The present invention relates to a complex type movable awning device having a transverse sliding structure of projected corner canvases, that is to say, a complex awning device and a winding roller for a number of canvases which forms the main portion thereof, which are used to cover the corner space portion in the projected corner portion of various types of buildings and the outside of buildings, such as projected corner portions and recessed corner portions which include corner space portions, so that the appearance can be improved.
Conventional movable awning devices wind and unwind a rectangular canvas which generally spreads to the front and diagonally downward around a winding roller supported by a bearing in a portion close to the wall of the building by means of a manually operable handle or an electrically driven motor, etc. A front bar to which the bottom hem of the above described canvas is attached is supported in such a manner so as to extend in a tense state by means of arms which are foldable in two or y-shaped arms which are freely foldable in the approximate horizontal direction (foldable arm type), or the two end portions of the front bar of the spread rectangular canvas are supported by means of foldable arms which can be operated to rise and lower in an approximate vertical direction or extendable links having a pantograph structure (lateral arm type). Many of these are provided as sun or rain shields around the outer periphery of terraces and shops, or portions for decorating buildings and shops (see for example the following Non-Patent Documents 1 and 2, hereinafter referred to as “the former”).
Meanwhile, conventional movable awning devices having the following configurations (a) to (d) have been proposed in order to cover corner space portions of projected corner portions of buildings (see for example the following Patent Document 1, hereinafter referred to as “the latter”).
(a) An awning support frame in which the entire device is supported by a fixed bracket in a corner end portion so as to be projected diagonally to the front. And two winding rollers for winding or unwinding a canvas by means of an electrically driven motor in the form of an approximate right angled triangle along the long side are supported by a bearing in the two end portions, front and rear, of the awning support frame.
(b) In addition, the base end portion of the foldable arm which is pressed in the direction in which it extends is attached to a portion in the vicinity of the middle of the base pipe and the top hem of the triangular canvas which is attached to the arm holder in the front end portion.
(c) A cosmetic panel is also provided in a front end portion of the awning support frame so as to be freely spreadable, and an arm holder is supported in such a manner so as to be freely slidable along a trench in a rear portion of this cosmetic panel.
(d) Furthermore, a portion close to the front end of the awning support frame is hung and supported by a wire rope and lifted upward to the rear of a corner end portion by means of a winding machine so that the entirety of the device is stored in an upside-down state.
The former awning devices are used in linear sections around the outside of buildings, and cannot cover corner space portions of projected corner portions. In the case where these awning devices are used to cover such portions, the winding roller is attached so as to protrude from the projected corner portion to the corner space portion.
In many cases, projected corner portions of a building face a sidewalk or a street in two directions, or an intersection, and thus are located in such a place as to be seen by the general public. Such places are blessed with good business conditions for shops and provide excellent effects for advertisement.
In the case where an awning device which is incorporated in such a conspicuous place must wind a rectangular canvas in such a state as to be projected from the projected corner portion and stored, the awning device is technically uninteresting, and the appearance is not good.
Meanwhile, in the latter awning device, a triangular canvas which spreads in a corner space portion is supported at one end by a corner end portion of a projected corner portion, and therefore, the load of the entirety of the device is concentrated on the fixed bracket, which is projected to the corner end portion. In addition, the awning support frame is hung by a wire rope, and therefore, the entire device easily moves left or right when the canvas is spread, in particular, the system is easily subjected to the effects of wind, and thus unstable. In addition, the entire device is hung by a wire rope and pulled up to the corner end portion so as to be stored upside-down in a vertical position, and therefore, there is a concern that the device might fall on somebody's head, taking into consideration the possibility that the wire rope being cut after deterioration. In addition, the rear of the whole device is exposed to the surface of the corner end portion at the time of upside-down storage, and thus, the appearance at the time of storage is poor.
Therefore, the present inventors have proposed a foldable arm type and a single type movable awning device where a corner canvas in a projected corner portion (hereinafter referred to as “projected corner canvas”) is pushed out diagonally forward and in parallel to the corner space portion so as to spread while being unwound, or conversely, the spread projected corner canvas is drawn in diagonally backward and in parallel so as to be wound and stored while being wound, and thus, the above described technical problems can be addressed (see International Patent Application 1 below).
In addition, the inventors have proposed a foldable arm type and a complex type movable awning device gained by further developing and technically improving the above described prior art invention, and furthermore, it is made possible for the projected corner portion of a building and a linear section adjacent to the projected corner portion, a projected corner portion and a recessed corner portion, or the outside of a building, including two projected corner portions, to be efficiently covered with a projected corner canvas, a rectangular canvas and a recessed corner canvas, so that a better appearance can be provided (see International Patent Application 2 below).
Recently the ideas used for the above described single type and complex type movable awning devices have been changed, and new single type and complex type movable awning devices have been proposed, which are provided with a transverse sliding structure where a projected corner canvas which is spread from the wall side portion to the front is moved forward so as to be project into a corner space portion or to move backward so as to be wound up for storage when the canvas is stored (see International Patent Applications 3 and 4 below).
In the case of the complex awning devices described in these International Patent Applications 3 and 4, front bars for a number of canvases which relates to combinations, such of a projected corner canvas and a rectangular canvas or a recessed corner canvas, two projected corner canvases located on the two sides, front and rear, and a rectangular canvas in the middle portion, and furthermore, two projected corner canvases which are combined back-to-back so as to be located in the front and rear, are slidable relative to each other.
However, the winding rollers for winding these are formed so that a number of winding rollers which are supported by bearings at appropriate intervals in the up-down direction independently and separately wind and unwind individual canvases.
Therefore, the present invention provides a complex awning device (hereinafter simply referred to as “complex device”) where projected corner canvases from among a number of canvases which relate to the above described combination are made so as to be freely and transversely slidable, while the number of canvases which include the projected corner canvases can be wound and unwound around single winding rollers, and thus integrated into one complex device.
In addition, the present invention also provides a winding roller for a number of canvases which forms the main portion of the invention and is useful as a single product which can replace another roller.
In addition, accessory devices for dealing with various technological problems which relate to implementation of the present invention are also provided.
Concerning invention relating to complex devices SQII1 to 10 and SQL1 and 2 in first group (hereinafter referred to as first invention) and effects thereof.
Here, the symbols attached at the end of each section within parentheses indicate the embodiments of the disclosed complex devices and the winding rollers.
The first invention is characterized by being formed in such a manner so that (1) . . . winding rollers J1, J2 and J4 to J7 for winding and unwinding projected corner canvases G1 and G2 and rectangular canvases P1 and P2 in such a state that they overlap are supported by bearings, the above described rectangular canvases P1 and P2 are attached to these winding rollers J1, J2 and J4 to J7, and sliders 12 and 12a which are freely slidable and to which the above described projected corner canvases G1 and G2 are attached, the front bar R2 for the above described rectangular canvases P1 and P2 is supported by the foldable arms V1, V2, Y1, Y2, Z1, Z2, Z3 and Z4 in such a manner so as to be freely translatable, and the front bar F2 for the projected corner canvases G1 and G2 is formed in the above described front bar R2 so as to be freely slidable (SQII1 to 10, SQL1 and 2).
