In many well applications, packers are used along a well string to seal off sections of a borehole. Generally, a packer comprises a sealing element which may be expanded in a radially outward direction to form a seal between a central packer mandrel and a surrounding borehole surface, e.g. an interior casing surface. The packer also may comprise or work in cooperation with slips which have gripping members oriented to engage the surrounding borehole surface. The slips also may be expanded in a radially outward direction until forced into gripping engagement with the surrounding borehole surface so as to securely position the packer at a desired location along the borehole.
In general, a system and methodology are provided for enabling a packer to be actuated to a sealing and gripping position along a borehole. The packer may be positioned along a variety of well strings and may include a center structure, e.g. mandrel, having a passage therethrough. A packer element structure is mounted about the center structure and includes a sealing element mounted along an expandable base such that the sealing element may be radially expanded. Additionally, the packer includes an actuator member connected to a portion of the packer element structure via a release mechanism, e.g. a shear member. A plurality of slips may be located on the actuator member such that linear movement of the actuator member causes successive movement of the packer sealing element and then the slips in the radially outward direction. The packer may be constructed such that this sequential setting motion creates a jarring effect to ensure the slips securely bite into the surrounding wellbore surface, e.g.
casing surface.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally involves a system and methodology for enabling a packer to be actuated to a sealing and gripping position along a borehole. The packer is constructed to enable sequential actuation of the sealing element and then the slips via an actuation input, e.g. a mechanical actuation or a pressure input along the annulus and/or interior of the well string. The packer may be positioned along a variety of well strings and may be located in many types of boreholes, e.g. vertical or deviated wellbores including cased wellbores.
According to an embodiment, the packer may comprise a center structure, e.g. a mandrel structure, having a passage therethrough. A packer element structure is positioned about the center structure and includes a sealing element mounted along an expandable base such that the sealing element may be radially expanded. The sealing element may be formed of a suitable elastomeric material, and the expandable base may comprise a plurality of metal base elements, which can be shifted in a radially outward direction. Additionally, the packer comprises an actuator member connected to a portion of the packer element structure via a release mechanism, e.g., a shear member. The shear member may comprise a tab or a plurality of tabs extending between the expandable base and the actuator member. The shear member effectively provides a shearing mechanism on a radially expanding packer element structure formed of a seal element and a metal substrate to sequentially set the packer. The sequential setting comprises setting the seal element first followed by shearing of the shear member, which then allows setting of the slips. This sequential method creates a jarring effect, which ensures that engagement features, e.g. teeth, of the slips bite into the surrounding borehole surface or harder casing metallurgies.
Referring generally to
Referring generally to
Referring now to
Still referring to
More specifically, during a packer setting operation, the actuator member 62 is shifted linearly, e.g., in a direction toward packer sealing element 38 along axis 58. The shifting of actuator member 62 maybe achieved via application of pressure along interior passage 52 and/or along the annulus between well string 32 and surrounding borehole surface 46. A variety of pressure piston actuation techniques and other pressure actuation techniques are known in the industry. In some applications, however, the actuator member 62 maybe constructed to be shifted mechanically.
The linear movement of the actuator member 62 causes linear/axial movement of the packer element structure 36 along sloped section 56 of outer surface 54 due to actuator member 62 being coupled to expandable base 60 via shear member 68. Because of the radially outward slope of section 56, the expandable base 60 and the packer sealing element 38 are also forced in a radially outward direction until packer sealing element 38 is moved into sealing engagement with the surrounding borehole surface 46.
As the packer sealing element 38 is forced into engagement with surface 46, further linear movement is resisted. Continued linear movement of actuator member 62 is then able to shear the shear member 68 so as to release the actuator member 62 from packer element structure 36. As a result, the actuator member 62 is able to slide along sloped surface 80 of expandable base 60, which forces slips 42 in a radially outward direction until engagement members/teeth 76 are secured against/into the surrounding wall surface 46. The release due to the shearing of shear member 68 creates a jarring effect during setting of the slips 42, which results in improved engagement of members/teeth 76 with the surrounding wall surface 46. Thus, the packer 34 is able to independently set the packer sealing element 38 followed by subsequent setting of slips 42.
