This invention relates to circuitry that can be used to combine the initial adder of a high-radix multiplier with an optional pre-adder.
Certain types of circuits that perform mathematical operations may require multiple adder circuits, such as carry-propagate or ripple-carry adders, which are inefficient. For example, in a symmetrical finite impulse response (FIR) filter, inputs may be added prior to being multiplied, which reduces the number of multipliers. However, that addition requires a pre-adder, and then the multiplication itself may include a compressor followed by another adder. The provision of multiple adders consumes a substantial amount of integrated circuit device area, and is of particular concern in programmable logic devices such as field-programmable gate arrays (FPGAs).
Moreover, large multiplication problems, such as those encountered in FIR filters, may require large compressor trees. The size of the compressor tree can be reduced by increasing the radix of the multiplier, but that in turn may require non-power-of-two manipulations of the inputs, which cannot be performed by simple shifting (as can be done for power-of-two manipulations), and may introduce the need for still more adders.
In accordance with embodiments of the present invention, the initial adder, or pre-adder, of an adder-multiplier-adder structure, which might itself include multiple adders (e.g., an adder-multiplexer-adder structure), can be simplified by providing a compressor followed by adders (e.g., a compressor-adder-adder structure). And because the adders will be adjacent one another, they can be combined into a single adder.
Therefore, in accordance with embodiments of the present invention there is provided circuitry accepting a first input value and a second input value and outputting (a) a first sum involving the first input value and the second input value, and (b) a second sum involving the first input value and the second input value. The circuitry includes a first adder circuit, a second adder circuit, a compressor circuit and a preprocessing stage. The first input value and the second input value are input to the first adder circuit to provide the first sum. The first input value and the second input value are input to the preprocessing stage to provide inputs to the compressor circuit. The compressor circuit provides first and second compressed output signals. The first and second compressed output signals are input to the second adder circuit to provide the second sum.
The preprocessing stage may include circuitry to programmably zero the first input value, so that the first sum is programmably settable to the second input value.
The compressor circuit may include respective separate circuitry for processing respective bit positions. For a respective bit position, the respective separate circuitry may have as inputs respective bits of each of the first and second input values, and respective next-less-significant bits of each of the first and second input values, and may further include an exclusive-OR gate combining the respective bits of each of the first and second input values. Output of the exclusive-OR gate in the respective separate circuitry for that respective bit position may be shared with respective separate circuitry for a next-more-significant bit position.
In the respective separate circuitry for the respective bit position, the respective next-less-significant bits of each of the first and second input values may be borrowed from respective separate circuitry for a next-less-significant bit position.
The first adder circuit may include a prefix tree having as inputs respective bits of the first and second input values, and providing as outputs respective carry values for each bit position. The first adder circuit also may include respective exclusive-OR gates for each bit position, each respective exclusive-OR gate having as inputs the respective carry value for that respective bit position, and the output of the exclusive-OR gate in that respective separate circuitry for that respective bit position.
Further features of the invention, its nature and various advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The discussion that follows will be based on an example of a programmable integrated circuit device such as an FPGA. However, it should be noted that the subject matter disclosed herein may be used in any kind of fixed or programmable device.
As discussed above, it may be desirable to increase the radix of multipliers 101. A radix-4 multiplier with inputs X and Y would also need inputs 2X and 2Y. Such inputs could easily be provided by left-shifting of X and Y by one bit position. However, a radix-8 multiplier, which is commonly used in higher-radix operations, would require 3X and 3Y, which cannot be provided by shifting.
Adder 201 adds inputs A and B. Multiplexer 202 selects as its input either that sum 211 (A+B), or input B. Output 212 of input processing circuitry 200 therefore is either (A+B) or B, depending on the selection made by multiplexer 202. Output 212 also is routed both to adder 203 and to shifter 204. Shifter 204 shifts output 212 one bit to the left, effectively multiplying output 212 by ‘2’. Shifter output 214 is added to output 212 by adder 203. Output 213 is therefore either 3(A+B) or 3B, depending on the selection made by multiplexer 202.
While input processing circuitry 200 achieves the desired result of providing the product of ‘3’ and another input, where the input may be a single number, or two added numbers (as in the symmetrical filter example), its adder-multiplexer-adder structure is inefficient, consuming significant device area.
Improved input processing circuitry 300 according to an embodiment of the invention is shown in
If AND-gate 305 is turned ON (by inputting ‘1’ to its second input), compressor 301 compresses inputs 2A, A, 2B and B to provide redundant-form sum and carry vectors 311, 321 representing 3(A+B), which are added by carry-propagate adder 302 to provide the output 3(A+B). If AND-gate 305 is turned OFF (by inputting ‘0’ to its second input, thereby programmably zeroing the ‘A’ input), adder 302 provides the output 3B.
At the same time, if AND-gate 305 is turned ON, adder 303 provides the output A+B, while if AND-gate 305 is turned OFF, adder 303 provides the output B. Although adder 303 may be a standard carry-propagate adder as noted above, it may be modified, as discussed in more detail below. Such modifications may require the input of A XOR B, which optionally may be provided at 331 by compressor 301, in a manner described below.
The structure shown in
In a further optimization shown in
As described above,
In accordance with another embodiment of this invention, carry-propagate adder 303 can be simplified by eliminating XOR-gates 702, because the XOR results 712 for the A+B calculation are already available in compressor 301 at XOR-gates 421, 422, 423. Carry-propagate adder 303 would therefore have the structure shown in
Another embodiment of this invention relies on the fact that the inputs to carry-propagate adder 203 have a known relationship to each other—viz., that a second input is twice a first input or, in other words, the second input is the first input shifted left one bit. Thus each bit position of the second input can be represented by the next leftmost bit position of the first input, or each bit position of the first input can be represented by the next rightmost bit position of the second input. According to this embodiment, carry-propagate adder 203 can be simplified by altering its prefix tree as discussed below.
