spike gene marker “basis set” into a set of about thirty-five (35) informative Spike gene target sites is expected, which can be built into and mass produced into the same 96-well format described above. DETECTX-Cv is therefore expected to be beneficial as a true discovery tool that is capable of unbiased identification of new CoV-2 clade variants based on detection of novel combinations of the underlying Spike Variant “basis set”. Thus, DETECTX-Cv is expected to become the basis for field deployed seasonal COVID testing with military and civilian applications
The DETECTX-Cv test content comprises Spike Gene Target sequence analysis among eleven (11) discrete information-rich domains, produced as triplicate tests per array, with positive and negative controls, to produce core content that is deployed as about 140 independent hybridization tests (per well) on each sample. The DETECTX-Cv technology described here is based on multiplex (n=5) asymmetric, endpoint RT-PCR amplification of viral RNA purified as for Q-RT-PCR screening. The RT-PCR product resulting from amplification is fluorescently tagged and used as-is without cleanup for the subsequent steps of hybridization and washing, which are performed at room temperature (RT). Subsequent to hybridization and washing, the DETECTX-Cv plate is subjected to fluorescent plate reading, data processing and analysis that occurs automatically with no intervention by a human user to result in an output of detected CoV-2 clades which can be used locally for diagnosis and/or simultaneously uploaded to a secure, cloud-based portal for use by medical officials for military or public health tracking and epidemiology analysis.
This non-provisional application claims the benefit of priority under 35 U.S.C. § 119(e) of provisional application U.S. Ser. No. 63/147,613, filed Feb. 9, 2021, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63147613 | Feb 2021 | US |