As a result, the outside of the building which includes a corner space portion of the corner space portion N1 is integrally covered, so that the appearance is improved, and the canvases are stored in a compact space in a portion near the wall, without protruding from the projected corner portion N1 when stored.
In the process of operation of the first invention, (2) . . . the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 that are wound around the winding rollers J1, J2 and J4 to J7 are unwound so as to spread, and from among these, the spread projected corner canvases G1 and G2 are transversely slid along the above described winding rollers J1, J2 and J4 to J7 and the front bar R2 for the rectangular canvases P1 and P2, and thus projected to the outside of the building which includes a corner space portion of the projected corner portion N1.
In addition, (3) . . . the projected corner canvases G1 and G2 that are projected to the outside of the building which includes a corner space portion of the projected corner portion N1 are transversely slid to the rear along the winding rollers J1, J2 and J4 to J7 and the front bar R2 for the rectangular canvases P1 and P2 while maintaining the spread state, and then wound around the above described winding rollers J1, J2 and J4 to J7 in such a state that the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 overlap.
As a result of the above described (2) and (3), the operation of unwinding and spreading the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 and the forward movement of the spread projected corner canvases G1 and G2 into the corner space portion, in addition to the backward movement of the projected corner canvases G1 and G2 that are spread into the corner space portion and the operation of winding the two canvases G1, G2, P3 and P4, can be carried out smoothly.
Concerning invention relating to complex devices SUII1 and 2 in second group (hereinafter referred to as second invention) and effects thereof.
In the second invention, (4) . . . the rectangular canvases P1 and P2 described in the above (1) are replaced with recessed corner canvases P3 and P4 (SUII1 and 2).
As a result, the outside of the building between the corner space portion of the projected corner portion N1 and the corner space portion of the recessed corner portion L is integrally covered so that the appearance is improved and the canvases are stored in a compact space in the wall without protruding from the projected corner portion N1 at the time of storage.
In the process of operation of the second invention, (5) . . . the projected corner canvases G1 and G2 as well as recessed corner canvases P3 and P4 that have been wound around the winding rollers J1, J2 and J4 to J7 are unwound and spread, and from among these, the spread projected corner canvases G1 and G2 are transversely slid along the above described winding rollers J1, J2 and J4 to J7 and the front bar R2 of the recessed corner canvases P3 and P4, and thus, projected to the outside of the building including the corner space portion of the projected corner portion N1.
In addition, (6) . . . the projected corner canvases G1 and G2 protruding to the outside of the building that includes the corner space portion of the projected corner portion N1 are transversely slid to the rear along the winding rollers J1, J2 and J4 to J7 and the front bar R2 of the recessed corner canvases P3 and P4 while maintaining the spread state thereof, and then, the projected corner canvases G1 and G2 as well as the recessed corner canvases P3 and P4 are wound around the above described winding rollers J1, J2 and J4 to J7 in such a state that the canvases overlap.
As a result of the above described (5) and (6), the operation of unwinding and spreading the projected corner canvases G1 and G2 and the recessed corner canvases P3 and P4 and the forward movement of the spread projected corner canvases G1 and G2 into the corner space portion, in addition to the backward movement of the projected corner canvases G1 and G2 that are spread into the corner space portion and the operation of winding the two canvases G1, G2, P3 and P4, can be carried out smoothly.
Concerning Invention Relating to Complex Device SQSIV in Third Group (Hereinafter Referred to as “Third Invention”) and Effects Thereof
The third invention is characterized in that (7) . . . winding rollers J1, J2 and J4 to J7 for winding and unwinding two projected corner canvases G1 or G2 and G11, front and rear, and the rectangular canvases P1 and P2 are in such a state that the canvases overlap are supported by bearings, and the above described rectangular canvases P1 and P2 are attached to these winding rollers J1, J2 and J4 to J7, and at the same time, sliders 12 and 12a, to which the above described projected corner canvases G1, G2 and G11 are attached to and freely slidable along, are incorporated, and the front bar R2 of the above described rectangular canvases P1 and P2 is supported by foldable arms V1 to V4, Y1, V2, V3 and Y4 so as to be freely translatable, and at the same time, the front bar F2 of the projected corner canvases G1, G2 and G11 is formed in the above described front bar R2 so as to be freely slidable (SQSIV).
As a result, the outside of a building where the two end portions, front and rear, are projected corner portions N1 and N2 and the portion between them becomes a straight line section having an appropriate length is integrally covered so that the appearance is improved.
In the process of operation of the third invention, (8) . . . two projected corner canvases G1 or G2, front and rear, and rectangular canvases P1 or P2, that have been wound around the winding rollers J1, J2 and J4 to J7 are unwound and spread, and from among these, the spread projected corner canvases G1, G2 and G11 are transversely slid along the above described winding rollers J1, J2 and J4 to J7 and the front bar R2 of the rectangular canvases P1 and P2 in the two directions, front and rear, and thus, projected to the outside of the building which includes the corner space portions of the two projected corner portions N1 and N2.
In addition, (9) . . . the projected corner canvases G1, G2 and G11 protruding to the outside of the building that includes the corner space portions of the two projected corner portions N1 and N2 are transversely slid along the winding rollers J1, J2 and J4 to J7 and the front bar R2 of the rectangular canvases P1 and P2 to the center portion of the device while maintaining the spread state thereof, and then, the two projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 are wound around the above described winding rollers J1, J2 and J4 to J7 in such a state that the canvases overlap.
As a result of the above described (8) and (9), the spreading operation of the projected corner canvases G1, G2 and G11 located front and rear and the rectangular canvas P1 or P2, three canvases in total, and movement of the spread projected corner canvases G1, G2 and G11 to the corner space portion in addition to the movement of the two projected corner canvases G1 and G2 projecting to the corner space portion to the center of the device and the operation of winding the canvases G1, G2 and P1 or P2, three canvases in total, in such a state that the canvases overlap can be carried out smoothly.
Concerning Invention Relating to Complex Device SSII in Fourth Group (Hereinafter Referred to as Fourth Invention) and Effects Thereof
The fourth invention is characterized in that (10) . . . the winding roller J3 for winding and unwinding the two projected corner canvases G1 and G11, front and rear, in such a state that the canvases overlap is supported by bearings, and sliders 12 and 12w, to which the above described projected corner canvases G1 and G11 are respectively attached and which are freely slidable, are incorporated into the above described winding roller J3, and the transverse guide rail R4 for supporting the respective front bars F2 and F3 of the above described projected corner canvases G1 and G11 is supported by foldable arms V1, V2, Y1 and Y2 so as to be freely translatable, and the two front bars F2 and F3 of the projected corner canvases G1 and G11 are formed in the above described transverse guide rail R4 so as to be freely slidable relative to each other (SSII).
As a result, the outside of the building where the two end portions, front and rear, are the projected corner portions N1 and N2 and the distance between these is a relatively short straight line section is integrally covered so that the appearance is improved.