Referring again to Kogge-Stone prefix tree 800 shown in
Each subsequent node in prefix tree 800 may include structures as shown in
In the case where X+Y=A+2A, these structures can be simplified. To avoid confusion, let A=C, so that A+2A=C+(C<<1) (where “<<” denotes a left-shift operation, which for binary numbers is equivalent to multiplying by two). In such an addition, the bits of the two inputs would line up as follows:
It should be noted that in this example, while only four bits of each input are shown (from C5 down to C2), bits down to the 0th bit extend to the right and bits up to the highest bit required extend to the left. From here, it can be seen that any pair of the Xn, Yn inputs in
Taking then as an example bit position n=5, and inputting A5 and A4 (A=C as noted above) to the structures shown in
As can be seen from
Thus it is seen that for implementing certain kinds of arithmetic operations, such as a choice between addition, and pre-addition for a multiplier, adder circuitry can be provided having reduced area, based on logical simplification or sharing of logic.
A PLD 180 configured to include arithmetic circuitry according to any implementation of the present invention may be used in many kinds of electronic devices. One possible use is in an exemplary data processing system 1800 shown in
System 1800 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, Remote Radio Head (RRH), or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 180 can be used to perform a variety of different logic functions. For example, PLD 180 can be configured as a processor or controller that works in cooperation with processor 1801. PLD 180 may also be used as an arbiter for arbitrating access to a shared resources in system 1800. In yet another example, PLD 180 can be configured as an interface between processor 1801 and one of the other components in system 1800. It should be noted that system 1800 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.
Various technologies can be used to implement PLDs 180 as described above and incorporating this invention.
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3473160 | Wahlstrom | Oct 1969 | A |
3697734 | Booth et al. | Oct 1972 | A |
3800130 | Martinson et al. | Mar 1974 | A |
4156927 | McElroy et al. | May 1979 | A |
4179746 | Tubbs | Dec 1979 | A |
4212076 | Conners | Jul 1980 | A |
4215406 | Gomola et al. | Jul 1980 | A |
4215407 | Gomola et al. | Jul 1980 | A |
4422155 | Amir et al. | Dec 1983 | A |
4484259 | Palmer et al. | Nov 1984 | A |
4521907 | Amir et al. | Jun 1985 | A |
4575812 | Kloker et al. | Mar 1986 | A |
4597053 | Chamberlin | Jun 1986 | A |
4616330 | Betz | Oct 1986 | A |
4623961 | Mackiewicz | Nov 1986 | A |
4682302 | Williams | Jul 1987 | A |
4718057 | Venkitakrishnan et al. | Jan 1988 | A |
4727508 | Williams | Feb 1988 | A |
4736335 | Barban | Apr 1988 | A |
4754421 | Bosshart | Jun 1988 | A |
4791590 | Ku et al. | Dec 1988 | A |
4799004 | Mori | Jan 1989 | A |
4823260 | Imel et al. | Apr 1989 | A |
4823295 | Mader | Apr 1989 | A |
4839847 | Laprade | Jun 1989 | A |
4871930 | Wong et al. | Oct 1989 | A |
4893268 | Denman et al. | Jan 1990 | A |
4908788 | Fujiyama | Mar 1990 | A |
4912345 | Steele et al. | Mar 1990 | A |
4918637 | Morton | Apr 1990 | A |
4967160 | Quievy et al. | Oct 1990 | A |
4982354 | Takeuchi et al. | Jan 1991 | A |
4991010 | Hailey et al. | Feb 1991 | A |
4994997 | Martin et al. | Feb 1991 | A |
4999803 | Turrini et al. | Mar 1991 | A |
5073863 | Zhang | Dec 1991 | A |
5081604 | Tanaka | Jan 1992 | A |
5122685 | Chan et al. | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5175702 | Beraud et al. | Dec 1992 | A |
5208491 | Ebeling et al. | May 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5267187 | Hsieh et al. | Nov 1993 | A |
5296759 | Sutherland et al. | Mar 1994 | A |
5338983 | Agarwala | Aug 1994 | A |
5339263 | White | Aug 1994 | A |
5349250 | New | Sep 1994 | A |
5357152 | Jennings, III et al. | Oct 1994 | A |
5371422 | Patel et al. | Dec 1994 | A |
5373461 | Bearden et al. | Dec 1994 | A |
5375079 | Uramoto et al. | Dec 1994 | A |
5381357 | Wedgwood et al. | Jan 1995 | A |
5404324 | Colon-Benet | Apr 1995 | A |
5424589 | Dobbelaere et al. | Jun 1995 | A |
5446651 | Moyse et al. | Aug 1995 | A |
5451948 | Jekel | Sep 1995 | A |
5452231 | Butts et al. | Sep 1995 | A |
5452375 | Rousseau et al. | Sep 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465226 | Goto | Nov 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5483178 | Costello et al. | Jan 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5500812 | Saishi et al. | Mar 1996 | A |
5500828 | Doddington et al. | Mar 1996 | A |
5523963 | Hsieh et al. | Jun 1996 | A |
5528550 | Pawate et al. | Jun 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541864 | Van Bavel et al. | Jul 1996 | A |