Still referring to
In the illustrated example, the deflecting ribs 82 are on an upper and lower side of the additional ribs 84. For example, the lower deflecting rib 82 maybe oriented in a generally outward and downward direction, and the upper deflecting rib 82 maybe oriented in a generally outward and upward direction. The centrally located ribs 84 maybe oriented to project in a radially outward direction and serve to prevent the packer sealing element 38 from undue swaging and also serve as a hard stop which limits the amount of deflection of deflecting ribs 82.
The deflecting ribs 82 deflect when the packer sealing element 38 is set in a sealing position against surrounding borehole surface 46 via application of force. The deflection of the ribs 82 effectively stores setting energy when sealing element 38 is in the sealing position. Advantageously, the deflecting rib seal design according to one or more embodiments of the present disclosure may only require about 50,000 lbf or less of a setting load, which is at least half of what is required in prior art seal assemblies. In some embodiments, the elastomeric material of packer sealing element 38 maybe shaped with a profile so that when pressure is applied the elastomer further pushes the deflected ribs 82 against the surrounding borehole surface 46, e.g. surrounding casing surface. This ensures the sealing action with the surrounding borehole surface 46 is robust.
The ribs 82, 84 and packer sealing element 38 cooperate to provide a self-energizing seal. For example, the deflecting ribs 82 help energize the packer sealing element 38 with applied pressure which forces the packer sealing element 38 into improved sealing with the surrounding borehole surface 46. Features such as deflecting ribs 82 also help energize the sealing action with applied annular pressure. For example, when pressure is applied from either/both directions (see right side of
In some embodiments, the expandable base 60 also may include internal metal bumps 86 oriented to form an improved metal-to-metal seal with the corresponding outer surface 54 of center structure 50. The internal metal bumps 86 create high contact pressure when the packer sealing element 38 is set against the surrounding borehole wall surface 46. Such a metal-to-metal seal provides a higher resistance to backlash. When pressure is applied from either side of the packer 34, for example, the deflecting ribs 82 and the metal bumps 86 help maintain the seal along the exterior and interior of the packer element structure 36. It should be noted that an inner seal 78, e.g., an O-ring style seal, may be positioned between outer surface 54 and expandable base 60, such as between internal metal bumps 86, for example, to form a suitable seal along the interior of element structure.
According to an embodiment, the packer element structure 36 maybe a swage type seal having expandable base 60 in the form of a metal substrate. The metal substrate may comprise a ductile metal material, e.g. 8620 steel or other suitable ductile steel. In this example, the packer sealing element 38 maybe in the form of a suitable elastomer, e.g. HNBR, bonded to the metal expandable base 60. Depending on the parameters of a given application and/or environment, the materials and configurations selected for the expandable base 60 and packer sealing element 38 maybe adjusted accordingly.
According to an example, slips 42 maybe mounted to or integrally formed with the actuator member 62, e.g. collet 64, and positioned for sliding engagement with a secondary ramp created by sloped surface 80 of expandable base 60 (see
As further shown in
Additionally, with reference to
It should be noted the packer 34 maybe constructed in various sizes and configurations. For example, the center structure 50, packer element structure 36, actuator member 62, and slips 42 may have a variety of sizes and configurations. In some embodiments, the slips 42 are formed as a unitary part of the actuator member 60 while in other embodiments the slips 42 are formed as a slip ring or other structure separate from actuator member 60. The packer element structure 36 may comprise various types of materials and configurations for forming packer sealing element 38 as well as expandable base 60. Additionally, various integral or separate components may be used in forming sloped surfaces 56 and/or 80.
Referring now to
Referring now to
As shown in
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is a continuation of U.S. patent application Ser. No. 17/755,005, filed Apr. 19, 2022 which claims priority to the National Stage of International Application No. PCT/US2020/056406, filed Oct. 20, 2020, and is based on and claims priority to U.S. Provisional Patent Application Ser. No. 62/923,575, filed Oct. 20, 2019, and U.S. Provisional Patent Application Ser. No. 63/051,019, filed Jul. 13, 2020, which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62923575 | Oct 2019 | US | |
63051019 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17755005 | Apr 2022 | US |
Child | 18607751 | US |