In the process of operation of the fourth invention, (11) . . . the two projected corner canvases G1 and G11 that have been wound around the winding roller J3 are unwound and spread, and the two spread projected corner canvases G1 and G11 are transversely slid relative to each other in the two directions, front and rear, along the above described winding roller J3 and the transverse guide rail R4, and thus, projected to the outside of the building that includes the corner space portions of the two projected corner portions N1 and N2.
In addition, (12) . . . the projected corner canvases G1 and G11 projecting to the outside of the building that includes the corner space portions of the two projected corner portions N1 and N2 are transversely slid relative to each other in the two directions, front and rear, along the winding roller J3, the transverse guide rail R4 and the front bars F2 and F3 while maintaining the spread state thereof, and then, the two projected corner canvases G1 and G2 are wound around the above described winding roller J3 in such a state that the canvases overlap.
As a result of the above described (11) and (12), the operation of spreading the two projected corner canvases G1 and G11, front and rear, and the transverse movement of the spread projected corner canvases G1 and G11 to the corner space portion in addition to the transverse movement of the two projected corner canvases G1 and G11 protruding into the corner space portion, front and rear, relative to each other and the winding operation of the two canvases G1 and G11 in such a state that the canvases overlap can be carried out smoothly.
Next, the inventions according to the dependent claims concerning the winding rollers J1 to J7 of a number of canvases G1, G2, G11 and P1 to P4 and the sliders 12, 12a and 12w which are incorporated into these rollers J1 to J7 are listed.
(13) . . . canvas engaging trenches 110 for the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 and a slide guide path 112 with a slit 111 are created parallel to each other in the winding rollers J1, J2 and J4 to J7 in the direction of the axis, and from among these, the sliders 12 and 12a of the projected corner canvases G1, G2 and G11 are incorporated into the slide guide path 112.
(14) . . . slide guide paths 112 in two parallel columns are created in the winding roller J3 in the direction of the axis, and the sliders 12 and 12w of the projected corner canvases G1 and G11 are incorporated into the respective slide guide paths 112.
(15) . . . a canvas engaging trench 121, into which the top hems 1 of the projected corner canvases G1, G2 and G11 are attached, is created in the center protrusions of the sliders 12, 12a and 12w, and the wing plate portions 123 which protrude to the two sides of the sliders 12, 12a and 12w are inserted into the side wall portions of the slide guide paths 112.
(16) . . . wing plate portions 123 having a slit trench 122 protrude from the two sides of the sliders 12, 12a and 12w, small wheels 124 are attached at appropriate intervals to the slit trench 122 so as to be freely rotatable, and the small wheels 124 are engaged in the rail trench 113 created in the side wall portion of the slide guide paths 112.
As a result of the above described (13) to (16), smoothly transverse sliding of the spread projected corner canvases G1 and G2 can be secured without fail.
In addition, the inventions according to the dependent claims concerning the projected corner canvases G1, G2 and G11, the winding rollers J1 to J7 and other concrete configurations of the present invention are listed in the following.
(17) . . . the projected corner canvases G1 and G11 are formed of a canvas main body portion X1 in rectangular form and a canvas protrusion X2 which protrudes to one side in such a state that they are in an approximate right angle trapezoid form when spread, the top hems 1 of the projected corner canvases G1 and G11 are attached to the sliders 12 and 12w, and the bottom hems 2 of the canvases are attached to the front bars F2 and F3.
(18) . . . connection members, such as wires 193 and 194 and belts, are stretched between the sliders 12 and 12w and the front bars F2 and F3.
(19) . . . the projected corner canvas G2 is formed in an approximate triangular form when spread, connection wires 541 and 542 penetrate through the diagonal portions 3a and 3b of the triangular canvas G2, the base end portions of these wires are attached to the two end portions, front and rear, of a relatively short slider 12a, and the front end portions of the wires are attached to the front bars F2 and F3 in the vicinity of the two ends, front and rear, of the bottom hem 2a of the canvas.
As a result of the above described (17) to (19), the corner space portion of the projected corner portion N1 is covered with the projected corner canvases G1 and G11 in a right angle trapezoid form and the projected corner canvas G2 in a triangular form in such a state that the appearance becomes excellent, and in addition, the projected corner canvases G1, G2 and G11 can be prevented from changing in form within the plane when the canvases are wound and transversely slid, and thus, a smooth transverse movement is made possible.
In addition, the projected corner canvases G1, G2 and G11 are well-balanced when being wound and unwound, and the spread projected corner canvases G1, G2 and G11 are supported in a tense state.
Here, substitute means which have the same function as the sliders 12, 12a and 12w of the present invention and of which the configurations are simplified are listed.
(20) . . . the sliders 12, 12a and 12w, to which the top hems 1 of the projected corner canvases G1, G2 and G11 are attached, are replaced with the slide caps 12x which are engaged in the top hems 1 of the projected corner canvases G1 and G2.
(21) . . . canvas engaging trenches 110 for the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 and slide guide paths 114 are created in the winding roller J8 into which a slide cap 12x is incorporated, and slide caps 12x which are engaged in the top hems 1 of the projected corner canvases G1, G2 and G11 are incorporated in the slide guide paths 111 and 114 from among the above described trenches and paths.
(22) . . . the projected corner canvases G1 and G11 are formed of a canvas main body portion X1 in a rectangular form and a canvas protruding portion X2 which protrudes to one side of the canvas main body portion in an approximate right angle trapezoid form when spread, and connection members, such as wires 193 and 194 and a belt, are stretched between the slide caps 12x which are engaged in the top hems 1 of the projected corner canvases G1 and G11 and the front bars F2 to which the bottom hems 2 of the projected corner canvases G1 and G11 are attached.
(23) . . . the projected corner canvas G2 is formed in an approximate triangular form when spread, and connection wires 541 and 542 penetrate through diagonal portions 3a and 3b of the triangular canvas G2, the base end portions of these wires are attached to the two end portions, front and rear, of the slide cap 12x, and the front end portions of the wires are attached to the front bars F2 in the vicinity of the two ends, front and rear, of the bottom hem 2a of the canvas.
In these cases, the corner space portions of the projected corner portions N1 and N2 are covered with the projected corner canvas G1 in a right angle trapezoid form and the projected corner canvas G2 in a triangular form in such a state that the appearance becomes excellent in the same manner as in the above described cases, and in addition, the projected corner canvases G1, G2 and G11 can be prevented from changing in form within the plane when the canvases are wound and transversely slid, and a smooth transverse movement is made possible.
In addition, the projected corner canvases G1, G2 and G11 are well-balanced when being wound and unwound, and the spread projected corner canvases G1, G2 and G11 are supported in a tense state.
(24) . . . a bulk member of the roller main body 11 is attached to the winding rollers J1, J2 and J4 to J8.
(25) . . . the bulk member is a bulk ring 331 in spiral form, and the outer diameter of this ring increases step by step from the vicinity of the middle of the winding rollers J1, J2 and J4 to J8 towards the end portion of the roller or the two end portions, front and rear.
(26) . . . a bulk cloth 32 is attached to the diagonal portions 3 of the projected corner canvases G1 and G11.
As a result of the above described (24) to (26), the projected corner canvases G1 and G11 in a right angled trapezoid form can be well-balanced and made uniform when being wound.