5546018 | New et al. | Aug 1996 | A |
5550993 | Ehlig et al. | Aug 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5563526 | Hastings et al. | Oct 1996 | A |
5563819 | Nelson | Oct 1996 | A |
5570039 | Oswald et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5581501 | Sansbury et al. | Dec 1996 | A |
5590350 | Guttag et al. | Dec 1996 | A |
5594366 | Khong et al. | Jan 1997 | A |
5594912 | Brueckmann et al. | Jan 1997 | A |
5596763 | Guttag et al. | Jan 1997 | A |
5606266 | Pedersen | Feb 1997 | A |
5617058 | Adrian et al. | Apr 1997 | A |
5631848 | Laczko et al. | May 1997 | A |
5633601 | Nagaraj | May 1997 | A |
5636150 | Okamoto | Jun 1997 | A |
5636368 | Harrison et al. | Jun 1997 | A |
5640578 | Balmer et al. | Jun 1997 | A |
5644519 | Yatim et al. | Jul 1997 | A |
5644522 | Moyse et al. | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5646875 | Taborn et al. | Jul 1997 | A |
5648732 | Duncan | Jul 1997 | A |
5652903 | Weng et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5664192 | Lloyd et al. | Sep 1997 | A |
5689195 | Cliff et al. | Nov 1997 | A |
5696708 | Leung | Dec 1997 | A |
5729495 | Madurawe | Mar 1998 | A |
5740404 | Baji | Apr 1998 | A |
5744980 | McGowan et al. | Apr 1998 | A |
5744991 | Jefferson et al. | Apr 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5761483 | Trimberger | Jun 1998 | A |
5764555 | McPherson et al. | Jun 1998 | A |
5768613 | Asghar | Jun 1998 | A |
5771186 | Kodali et al. | Jun 1998 | A |
5777912 | Leung et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5790446 | Yu et al. | Aug 1998 | A |
5794067 | Kadowaki | Aug 1998 | A |
5801546 | Pierce et al. | Sep 1998 | A |
5805477 | Perner | Sep 1998 | A |
5805913 | Guttag et al. | Sep 1998 | A |
5808926 | Gorshtein et al. | Sep 1998 | A |
5812479 | Cliff et al. | Sep 1998 | A |
5812562 | Baeg | Sep 1998 | A |
5815422 | Dockser | Sep 1998 | A |
5821776 | McGowan | Oct 1998 | A |
5825202 | Tavana et al. | Oct 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5841684 | Dockser | Nov 1998 | A |
5847579 | Trimberger | Dec 1998 | A |
5847978 | Ogura et al. | Dec 1998 | A |
5847981 | Kelley et al. | Dec 1998 | A |
5859878 | Phillips et al. | Jan 1999 | A |
5869979 | Bocchino | Feb 1999 | A |
5872380 | Rostoker et al. | Feb 1999 | A |
5874834 | New | Feb 1999 | A |
5878250 | LeBlanc | Mar 1999 | A |
5880981 | Kojima et al. | Mar 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894228 | Reddy et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5931898 | Khoury | Aug 1999 | A |
5942914 | Reddy et al. | Aug 1999 | A |
5944774 | Dent | Aug 1999 | A |
5949710 | Pass et al. | Sep 1999 | A |
5951673 | Miyata | Sep 1999 | A |
5956265 | Lewis | Sep 1999 | A |
5959871 | Pierzchala et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5961635 | Guttag et al. | Oct 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5963050 | Young et al. | Oct 1999 | A |
5968196 | Ramamurthy et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5982195 | Cliff et al. | Nov 1999 | A |
5986465 | Mendel | Nov 1999 | A |
5991788 | Mintzer | Nov 1999 | A |
5991898 | Rajski et al. | Nov 1999 | A |
5995748 | Guttag et al. | Nov 1999 | A |
5999015 | Cliff et al. | Dec 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6005806 | Madurawe et al. | Dec 1999 | A |
6006321 | Abbott | Dec 1999 | A |
6009451 | Burns | Dec 1999 | A |
6018755 | Gonikberg et al. | Jan 2000 | A |
6020759 | Heile | Feb 2000 | A |
6021423 | Nag et al. | Feb 2000 | A |
6029187 | Verbauwhede | Feb 2000 | A |
6031763 | Sansbury | Feb 2000 | A |
6041339 | Yu et al. | Mar 2000 | A |
6041340 | Mintzer | Mar 2000 | A |
6052327 | Reddy et al. | Apr 2000 | A |
6052755 | Terrill et al. | Apr 2000 | A |
6052773 | DeHon et al. | Apr 2000 | A |
6055555 | Boswell et al. | Apr 2000 | A |
6064614 | Khoury | May 2000 | A |
6065131 | Andrews et al. | May 2000 | A |
6066960 | Pedersen | May 2000 | A |
6069487 | Lane et al. | May 2000 | A |
6072994 | Phillips et al. | Jun 2000 | A |
6073154 | Dick | Jun 2000 | A |
6075381 | LaBerge | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6091261 | DeLange | Jul 2000 | A |
6091765 | Pietzold, III et al. | Jul 2000 | A |
6094726 | Gonion et al. | Jul 2000 | A |
6097988 | Tobias | Aug 2000 | A |
6098163 | Guttag et al. | Aug 2000 | A |
6107820 | Jefferson et al. | Aug 2000 | A |
6107821 | Kelem et al. | Aug 2000 | A |
6107824 | Reddy et al. | Aug 2000 | A |
6108772 | Sharangpani | Aug 2000 | A |
6130554 | Kolze et al. | Oct 2000 | A |
6140839 | Kaviani et al. | Oct 2000 | A |
6144980 | Oberman | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6157210 | Zaveri et al. | Dec 2000 | A |
6163788 | Chen et al. | Dec 2000 | A |
6167415 | Fischer et al. | Dec 2000 | A |
6175849 | Smith | Jan 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6226735 | Mirsky | May 2001 | B1 |