(27) . . . a manually operable device or an electrically driven device for winding or unwinding a number of canvases G1, G2, G11 and P1 to P4 is incorporated into the axis end portion of the winding roller J1 into which the sliders 12, 12a and 12w are incorporated.
(28) . . . an electrically driven motor M1 for winding or unwinding a number of canvases G1, G2, G11 and P1 to P4 is incorporated inside the winding rollers J2 and J3 into which the sliders 12, 12a and 12w are incorporated.
(29) . . . a motor output axis 271 and an axis portion 272 for fixture are provided in the two end portions, front and rear, of the electrically driven motor M1, and the movement conveying socket 281 which is engaged in one motor output axis 271 is engaged inside the roller main body 11, and the rear end portion of the above described electrically driven motor M1 is inserted into the end cap 152 of the roller main body 11 while the other axis portion 272 for fixture is engaged with the end cap 142 of the casing K1 for storing the winding rollers J2 and J3.
Next, the configurations where the spread projected corner canvases G1, G2 and G11 are transversely slid to the corner space portions and slid backwards from the corner space portions as well as the inventions according to the dependent claims concerning these transverse devices are listed in the following.
(30) . . . stopping portions 241 for transverse movement operations of the projected corner canvases G1, G2 and G11 are provided in the front bars F2 and F3.
(31) . . . stopping flaps 242 for transverse movement operations of the projected corner canvases G1 and G11 are provided in the vicinity of the top hems 1 of the projected corner canvases G1 and G11.
(32) . . . movement conveying members 561, 562 and 66, such as ropes and wires, which transversely slide the front bars F2 and F3 of the projected corner canvases G1, G2 and G11 are stretched between foldable arms V1, Y1 and Z1 on one side and the front bars F2 and F3.
(33) . . . one of the movement conveying members 561 and 562 is used for backward movement and the other for forward movement, and they hang from the vicinity of the base end portions of the foldable arms V1 and Y1.
(34) . . . winding reels 60, 60a and 60b of the movement conveying wires 561 and 562 are attached to the end portions of the winding rollers J4 to J7, and these winding reels 60, 60a and 60b are rotated forwards and backwards, and thus, the spread projected corner canvases G1 and G2 are transversely slid.
(35) . . . movement conveying wires 561 and 562 for transversely sliding the front bars F2 and F3 backward and frontward are stretched between one of the foldable arms V1 and Y1 and the front bars F2 and F3 of the projected corner canvases G1, G2 and G11, and winding reels 60, 60a and 60b for winding one of the movement conveying wires 561 and 562 and unwinding the other is attached to the end portion of the winding rollers J4 to J7.
(36) . . . an electrically driven motor M4 for rotating forward and backward the winding reel 60 for winding one of the movement conveying wires 561 and 562 and unwinding the other and an electrically driven motor M1 for rotating forward and backward the winding roller J4 for winding and unwinding the projected corner canvases G1 and G2 are incorporated into the winding roller J4.
(37) . . . the rear half portion of the main body of the electrically driven motor M4 is inserted into the end portion of the winding roller J4 and the winding reel 60 is engaged with and secured to the front half portion of the main body of this electrically driven motor M4 and the front end axis portion 591 of this electrically driven motor M4 is secured to the end cap 146 of the casing K1.
(38) . . . one electrically driven motor M5 or M6 for rotating the winding rollers J5 to J7 and the winding reels 60, 60a and 60b forward and backward or a driving axis 73 is incorporated in the winding rollers J5 to J7, and when the movement of either the above described winding rollers J5 to J7 or the winding reels 60, 60a and 60b is regulated from the outside and thus the rotations thereof are stopped, the other winding rollers J5 to J7 and any of the winding reels 60, 60a and 60b recoil or rotate backward.
(39) . . . a means for regulating the rotation of the winding rollers J5 to J7 from the outside is made up of a rotation stopper 611 which is attached to the rear end portion of the winding rollers J5 to J7 and a guide protrusion 135 with which this rotation stopper 611 engages, and this guide protrusion 135 is provided in the inner wall portion on the rear surface of the casing K1 for winding and storing the projected corner canvases G1 and G2.
(40) . . . the rear half portion of the main body of the electrically driven motor M5 is inserted into the end portion of the winding roller J5, and the rear end output axis 594 of this electrically driven motor M5 is engaged into and secured to a movement conveying socket 281 which is inserted into and engaged with the winding roller J5, and a winding reel 60 is engaged with and secured to the front half portion of the main body of this electrically driven motor M5 and the front end supporting axis 593 of this electrically driven motor M5 is supported by the end cap 146 of the casing K1 for storing the winding roller J5 via bearings.
(41) . . . a sun gear 70 is engaged with the main body portion of the electrically driven motor M6 or a driving axis 73 which is manually rotated, and an internally-toothed gear 71 is formed in the winding reels 60a and 60b and a planetary gear 72 which engages with the above described sun gear 70 and the internally-toothed gear 71 is attached to the end portion of the winding rollers J6 and J7.
(42) . . . the rear half portion of the main body of the electrically driven motor M6 is inserted into the end portion of the winding roller J6 and the rear portion of the main body of this electrically driven motor M6 is inserted into and engaged with the movement conveying socket 283 which is inserted into and engaged with the above described winding roller J6, and a winding reel 60a is inserted into and engaged with the end portion of the electrically driven motor M6 and the front end axis portion 591 of this electrically driven motor M6 is secured to the end cap 146 of the casing K1 for storing the winding roller J6.
(43) . . . the rear half portion of the driving axis 73 is inserted into the end portion of the winding roller J7 and the portion of the driving axis 73 in the vicinity of the rear end is inserted into and engaged with the movement conveying socket 283 which is inserted into and engaged with the winding roller J7, and the winding reel 60b is inserted into and engaged with a portion of this driving axis 73 which is close to the front end, and at the same time, manually operable gear devices 161 and 162 are formed and the end portion of the above described driving axis 73 is supported by the end cap 146 of the casing K1 for storing the winding roller J7 via bearings.
(44) . . . the end cap 146 which works as a casing for the above described winding reels 60, 60a and 60b is attached to the front end portion of the casing K1 for the winding rollers J4 to J7 into which the winding reels 60, 60a and 60b are incorporated and guide long holes 148 and 149 through which movement conveying wires 561 and 562 for the above described winding reels 60, 60a and 60b penetrate are created in the bottom portion of the casing.
(45) . . . an fluctuation flap 62 for pushing up the bottom hems 2 and 2a of the projected corner canvases G1, G2 and G11 is attached to the rear end of the upper portions of the front bars F2 and F3 of the canvases G1, G2 and G11.
As a result, the canvas on the upper side can be easily prevented from slacking when stored.
(46) . . . an extendable net 631 is fabricated at the rear end of the upper portion of the front bars F2 and F3 of the projected corner canvases G1, G2 and G11 and on the rear surface of the projected corner canvases G1 and G2 close to the bottom hems 2 and 2a.
As a result, the canvas on the upper side is supported in a tense state when being spread and no slack is left when stored.