6242947 | Trimberger | Jun 2001 | B1 |
6243729 | Staszewski | Jun 2001 | B1 |
6246258 | Lesea | Jun 2001 | B1 |
6260053 | Maulik et al. | Jul 2001 | B1 |
6279021 | Takano et al. | Aug 2001 | B1 |
6286024 | Yano et al. | Sep 2001 | B1 |
6314442 | Suzuki | Nov 2001 | B1 |
6314551 | Borland | Nov 2001 | B1 |
6321246 | Page et al. | Nov 2001 | B1 |
6323680 | Pedersen et al. | Nov 2001 | B1 |
6327605 | Arakawa et al. | Dec 2001 | B2 |
6346824 | New | Feb 2002 | B1 |
6351142 | Abbott | Feb 2002 | B1 |
6353843 | Chehrazi et al. | Mar 2002 | B1 |
6359468 | Park et al. | Mar 2002 | B1 |
6360240 | Takano et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6366944 | Hossain et al. | Apr 2002 | B1 |
6367003 | Davis | Apr 2002 | B1 |
6369610 | Cheung et al. | Apr 2002 | B1 |
6377970 | Abdallah et al. | Apr 2002 | B1 |
6407576 | Ngai et al. | Jun 2002 | B1 |
6407694 | Cox et al. | Jun 2002 | B1 |
6427157 | Webb | Jul 2002 | B1 |
6434587 | Liao et al. | Aug 2002 | B1 |
6438569 | Abbott | Aug 2002 | B1 |
6438570 | Miller | Aug 2002 | B1 |
6446107 | Knowles | Sep 2002 | B1 |
6453382 | Heile | Sep 2002 | B1 |
6467017 | Ngai et al. | Oct 2002 | B1 |
6480980 | Koe | Nov 2002 | B2 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487575 | Oberman | Nov 2002 | B1 |
6523055 | Yu et al. | Feb 2003 | B1 |
6523057 | Savo et al. | Feb 2003 | B1 |
6529931 | Besz | Mar 2003 | B1 |
6531888 | Abbott | Mar 2003 | B2 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6539413 | Goldovsky | Mar 2003 | B1 |
6542000 | Black et al. | Apr 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6557092 | Callen | Apr 2003 | B1 |
6571268 | Giacalone et al. | May 2003 | B1 |
6573749 | New et al. | Jun 2003 | B2 |
6574762 | Karimi et al. | Jun 2003 | B1 |
6578060 | Chen et al. | Jun 2003 | B2 |
6591283 | Conway et al. | Jul 2003 | B1 |
6591357 | Mirsky | Jul 2003 | B2 |
6600495 | Boland et al. | Jul 2003 | B1 |
6600788 | Dick et al. | Jul 2003 | B1 |
6628140 | Langhammer et al. | Sep 2003 | B2 |
6687722 | Larsson et al. | Feb 2004 | B1 |
6692534 | Wang et al. | Feb 2004 | B1 |
6700581 | Baldwin et al. | Mar 2004 | B2 |
6725441 | Keller et al. | Apr 2004 | B1 |
6728901 | Rajski et al. | Apr 2004 | B1 |
6731133 | Feng et al. | May 2004 | B1 |
6732134 | Rosenberg | May 2004 | B1 |
6744278 | Liu et al. | Jun 2004 | B1 |
6745254 | Boggs et al. | Jun 2004 | B2 |
6763367 | Kwon et al. | Jul 2004 | B2 |
6771094 | Langhammer et al. | Aug 2004 | B1 |
6774669 | Liu et al. | Aug 2004 | B1 |
6781408 | Langhammer | Aug 2004 | B1 |
6781410 | Pani et al. | Aug 2004 | B2 |
6788104 | Singh et al. | Sep 2004 | B2 |
6801924 | Green et al. | Oct 2004 | B1 |
6836839 | Master et al. | Dec 2004 | B2 |
6874079 | Hogenauer | Mar 2005 | B2 |
6889238 | Johnson | May 2005 | B2 |
6904471 | Boggs et al. | Jun 2005 | B2 |
6915322 | Hong | Jul 2005 | B2 |
6924663 | Masui et al. | Aug 2005 | B2 |
6963890 | Dutta et al. | Nov 2005 | B2 |
6971083 | Farrugia et al. | Nov 2005 | B1 |
6978287 | Langhammer | Dec 2005 | B1 |
6983300 | Ferroussat | Jan 2006 | B2 |
7020673 | Ozawa | Mar 2006 | B2 |
7024446 | Langhammer et al. | Apr 2006 | B2 |
7047272 | Giacalone et al. | May 2006 | B2 |
7062526 | Hoyle | Jun 2006 | B1 |
7093204 | Oktem et al. | Aug 2006 | B2 |
7107305 | Deng et al. | Sep 2006 | B2 |
7113969 | Green et al. | Sep 2006 | B1 |
7181484 | Stribaek et al. | Feb 2007 | B2 |
7230451 | Langhammer | Jun 2007 | B1 |
7313585 | Winterrowd | Dec 2007 | B2 |
7343388 | Burney et al. | Mar 2008 | B1 |
7395298 | Debes et al. | Jul 2008 | B2 |
7401109 | Koc et al. | Jul 2008 | B2 |
7409417 | Lou | Aug 2008 | B2 |
7415542 | Hennedy et al. | Aug 2008 | B2 |
7421465 | Rarick et al. | Sep 2008 | B1 |
7428565 | Fujimori | Sep 2008 | B2 |
7428566 | Siu et al. | Sep 2008 | B2 |
7430578 | Debes et al. | Sep 2008 | B2 |
7430656 | Sperber et al. | Sep 2008 | B2 |
7447310 | Koc et al. | Nov 2008 | B2 |
7472155 | Simkins et al. | Dec 2008 | B2 |
7508936 | Eberle et al. | Mar 2009 | B2 |
7536430 | Guevokian et al. | May 2009 | B2 |
7567997 | Simkins et al. | Jul 2009 | B2 |
7590676 | Langhammer | Sep 2009 | B1 |
7646430 | Brown Elliott et al. | Jan 2010 | B2 |
7650374 | Gura et al. | Jan 2010 | B1 |
7668896 | Lutz et al. | Feb 2010 | B2 |
7719446 | Rosenthal et al. | May 2010 | B2 |
7720898 | Driker et al. | May 2010 | B2 |
7769797 | Cho et al. | Aug 2010 | B2 |
7814136 | Verma et al. | Oct 2010 | B1 |
7814137 | Mauer | Oct 2010 | B1 |
7822799 | Langhammer et al. | Oct 2010 | B1 |
7836117 | Langhammer et al. | Nov 2010 | B1 |
7865541 | Langhammer | Jan 2011 | B1 |
7917567 | Mason et al. | Mar 2011 | B1 |
7930335 | Gura | Apr 2011 | B2 |
7930336 | Langhammer | Apr 2011 | B2 |
8024394 | Prokopenko | Sep 2011 | B2 |
8090758 | Shimanek et al. | Jan 2012 | B1 |
8112466 | Minz et al. | Feb 2012 | B2 |