In addition, the inventions according to the dependant claims concerning the mutual relationship between the front bars and the structures thereof are listed in the following.
(47) . . . the front bar F2 for the projected corner canvases G1 and G2 is placed outside and the front bar R2 for the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 is placed inside.
(48) . . . an engaging trench 351 in which the bottom hems 2 of the projected corner canvases G1, G2 and G11 are engaged and an engaging trench 352 for the front skirt 221 are respectively created in the front bar F2 on the outside in the longitudinal direction while an engaging trench 381 in which the bottom hems 6 of the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 are engaged and an engaging trench 382 for a front skirt 391 are respectively created in the front bar R2 on the inside in the longitudinal direction.
(49) . . . sliding guide trenches 371 and 372 for the front bar F2 on the outside are created in the front bar R2 on the inside in the longitudinal direction.
(50) . . . the front bar F3 for the projected corner canvas G1 is engaged with the transverse guide rail R4 so as to be freely slidable, and the front bar F2 for the projected corner canvas G1 is engaged with the front bar F3 so as to be freely slidable.
(51) . . . an engaging trench 351 in which the bottom hem 2 of the projected corner canvas G1 is engaged and an engaging trench 352 for the front skirt 221 are respectively created in the front bar F2 in the longitudinal direction, and an engaging trench 381 in which the bottom hem 6 of the projected corner canvas G11 is engaged, an engaging trench 382 for the front skirt 391 and slide guide trenches 371 and 372 for the above described front bar F2 are respectively created in the front bar F3 in the longitudinal direction, and slide guide trenches 441 and 442 for the above described front bar F3 are created in the transverse guide rail R4 in the longitudinal direction.
In addition, the inventions according to the dependant claims where the front bar has a rotating structure are listed in the following.
(52) . . . when the front bar F5 on the outside is engaged with and guided along the front bar R5 on the inside so as to be freely rotatable, guide wheels 861 and 862 which horizontally rotate are incorporated in the rear end portion of the above described front bar F5, guide wheels 931 and 932 which horizontally rotate are provided in the front end portion of the above described front bar R5, these guide wheels 931 and 932 rotate on the inner surface of the above described front bar F5, and the above described guide wheels 861 and 862 rotate in the wheel chambers 881 and 882 formed above and beneath the above described front bar R5.
(53) . . . a wheel holder 92 is inserted into and secured to the front end portion of the front bar R5 on the inside, and guide wheels 931 and 932 which horizontally rotate are supported by this wheel holder 92 in the upper and lower end locations via bearings.
Finally, the inventions of winding rollers J1 to J7 for a number of canvases which form the main portion of the above described present invention and are useful as single products which can replace other rollers are listed in the following.
(54) . . . a canvas engaging trench 110 to which the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 are attached and a slide guide path 112 are created parallel to the direction of the axis line in the roller main body 11 for winding or unwinding the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in such a state that the canvases overlap, and the invention is characterized in the sliders 12 and 12a for allowing the spread projected corner canvases G1 and G2 to be transversely and freely slidable are incorporated into the slide guide path 112 from among the trenches and the path (J1 to J7).
(55) . . . a manually operable device or an electrically driven device for winding or unwinding the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in such a state that the canvases overlap is incorporated into the axis end portion of the roller main body 11 into which the sliders 12 and 12a are incorporated (J1).
(56) . . . an electrically driven motor M1 for winding or unwinding the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in such a state that the canvases overlap is incorporated into the roller main body 11 into which the sliders 12 and 12a are incorporated (J2).
(57) . . . a motor output axis 271 and an axis portion 272 for fixture are provided in the two end portions, front and rear, of the electrically driven motor M1, where the movement conveying socket 281 which is engaged with one motor output axis 271 is inserted into and engaged with the roller main body 11, the rear portion of the above described electrically driven motor M1 is inserted into and engaged with the end cap 152 of the roller main body 11, and the other axis portion 272 for fixture is inserted into and engaged with the end cap 142 of the casing K1 for winding and storing the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in such a state that the canvases overlap (J2).
(58) . . . winding reels 60, 60a and 60b for the movement conveying wires 561 and 562 are incorporated in the front end portion of the roller main body 11 into which the sliders 12 and 12a are incorporated, and these winding reels 60, 60a and 60b are rotated forward and backward and thus the spread projected corner canvases G1 and G2 are transversely slid (J4 to J7).
(59) . . . an electrically driven motor M1 for winding or unwinding the projected corner canvases G1 and G2 and the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in such a state that the canvases overlap and an electrically driven motor M4 for rotating forward and backward a winding reel 60 for winding one of the movement conveying wires 561 and 562 and unwinding the other are incorporated into the roller main body 11 into which the sliders 12 and 12a are incorporated (J4).
(60) . . . the rear half portion of the main body of the electrically driven motor M4 is inserted into the front end portion of the roller main body 11, a winding reel 60 is inserted into and fixed to the front half portion of the main body of the electrically driven motor M4, and the front end axis portion 591 of this electrically driven motor M4 is secured to the end cap 146 of the casing K1 (J4).
(61) . . . winding rollers J5 to J7 are provided with the roller main body 11 into which the sliders 12 and 12a are incorporated and one electrically driven motor M5 or M6 or a driving axis 73 for rotating the winding reels 60, 60a and 60b for the movement conveying wires 561 and 562 forward and backward, where the operation of one of the above described roller main body 11 and the winding reels 60, 60a and 60b is regulated from the outside so that the rotation thereof is stopped so that another one of the roller main body 11 and the winding reels 60, 60a and 60b recoils or rotates backward (J5 to J7).
(62) . . . the latter half portion of the main body of the electrically driven motor M5 is inserted into the front end portion of the roller main body 11, the rear end output axis 594 for this electrically driven motor M5 is engaged with and secured to the movement conveying socket 281 which is inserted into the roller main body 11, the winding reel 60 is inserted into and secured to the front half portion of the main body of this electrically driven motor M5, and the front end support axis 593 for this electrically driven motor M5 is supported by the end cap 146 of the casing K1 via bearings (J5).
(63) . . . a sun gear 70 is engaged with the main body portion of the electrically driven motor M6 or the driving axis 73 which is manually rotated, an internally-toothed gear 71 is formed in the winding reels 60a and 60b, and a planetary gear 72 which engages the above described sun gear 70 and the internally-toothed gear 71 are attached to the front end portion of the roller main body 11 (J6 and J7).
(64) . . . the rear half portion of the electrically driven motor M6 is inserted into the front end portion of the roller main body 11, the rear portion of the main body of this electrically driven motor M6 is inserted into and engaged with the movement conveying socket 283 which is inserted into and engaged with the above described roller main body 11, the winding reel 60a is inserted into and engaged with the front end portion of this electrically driven motor M6, and the front end axis portion 591 for this electrically driven motor M6 is secured to the end cap 146 of the casing K1 (J6).