8412756 | Langhammer | Apr 2013 | B1 |
8447800 | Dockser et al. | May 2013 | B2 |
8468192 | Langhammer | Jun 2013 | B1 |
8484265 | Langhammer | Jul 2013 | B1 |
8510354 | Langhammer | Aug 2013 | B1 |
8539016 | Langhammer et al. | Sep 2013 | B1 |
8543634 | Xu et al. | Sep 2013 | B1 |
8577951 | Langhammer | Nov 2013 | B1 |
8620980 | Mauer et al. | Dec 2013 | B1 |
8645449 | Langhammer et al. | Feb 2014 | B1 |
8645450 | Choe et al. | Feb 2014 | B1 |
8645451 | Langhammer | Feb 2014 | B2 |
8650231 | Langhammer | Feb 2014 | B1 |
8650236 | Choe | Feb 2014 | B1 |
8706790 | Langhammer | Apr 2014 | B1 |
8751551 | Streicher et al. | Jun 2014 | B2 |
8762443 | Kurtz | Jun 2014 | B1 |
8812576 | Mauer | Aug 2014 | B1 |
8949298 | Langhammer | Feb 2015 | B1 |
8959137 | Langhammer | Feb 2015 | B1 |
20010023425 | Oberman et al. | Sep 2001 | A1 |
20010029515 | Mirsky | Oct 2001 | A1 |
20010037352 | Hong | Nov 2001 | A1 |
20020002573 | Landers et al. | Jan 2002 | A1 |
20020032713 | Jou et al. | Mar 2002 | A1 |
20020038324 | Page et al. | Mar 2002 | A1 |
20020049798 | Wang et al. | Apr 2002 | A1 |
20020078114 | Wang et al. | Jun 2002 | A1 |
20020089348 | Langhammer | Jul 2002 | A1 |
20020116434 | Nancekievill | Aug 2002 | A1 |
20020143841 | Farooqui et al. | Oct 2002 | A1 |
20020174158 | Sutherland | Nov 2002 | A1 |
20030065699 | Burns | Apr 2003 | A1 |
20030088757 | Lindner et al. | May 2003 | A1 |
20040064770 | Xin | Apr 2004 | A1 |
20040083412 | Corbin et al. | Apr 2004 | A1 |
20040103133 | Gurney | May 2004 | A1 |
20040122882 | Zakharov et al. | Jun 2004 | A1 |
20040148321 | Guevorkian et al. | Jul 2004 | A1 |
20040172439 | Lin | Sep 2004 | A1 |
20040178818 | Crotty et al. | Sep 2004 | A1 |
20040193981 | Clark et al. | Sep 2004 | A1 |
20040267857 | Abel et al. | Dec 2004 | A1 |
20040267863 | Bhushan et al. | Dec 2004 | A1 |
20050038842 | Stoye | Feb 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20050144216 | Simkins et al. | Jun 2005 | A1 |
20050166038 | Wang et al. | Jul 2005 | A1 |
20050187997 | Zheng et al. | Aug 2005 | A1 |
20050187999 | Zheng et al. | Aug 2005 | A1 |
20050262175 | Iino et al. | Nov 2005 | A1 |
20060020655 | Lin | Jan 2006 | A1 |
20060112160 | Ishii et al. | May 2006 | A1 |
20070083585 | St Denis et al. | Apr 2007 | A1 |
20070185951 | Lee et al. | Aug 2007 | A1 |
20070185952 | Langhammer et al. | Aug 2007 | A1 |
20070241773 | Hutchings et al. | Oct 2007 | A1 |
20080133627 | Langhammer et al. | Jun 2008 | A1 |
20080159441 | Liao et al. | Jul 2008 | A1 |
20080183783 | Tubbs | Jul 2008 | A1 |
20090083358 | Allen | Mar 2009 | A1 |
20090113186 | Kato et al. | Apr 2009 | A1 |
20090172052 | DeLaquil et al. | Jul 2009 | A1 |
20090182795 | Dobbek et al. | Jul 2009 | A1 |
20090187615 | Abe et al. | Jul 2009 | A1 |
20090228689 | Muff et al. | Sep 2009 | A1 |
20090292750 | Reyzin et al. | Nov 2009 | A1 |
20090300088 | Michaels et al. | Dec 2009 | A1 |
20090300323 | Hessel et al. | Dec 2009 | A1 |
20100098189 | Oketani | Apr 2010 | A1 |
20100146022 | Swartzlander et al. | Jun 2010 | A1 |
20100191939 | Muff et al. | Jul 2010 | A1 |
20110106868 | Lutz | May 2011 | A1 |
20110137970 | Dockser et al. | Jun 2011 | A1 |
20110264719 | Mortensen | Oct 2011 | A1 |
20120166512 | Wong et al. | Jun 2012 | A1 |
20130138711 | Sugisawa | May 2013 | A1 |
20140067895 | Wang | Mar 2014 | A1 |
20140089371 | De Dinechin et al. | Mar 2014 | A1 |
20160079960 | Berscheid | Mar 2016 | A1 |
20160283196 | Langhammer | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
0 158 430 | Oct 1985 | EP |
0 326 415 | Aug 1989 | EP |
0 380 456 | Aug 1990 | EP |
0 411 491 | Feb 1991 | EP |
0 419 105 | Mar 1991 | EP |
0 461 798 | Dec 1991 | EP |
0 498 066 | Aug 1992 | EP |
0 555 092 | Aug 1993 | EP |
0 606 653 | Jul 1994 | EP |
0 657 803 | Jun 1995 | EP |
0 660 227 | Jun 1995 | EP |
0 668 659 | Aug 1995 | EP |
0 721 159 | Jul 1996 | EP |
0 905 906 | Mar 1999 | EP |
0 909 028 | Apr 1999 | EP |
0 927 393 | Jul 1999 | EP |
0 992 885 | Apr 2000 | EP |
1 031 934 | Aug 2000 | EP |
1 049 025 | Nov 2000 | EP |
1 058 185 | Dec 2000 | EP |
1 220 108 | Jul 2002 | EP |
2 283 602 | May 1995 | GB |
2 286 737 | Aug 1995 | GB |
2 318 198 | Apr 1998 | GB |
61-237133 | Oct 1986 | JP |
63-216131 | Aug 1988 | JP |
4-332036 | Nov 1992 | JP |
5-134851 | Jun 1993 | JP |
06-187129 | Jul 1994 | JP |
7-135447 | May 1995 | JP |
11-296345 | Oct 1999 | JP |
2000-259394 | Sep 2000 | JP |
2002-108606 | Apr 2002 | JP |
2002-251281 | Sep 2002 | JP |
WO9527243 | Oct 1995 | WO |
WO9628774 | Sep 1996 | WO |
WO9708606 | Mar 1997 | WO |
WO9812629 | Mar 1998 | WO |
WO9832071 | Jul 1998 | WO |
WO9838741 | Sep 1998 | WO |
WO9922292 | May 1999 | WO |
WO9931574 | Jun 1999 | WO |
WO9956394 | Nov 1999 | WO |
WO0051239 | Aug 2000 | WO |
WO0052824 | Sep 2000 | WO |
WO0113562 | Feb 2001 | WO |
WO 2005066832 | Jul 2005 | WO |
WO 2005101190 | Oct 2005 | WO |
WO 2010102007 | Sep 2010 | WO |
Entry |
---|
Altera, “DSP Blocks in Stratix III Devices,” Chapter 5, pp. 1-42, Mar. 2010. |
Altera Corporation, “Statix II Device Handbook, Chapter 6—DSP Blocks in Stratix II Devices,” v1.1, Jul. 2004. |
Altera Corporation, “Digital Signal Processing (DSP),” Stratix Device Handbook, vol. 2, Chapter 6 and Chapter 7, v1.1 (Sep. 2004). |
Altera Corporation, “DSP Blocks in Stratix II and Stratix II GX Devices,” Stratix II Device Handbook, vol. 2, Chapter 6, v4.0 (Oct. 2005). |
Altera Corporation, “FIR Compiler: MegaCore® Function User Guide,” version 3.3.0, rev. 1, pp. 3-11 through 3-15 (Oct. 2005). |
Altera Corporation, “Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III and Stratix IV Devices,” Document Version 3.0, 112 pgs., May 2008. |
Amos, D., “PLD architectures match DSP algorithms,” Electronic Product Design, vol. 17, No. 7, Jul. 1996, pp. 30, 32. |
Analog Devices, Inc., The Applications Engineering Staff of Analog Devices, DSP Division, Digital Signal Processing Applications Using the ADSP-2100 Family (edited by Amy Mar), 1990, pp. 141-192). |
Andrejas, J., et al., “Reusable DSP functions in FPGAs,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 456-461. |
Aoki, T., “Signed-weight arithmetic and its application to a field-programmable digital filter architecture,” IEICE Transactions on Electronics , 1999 , vol. E82C, No. 9, Sep. 1999, pp. 1687-1698. |
Ashour, M.A., et al., “An FPGA implementation guide for some different types of serial-parallel multiplier-structures,” Microelectronics Journal , vol. 31, No. 3, 2000, pp. 161-168. |
Berg, B.L., et al.“Designing Power and Area Efficient Multistage FIR Decimators with Economical Low Order Filters,” ChipCenter Technical Note, Dec. 2001. |
Bursky, D., “Programmable Logic Challenges Traditional ASIC SoC Designs”, Electronic Design, Apr. 15, 2002. |
Chhabra, A. et al., Texas Instruments Inc., “A Block Floating Point Implementation on the TMS320C54x DSP”, Application Report SPRA610, Dec. 1999, pp. 1-10. |
Colet, P., “When DSPs and FPGAs meet: Optimizing image processing architectures,” Advanced Imaging, vol. 12, No. 9, Sep. 1997, pp. 14, 16, 18. |
Crookes, D., et al., “Design and implementation of a high level programming environment for FPGA-based image processing,” IEE Proceedings-Vision, Image and Signal Processing, vol. 147, No. 4, Aug. 2000, pp. 377-384. |
Debowski, L., et al., “A new flexible architecture of digital control systems based on DSP and complex CPLD technology for power conversion applications,” PCIM 2000: Europe Official Proceedings of the Thirty-Seventh International Intelligent Motion Conference, Jun. 6-8, 2000, pp. 281-286. |
deDinechin, F. et al., “Large multipliers with less DSP blocks,” retrieved from http://hal-ens-lyon.archives-ouvertes.fr/ensl-00356421/en/, 9 pgs., available online Jan. 2009. |
de Dinechin F.,et al., “FPGA-Specific Custom Arithmetic Datapath Design: LIP Research Report RR2010-34,” Dec. 2010, 8 pages. |
Dick, C., et al., “Configurable logic for digital communications: some signal processing perspectives,” IEEE Communications Magazine, vol. 37, No. 8, Aug. 1999, pp. 107-111. |
Do, T.-T., et al., “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,” Field-Programmable Logic and Applications: From FPGAs to Computing Paradigm. 8th International Workshop, FPL'98. Proceedings, Hartenstein, R.W., et al., eds., Aug. 31-Sep. 3, 1998, pp. 441-445. |
Farooqui, A., et al., “General Data-Path Organization of a MAC unit for VLSI Implementation of DSP Processors,” ISCAS '98, Part 2, May 31, 1998-Jun. 3, 1998, pp. 260-263. |
Fujioka, Y., et al., “240 MOPS Reconfigurable Parallel VLSI Processor for Robot Control”, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, vol. 3, pp. 1385-1390, Nov. 9-13, 1992. |
Gaffer, A.A., et al., “Floating-Point Bitwidth Analysis via Automatic Differentiation,” IEEE Conference on Field Programmable Technology, Hong Kong, Dec. 2002. |
Govindu, G. et al., “A Library of Parameterizable Floating-Point Cores for FPGAs and Their Application to Scientific Computing,” Proc Int'l Conf. Eng. Reconfigurable Systems and Algorithms (ERSA'05), Jun. 2005. |
Govindu, G. et al., “Analysis of High-performance Floating-point Arithmetic on FPGAs,” Proceedings of the 18th International Parallel and Distributed Processing Symposium (PDPS'04) pp. 149-156, Apr. 2004. |
Guccione, S.A.,“Run-time Reconfiguration at Xilinx,” Parallel and distributed processing: 15 IPDPS 2000 workshops, Rolim, J., ed., May 1-5, 2000, p. 873. |
Hauck, S., “The Future of Reconfigurable Systems,” Keynote Address, 5th Canadian Conference on Field Programmable Devices, Jun. 1998, http:--www.ee.washington.edu-people-faculty-hauck-publications-ReconfigFuture.PDF. |