(65) . . . the rear half portion of the driving axis 73 is inserted into the front end portion of the roller main body 11, a portion of this driving axis 73 in the vicinity of the rear end is inserted into and engaged with the movement conveying socket 283 which is inserted into the above described roller main body 11, and the winding reel 60b is inserted into and engaged with a portion of the driving axis 73 which is close to the front end, at the same time manually operable gear devices 161 and 162 are formed and the front end portion of the above described driving axis 73 is supported by the end cap 146 of the casing K1 via bearings (J7).
Though the canvases are usually opaque, the figures show the canvases in a see-through state if necessary in order to show the configuration on the rear side which would otherwise be hidden. In the same manner, the casings are shown in a see-through state if necessary in order to show a winding roller incorporated in the casing.
Here, though many figures three dimensionally show the awning devices which are attached to frames in L shape, in band plate form, in crank form, in C shape and the like so that the awning device becomes almost horizontal, this is for the sake of convenience in drawing figures. Usually the awning devices are attached so that the spread projected corner canvases and rectangular canvases are secured in such a state as being inclined appropriately or the angle can vary freely.
In the following, the embodiments of the present invention are described in reference to the accompanying drawings. First, foldable arm type complex device shown in
Second, embodiments are described in the case where a projected corner canvas in the complex device is transversely slid by means of a manual operable movement conveying rope as shown in
Third, the lateral arm type complex device shown in
Finally, the winding roller for a number of canvases according to another embodiment is described.
Concerning Foldable Arm Type Complex Device
This type of complex devices can be divided into first to fourth groups for the sake of convenience, and from among these the complex devices SQII1 to 7 in the first group are attached as shown in
As shown in
As shown in
As shown in
In the following, the complex devices in the first to fourth groups are described in sequence in reference to the accompanying drawings.
Concerning Complex Devices in First Group
In the complex devices in this group, awning devices S1 and S2 for projected corner canvases G1 and G2 which cover the corner space portion in the projected corner portion N1 (hereinafter referred to as awning devices for projected corner) and awning devices Q1 and Q2 for rectangular canvases P1 and P2, which are either long or short, for covering the outside of a building in straight line sections (hereinafter referred to as rectangular awning devices) are combined and integrated.
The configurations of the respective portions in the awning device S1 for a projected corner and a rectangular awning device Q1 in the complex device SQII1 according to the first embodiment shown in
(1) Concerning Canvas Winding Device
K1 is a casing for supporting the winding roller J1 via bearings, which is directly attached to a wall portion on the outer walls W1 (front wall) and W2 (side wall) in the straight line section between the portion close to the corner of the projected corner portion N1 and the rear in an approximate horizontal state or indirectly attached via an appropriate support bracket (not shown) so as to be secured in such a manner so that the angle at which it is inclined is variable and freely adjustable if necessary.
As shown in
111 is a slit created on the surface of the roller main body 11 are in the direction of the axis line and 112 is a guide path for the slider 12 that is formed inside the slit (hereinafter referred to as slide guide path) where the center protrusion of the slider 12 is engaged in the above described slit 111 and the main body portion of the slider 12 is engaged in the slide guide path 112. 110 is a canvas engaging trench in Ω shape to which the rectangular canvases P1 and P2 are attached, and which is created parallel to the direction of the axis line so as to be adjacent to the above described slide guide path 112. 121 is a canvas engaging trench in Ω shape which is created in the center protrusion of the slider 12 and to which the projected corner canvas G1 is attached.
123 indicates wing plate portions having a slit 122, which extend from both sides of the main body portion of the slider 12. 124 indicates small wheels which are engaged in the slits 122 with an appropriate gap, which are attached by means of pins 125 so as to be freely rotatable and guide the rail trenches 113 created on the side wall portions of the above described slide guide path 112 while rotating.
131 indicates an opening through which a canvas is drawn out and which is created in the front of the casing K1, 141 and 142 indicate end caps which are engaged with the two end portions, front and rear, of the casing K1, and have bearing portions 143 and 144 which protrude in the inside of the end caps and where round holes are provided. 151 and 152 indicate end caps which are engaged with the two end portions, front and rear of the roller main body 11, and support axes 153 and 154 which penetrate through the cap main body portion so as to be secured are engaged with the above described bearing portions 143 and 144, respectively, so as to be freely rotatable.
161 indicates a worm gear which is engaged with and secured to the support axis 153 of the end cap 151, and 162 is a worm gear which engages with the worm gear 161 in such a manner so that, as shown in
Here in the case of the above, the casing K1 is not necessary when the end caps 141 and 142 are attached so as to protrude from the outer walls W1 and W2 as the brackets for the bearings of the winding roller J1.
(2) Concerning Corner Canvas
Here, the configuration of the projected corner canvas G1 shown in
The projected corner canvas G1 is raw fabric for a tent made of plain cloth or a synthetic resin in trapezoid form with approximate right angles in a spread state, and made up of the canvas main body portion X1 in rectangular form and a canvas protrusion X2 in the form of a right angled triangle which is projected from one side.
In terms of the outer shape, the top side 1 of the upper end portion of the canvas (hereinafter referred to as “top hem of canvas”) and the bottom side 2 of the lower end portion of the canvas (hereinafter referred to as “bottom hem of canvas”) are parallel to each other, and a diagonal side 3 of which the angle of inclination is at approximately 45 degrees is placed between the front end portion of the bottom hem of the canvas 2 and the front end portion of the top hem 1 of the canvas so as to spread toward the bottom, and in addition, a perpendicular side 4 (hereinafter referred to as perpendicular portion of canvas) is placed between the rear end portion of the bottom hem 2 of the canvas and the rear end portion of the top hem 1 of the canvas.
181 and 182 are through holes in bag form which are created in the top hem 1 of the canvas and the bottom hem 2 of the canvas, and fixing members, such as a wire 183 or 184, a tube or a rope, penetrate through the inside of the holes.
191 and 192 are through holes in bag form which are created so as to cross along diagonal lines connecting the four corner portions of the canvas main body portion X diagonally, and canvas tensing members, such as a connection wire 193 or 194, a connection belt or a rope, penetrate through the inside of the holes. An engaging piece 195 or 196 of the front end portion of the wire is drawn out diagonally upward from the opening through which the top hem of the crossing through holes 191 and 192. The bottom end portion of the wire and the fixture for the wire 197 or 198 are drawn out diagonally downward from the opening at the bottom of the crossing through holes 191 and 192.
Therefore, in order to attach the projected corner canvas G1 to the winding roller J1, first, the top hem 1 of the canvas is placed in such a manner so as to face the canvas engaging trench 121 for the slider 12, and the attachment wire 183 penetrates through the hole 181, and thus, the top hem 1 of the canvas is fixed so that the end is prevented from returning.
Next, screws 101 are screwed in front and rear portions of the canvas engaging trench 121 as shown in
On the other hand the rectangular canvas P1 is raw fabric for a tent made of cloth or a synthetic resin in the same manner as the projected corner canvas G1 and in long rectangular form when spread. As shown in
Thus, the top hem 5 of the canvas faces the canvas engaging trench 110 in the rear half portion of the winding roller J1 and the attachment wire 302 penetrates through the through hole in the hem and the end is prevented from returning, and thus, the rectangular canvas P1 is attached to the winding roller J1.