Haynes, S.D., et al., “Configurable multiplier blocks for embedding in FPGAs,” Electronicas Letters, vol. 34, No. 7, pp. 638-639 (Apr. 2, 1998). |
Heysters, P.M., et al., “Mapping of DSP algorithms on field programmable function arrays,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 400-411. |
Huang, J., et al., “Simulated Performance of 1000BASE-T Receiver with Different Analog Front End Designs,” Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, Nov. 4-7, 2001. |
IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard, Std 754, 1985, pp. 1-14. |
IEEE Standard for Floating-Point Arithmetic, IEEE Std 754, 2008, pp. 1-58. |
“Implementing Multipliers in FLEX 10K EABs”, Altera, Mar. 1996. |
“Implementing Logic with the Embedded Array in FLEX 10K Devices”, Altera, May 2001, ver. 2.1. |
Jinghua Li, “Design a pocket multi-bit multiplier in FPGA,” 1996 2nd International Conference on ASIC Proceedings IEEE Cat. No. 96TH8140), Oct. 21-24, 1996, pp. 275-279. |
Jones, G., “Field-programmable digital signal conditioning,” Electronic Product Design, vol. 21, No. 6, Jun. 2000, pp. C36-C38. |
Karlstrom, K., et al., “High Performance, Low Latency FPGA based Floating Point Adder and Multiplier Units in a Virtex 4,” Norchip Conf., pp. 31-34, 2006. |
Kiefer, R., et al., “Performance comparison of software-FPGA hardware partitions for a DSP application,” 14th Australian Microelectronics Conference. Microelectronics: Technology Today for the Future. MICRO '97 Proceedings, Sep. 28-Oct. 1, 1997, pp. 88-93. |
Kim, Y., et al., “Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems,” Journal of Korean Institute of Information Scientists and Engineers, vol. 32, No. 12, pp. 692-704, Dec. 2005. |
Kramberger, I., “DSP acceleration using a reconfigurable FPGA,” ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465), vol. 3 , Jul. 12-16, 1999, pp. 1522-1525. |
Langhammer, M., “How to implement DSP in programmable logic,” Elettronica Oggi, No. 266 , Dec. 1998, pp. 113-115. |
Langhammer, “Floating Point Datapath Synthesis for FPGAs,” IEEE International Conference on Field Programmable Logic and Applications, 2008 (FPL 2008), pp. 355-360 (Sep. 8-10, 2008). |
Langhammer, M., “Implementing a DSP in Programmable Logic,” Online EE Times, May 1998, http:--www.eetimes.com-editorial-1998-coverstory9805.html. |
Lazaravich, B.V., “Function block oriented field programmable logic arrays,” Motorola, Inc. Technical Developments, vol. 18, Mar. 1993, pp. 10-11. |
Lattice Semiconductor Corp, ORCA® FPGA Express™ Interface Manual: ispLEVER® Version 3.0, 2002. |
Lucent Technologies, Microelectronics Group,“Implementing and Optimizing Multipliers in ORCA™ FPGAs,”, Application Note.AP97-008FGPA, Feb. 1997. |
Lund, D., et al., “A new development system for reconfigurable digital signal processing,” First International Conference on 3G Mobile Communication Technologies (Conf. Publ. No. 471), Mar. 27-29, 2000, pp. 306-310. |
Martinson, L. et al., “Digital matched Filtering with Pipelined Floating Point Fast Fourier Transforms (FFT's)” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-23, No. 2, pp. 222-234, Apr. 1975. |
Miller, N.L., et al., “Reconfigurable integrated circuit for high performance computer arithmetic,” Proceedings of the 1998 IEE Colloquium on Evolvable Hardware Systems (Digest), No. 233, 1998, pp. 2-1-2-4. |
Mintzer, L., “Xilinx FPGA as an FFT processor,” Electronic Engineering, vol. 69, No. 845, May 1997, pp. 81, 82, 84. |
Faura et al., “A Novel Mixed Signal Programmable Device With On-Chip Microprocessor,” Custom Integrated Circuits Conference, 1997. Proceedings of the IEEE 1997 Santa Clara, CA, USA, May 5, 1997, pp. 103-106. |
Nakasato, N., et al., “Acceleration of Hydrosynamical Simulations using a FPGA board” The Institute of Electronics Information and Communication Technical Report CPSY2005-47, vol. 105, No. 515, Jan. 17, 2006. |
Nedjah, N., et al., “Fast Less Recursive Hardware for Large Number Multiplication Using Karatsuba-Ofman's Algorithm,” Computer and Information Sciences—ISCIS, pp. 43-50, 2003. |
Nozal, L., et al., “A new vision system: programmable logic devices and digital signal processor architecture (PLD+DSP),” Proceedings IECON '91. 1991 International Conference on Industrial Electronics, Control and Instrumentation (Cat. No. 91CH2976-9), vol. 3, Oct. 28-Nov. 1, 1991, pp. 2014-2018. |
Osana, Y., et al., “Hardware-resource Utilization Analysis on an FPGA-Based Biochemical Simulator ReCSiP”, The Institute of Electronics Information and Communication Technical Report CPSY2005-63, vol. 105, No. 516, Jan. 18, 2006. |
Papenfuss, J.R, et al., “Implementation of a real-time, frequency selective, RF channel simulator using a hybrid DSP-FPGA architecture,” RAWCON 2000: 2000 IEEE Radio and Wireless Conference (Cat. No. 00EX404), Sep. 10-13, 2000, pp. 135-138. |
Parhami, B., “Configurable arithmetic arrays with data-driven control,” 34th Asilomar Conference on Signals, Systems and Computers, vol. 1, 2000, pp. 89-93. |
“The QuickDSP Design Guide”, Quicklogic, Aug. 2001, revision B. |
“QuickDSP™ Family Data Sheet”, Quicklogic, Aug. 7, 2001, revision B. |
Rangasayee, K., “Complex PLDs let you produce efficient arithmetic designs,” EDN (European Edition), vol. 41, No. 13, Jun. 20, 1996, pp. 109, 110, 112, 114, 116. |
Rosado, A., et al., “A high-speed multiplier coprocessor unit based on FPGA,” Journal of Electrical Engineering, vol. 48, No. 11-12, 1997, pp. 298-302. |
Santillan-Q., G.F., et al., “Real-time integer convolution implemented using systolic arrays and a digit-serial architecture in complex programmable logic devices,” Proceedings of the Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications (Cat. No. 99EX303), Jul. 26-28, 1999, pp. 147-150. |
Texas Instruments Inc., “TMS320C54x DSP Reference Set, vol. 1: CPU and Peripherals”, Literature No. SPRU131F, Apr. 1999, pp. 2-1 through 2-16 and 4-1 through 4-29. |
Thapliyal, H., et al., “Combined Integer and Floating Point Multiplication Architecture (CIFM) for FPGSs and Its Reversible Logic Implementation”, Proceedings MWSCAS 2006, Puerto Rico, 5 pages, Aug. 2006. |
Thapliyal, H., et al., “Combined Integer and Variable Precision (CIVP) Floating Point Multiplication Architecture for FPGAs”, Proceedings of the 2007 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'07) Las Vegas, US, vol. 1, pp. 449-450, Jun. 2007. |
Tisserand, A., et al., “An on-line arithmetic based FPGA for low power custom computing,” Field Programmable Logic and Applications, 9th International Workshop, FPL'99, Proceedings (Lecture Notes in Computer Science vol. 1673), Lysaght, P., et al., eds., Aug. 30-Sep. 1, 1999, pp. 264-273. |
Tralka, C., “Symbiosis of DSP and PLD,” Elektronik, vol. 49, No. 14 , Jul. 11, 2000, pp. 84-96. |
Underwood, K. “FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,” Proceedings of the 2004 ACM-SIGDA 12th International Symposium on Field Programmable Gate Arrays, pp. 171-180, Feb. 22-24, 2004. |
Valls, J., et al., “A Study About FPGA-Based Digital Filters,” Signal Processing Systems, 1998, SIPS 98, 1998 IEEE Workshop, Oct. 10, 1998, pp. 192-201. |
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Jan. 25, 2001, module 2 of 4. |
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 1 of 4. |
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 2 of 4. |
Vladimirova, T. et al., “Floating-Point Mathematical Co-Processor for a Single-Chip On-Board Computer,” MAPLD'03 Conference, D5, Sep. 2003. |
Wajih, E.-H.Y. et al., “Efficient Hardware Architecture of Recursive Karatsuba-Ofman Multiplier,” 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, 6 pgs, Mar. 2008. |
Walters, A.L., “A Scaleable FIR Filter Implementation Using 32-bit Floating-Point Complex Arithmetic on ,a FPGA Based Custom Computing Platform,” Allison L. Walters, Thesis Submitted to the Faculty of Virginia Polytechnic Institute and State University, Jan. 30, 1998. |
Weisstein, E.W., “Karatsuba Multiplication,” MathWorld—A Wolfram Web Resource (Dec. 9, 2007), accessed Dec. 11, 2007 at http:--mathworld.wolfram.com-KaratsubaMultiplication.html. |
Wenzel, L., “Field programmable gate arrays (FPGAs) to replace digital signal processor integrated circuits,” Elektronik , vol. 49, No. 5, Mar. 7, 2000, pp. 78-86. |
“Xilinx Unveils New FPGA Architecture to Enable High-Performance, 10 Million System Gate Designs”, Xilinx, Jun. 22, 2000. |
“Xilinx Announces DSP Algorithms, Tools and Features for Virtex-II Architecture”, Xilinx, Nov. 21, 2000. |
Xilinx Inc., “Virtex-II 1.5V Field-Programmable Gate Arrays”, Advance Product Specification, DS031-2 (v1.9), Nov. 29, 2001, Module 2 of 4, pp. 1-39. |
Xilinx Inc., “Using Embedded Multipliers”, Virtex-II Platform FPGA Handbook, UG002 (v1.3), Dec. 3, 2001, pp. 251-257. |
Xilinx, Inc., “A 1D Systolic FIR,” copyright 1994-2002, downloaded from http:--www.iro.umontreal.ca-˜aboulham-F6221-Xilinx%20A%201D%20systolic%20FIR.htm. |
Xilinx, Inc., “The Future of FPGA's,” White Paper, available Nov. 14, 2005 for download from http:--www.xilinx.com-prs—rls,5yrwhite.htm. |
Xilinx Inc., “XtremeDSP Design Considerations User Guide,” v 1.2, Feb. 4, 2005. |
Xilinx Inc., “Complex Multiplier v2.0”, DS291 Product Specification/Datasheet, Nov. 2004. |
Xilinx, Inc., “Virtex-5 ExtremeDSP Design Considerations,” User Guide UG193, v2.6, 114 pages, Oct. 2007. |
Xilinx, Inc., “Implementing Barrel Shifters Using Multipliers”, p. 1-4, Aug. 17, 2004. |
Zhou, G. et al., “Efficient and High-Throughput Implementations of AES-GCM on FPGAs,” International Conference on Field-Programmable Technology, 8 pgs., Dec. 2007. |
Number | Date | Country | |
---|---|---|---|
20160283196 A1 | Sep 2016 | US |