As a result, the top hem 1 of the projected corner canvas G1 is attached to one winding roller J1 so as to be freely slidable and the top hem 5 of the rectangular canvas P1 is secured.
(3) Concerning Front Bars
F2 indicates a front bar to which the bottom hem 2 of the projected corner canvas G1 is attached, and the front plate portion 341 thereof has a surface in arched form (perpendicular surface is also possible) and the rear surface portion has an opening created therein.
In
R2 indicates a front bar to which the bottom hem 6 of the rectangular canvas P1 is attached and which slides and guides the front bar F2 of the projected corner canvas G1, and the front plate portion 361 thereof has a surface in arched form (perpendicular surface is also possible) which is approximately the same as the above described front bar F2 and the front bar F2 can be inserted into, engaged with and supported by this front bar R2.
371 and 372 indicate an upper guide trench and a lower guide trench created in the upper plate portion 362 and the lower plate portion 363 of the front bar R2, and the protrusion of the upper engaging trench 351 in the front bar F2 and the protrusion of the above described lower engaging trench 352 are inserted into and engaged with the upper guide trench 371 and the lower guide trench 372, respectively. 381 and 382 indicate an upper engaging trench having an opening facing upwards and a lower engaging trench having an opening facing downwards, which are created in a portion with steps formed in the rear half portions of the upper plate portion 362 and the lower plate 363 in the above described front bar R2 in the longitudinal direction. 364 and 365 are flange portions which are formed in the rear surface portions of the upper and lower plate portions 362 and 363 of the front bar R2 and arm attaching plates 264 are engaged with and supported by portions on the rear surface which are close to the two end portions, front and rear, of the front bar R2.
Thus, as shown in
Next, the end portions of the connection wires 193 and 194 that have been drawn out through the opening at the bottom penetrate through the holes 344 and 345 shown in
As a result, the bottom hem 3 of the projected corner canvas G1 and the bottom hem 6 of the rectangular canvas P1 are attached to the front bar F2 and the front bar R2, respectively.
In
391 indicates a front skirt which is formed so as to hang from the front bar R2, where the top hem of this skirt faces the lower engaging trench 382 and the attachment wire 392 penetrates through the hole and prevents the end from returning.
Here 241 indicates an engaging portion (engaging hole is also possible) which is formed so as to protrude from the location at the bottom of which is close to the rear end in the middle area of the front bar F2, and the front end portion of the operational rod (not shown) is engaged with this engaging portion 241 so that the operation for transversely moving the spread projected corner canvas G1 becomes easy.
(4) Concerning Foldable Arms
V1 and V2 indicate lateral V-shaped foldable arms (hereinafter referred to as V-shaped arms), which are a pair of arms that are foldable into two and support the portions of the front bar R2 on the two sides, front and rear, and the rear link 251 and the front link 252 are connected so as to be freely foldable into two inwards, and a spring or a pulling wire (not shown) is incorporated into this connection portion that is foldable into two so that these V-shaped arms V1 and V2 are pressed in the direction in which they extend.
261 indicates brackets for supporting the base end portions of the V-shaped arms V1 and V2, that is to say, the base end portions of the rear links 251 around pins, which are attached to the outer walls W1 and W2 in the locations of the above described casing K1 at the bottom, and the bracket 261 for one V-shaped arm V1 and the bracket 261 for the other V-shaped arm V2 are attached to a location in the front end portion of the winding roller J1 close to the corner of projected corner portion N1 and a portion in the vicinity of the rear portion of the winding roller J1, respectively, with a space in between.
262 indicates brackets for supporting the front end portions of the V-shaped arms V1 and V2, that is to say, the front end portions of the front links 252 around pins, and as shown in
(5) Concerning Electrically Driven Structure of Winding Rollers
The above described winding roller J1 is manually operable through rotation, while the winding roller J2 in the second example shown in
In these figures, the electrically driven motor M1 penetrates through the rear portion of the roller main body 11, and a motor output axis 271 and an axis portion for fixture 272 protrudes from the front end portion and the rear end portion of the motor, respectively.
281 indicates a movement conveying socket with a notch 283 which engages with the roller main body 11, and a motor output axis 271 is engaged in a hole 282 in this axis. 155 indicates a through hole in the end cap 152 and the rear portion of the electrically driven motor M1 is supported by this through hole 155 via a bearing.
Thus, the movement conveying socket 281 is engaged with and secured to the motor output axis 271 and the electrically driven motor M1 penetrates through the rear portion of the roller main body 11 while the end cap 152 penetrates through the rear portion of the main body of the electrically driven motor M1, and in addition, is engaged with the rear end portion of the roller main body 11, and thus, the rear end axis portion 272 of the electrically driven motor M1 is engaged in and secured in a long hole (square hole is also possible) in the bearing portion 145 of the end cap 142. As a result, the electrically driven motor M1 is incorporated in the roller main body 11.
Accordingly, when the electrically driven motor M1 is driven, the output axis 271, the movement conveying socket 281 and the roller main body 11 rotate forward and backward together, so that the operation of winding and unwinding the projected corner canvas G1 and the rectangular canvas P1 are automated and energy is conserved.
Concerning Process for Winding and Storing Projected Corner Canvas and Rectangular Canvas
As shown in
Thus, the projected corner canvas G1 is pulled down to the rear while remaining in a spread state, and at this time, the front bar F2 of the bottom hem 2 of, the canvas recedes along the front bar R2 of the rectangular canvas P1, and together with this, the slider 12 of the top hem 1 of the canvas recedes along the slide guide path 112.
As a result, the projected corner canvas G1 transversely slides parallel to the rear portion of the device, as shown in
Naturally, the slider 12 of the top hem 1 of the canvas recedes to the rear half portion of the roller main body 11, or at least the canvas protrusion X2 in triangular form is pulled down to a location in the rear to such a degree that it does not protrude from the projected corner portion N1 along the lines connecting side walls W2.
Next, in the case of the winding roller J1 in the first example shown in
Thus, the projected corner canvas G1 and the rectangular canvas P1 are wound around the winding rollers J1 and J2 from below in such a state so as to overlap with the surface of the respective top hems 1 and 5 of the canvases facing inward and the rear surface facing outward and wound up, as shown in
At this time, the V-shaped arms V1 and V2 are folded against an opening and pressing force resulting from a spring incorporated in the connection portions, which are foldable in two, and folded into a compact space for storing the canvases with the front bar R2 and the front bar F2, which is inserted and engaged with the front bar R2 moving linearly and in parallel to the wall portion.
In the case of the above, the connection wires 193 and 194 cross between and connect the front bar F2 and the slider 12 so as to support the projected corner canvas G1 in a spread and tense state. Therefore, the canvas main body portion X1 can be prevented from being deformed within the surface when the spread projected corner canvas G1 moves transversely through operation, and thus, smooth forward and backward movement of the projected corner canvas G1 can be ensured.
Concerning Process for Unwinding and Spreading Projected Corner Canvas and Rectangular Canvas
Next, in the case where the projected corner canvas G1 and the rectangular canvas P1 wound around the winding rollers J1 and J2 are spread to the front of the building, the operation rod, which is engaged with the hook 164 of the manually operable device, is operated so as to be rotated in the direction opposite to that above, or the electrically driven motor M1 is driven so as to be rotated in the direction for unwinding.
Thus, the projected corner canvas G1 and the rectangular canvas P1 wound around the winding rollers J1 and P1 are unwound, and in addition, an elastic, pressing force for the V-shaped arms V1 and V2 folded into the wall portion is released, and this force moves and rotates the V-shaped arms V1 and V2 in such a direction that they extend and spread, and as shown in
As a result, the projected corner canvas G1 and the rectangular canvas P1 are unwound to the front of the front wall W1 so as to be supported in a spread and tense state.
Next, the front end hook portion of an operation rod (not shown) is hooked onto the engaging portion 241 of the front bar F2 from below, and then the canvases are operated so as to slide toward the corner space portion, or in the case where the engaging portion 241 is at such a level as to be reachable by hand, the engaging portion 241 is held and pushed forward for the operation.
Thus, the projected corner canvas G1 translates and is pushed out into the corner space portion while remaining in a spread state. At this time, the front bar F2 of the bottom hem 2 of the canvas transversely slides along the front bar R2 and the slider 12 of the top hem 1 of the canvas transversely slides along the slit 111 and the slide guide path 112.
As a result, the projected corner canvas G1 moves forward in parallel, as shown in
Accordingly, as shown in
Concerning Uniform Winding of Projected Corner Canvas
When the projected corner canvas G1 and the rectangular canvas P1 are wound around the winding rollers J1 and J2, the canvas main body portion X1 and the rectangular canvas P1 are wound around the rear half portion of the rollers in such a state that the canvases overlap, and the canvas protrusion 2 for the projected corner canvas G1, where the width for winding gradually increases, is wound around the front half portion of the roller in a rolled-up state.
Therefore, when a side of the canvas protrusion X2 is wound, the canvas is deformed as it is wound, which creates conspicuous wrinkles on the spread canvas protrusion X2 when the projected corner canvas G1 is drawn out, and the appearance becomes poor.
Therefore, a means for preventing this problem is described in the following.
Concerning Bulk Ring
In
A portion of the bulk ring 331 along the same line as the slide engaging trench 111 is formed so as to have a notch opening portion 332 in V shape in order to ensure that the spread projected corner canvas G1 slides transversely.
Accordingly, the bulk ring 331 is attached to the front half portion of the winding rollers J1 and J2 in steps, and thus, the bottom hem 2 of the canvas which spreads toward the bottom can be wound uniformly and with good balance in comparison with the top hem 1 of the canvas, as shown in
In the case of the above, the bulk ring 33 in spiral form is wound around or engaged in the front half portion of the winding rollers J1 and J2 in steps, and as a second-best measure, a bulk pipe (not shown) where the outer diameter of the surface of the cylinder gradually and continuously increases can be engaged in the roller so as to extend from the vicinity of the middle to the front end portion.
Concerning Bulk Cloth
In
When the canvas protrusion X2 with this bulk sheet 32 is wound around the outer peripheral portion of the winding rollers J1 and J2 having the same diameter in roll form, a portion of the above described sheet 32 functions as a type of spacer, and is wound so as to be a bulk in spiral form, as shown in
Here, though in the case of the above, the film thickness of the bulk sheet 32 increases gradually, the thickness can be increased in steps for every winding or every two windings.
In
Accordingly, as shown in
This belt winding device synchronizes when the projected corner canvas G1 and the rectangular canvas P1 are wound and unwound, particularly, the front end portion of the device can be prevented from becoming out of balance relative to the rear portion of the device, and thus, the two front bars R2 and F2 translate in the forward and backward direction with good balance, smoothly and without failure.
In this case also, as shown in
The configuration of other parts is the same as in the first embodiment, and therefore, the same symbols are attached in the drawings, and description thereof is omitted.
In the case of the above described first and second embodiments, a relatively small area of the rear end portion of the projected corner canvas G1 which extends into the corner space portion and the front end portion of the rectangular canvas P1 overlap, that is to say, the length of the rectangular canvas P1 is short, and thus, the canvas is of a short type.
In contrast, the complex device SQII3 according to the third embodiment shown in
In the figures, Q2 indicates a rectangular awning device for a long, rectangular canvas P2.
As a result, the belt winding device shown in the above described second embodiment is unnecessary, and the projected corner canvas G1 and the rectangular canvas P2 can be wound or unwound with good balance in such a state that the canvases overlap, and in addition, an advantage is that it is excellent in terms of the effects of preventing rain from entering.
The configuration of other parts is the same as in the case of the first embodiment.
In the complex device SQII4 in the fourth embodiment shown in
In
Thus, as shown in
In this case, the triangular canvas G2 which is spread by means of the connection wires 541 and 542 which penetrate through the diagonal portions 3a and 3b of the canvas is supported in a tense state and therefore the canvas can be effectively prevented from changing in the form within the plane when the canvas is wound or slid transversely.
In this case, however, there are few advantages for adding a bulk wing 331 in spiral form as shown
In the complex device SQII5 in the fifth embodiment shown in
These Y-shaped arms Y1 and Y2 are made up of a main link 291 which is long and a sub-link 292 of which the length is approximately half of the above described main link 291, where the rear end portion of the sub-link is supported in the vicinity of the middle portion of the main link so as to rotate around a pin.
The front end portion of the sub-link 292 is attached to the bracket 262 which is secured to the two end portions, front and rear, of the front bar R2, and the bracket 263 which is supported by the front end portion of the main link 291 so as to rotate around a pin is attached to the front bar R2 so as to freely slidable along the front bar R2 or so as to be freely movable through rotation.
Thus, a spring (not shown) having an appropriate elasticity is incorporated in the portion with an axis in the base end portion of the main link 291, and this elastic force is applied so that the main link 291 moves in such a direction as to extend and open. In addition, a spring and a drawing wire (not shown) are incorporated in the connection portion that is foldable into two between the link middle portion of the main link 291 and the sub-link 292 and thus the connection portion is pressed by an applied force in the direction in which the arms extend and open. Thus, as shown in
As a result, the projected corner canvas G1 and the rectangular canvas P1 are wound around the winding rollers J1 and J2 in such a state that the canvases overlap, and the entirety of the device is folded and stored in a compact space in the wall.
Accordingly, in the case where the foldable arms are Y-shaped arms Y1 and Y2, transverse movement of the spread projected corner canvas G1 is smooth and without failure in comparison with the case of the V-shaped arms V1 and V2 shown in the first embodiment, and in addition, it becomes easier for the front bar R2 where the front bar F2 is inserted and engaged to translate in the forward and backward directions.
In the complex device SQII6 in the sixth embodiment shown in
Accordingly, as shown in
Furthermore, the spread projected corner canvas G1 translates smoothly and without failure, and in addition, it becomes easier for the front bar R2 where the front bar F2 is inserted and engaged to translate in the front and rear directions.
The configuration of other parts is the same as in the second embodiment and the fifth embodiment.
In the complex device SQII7 in the seventh embodiment shown in
Therefore, the above described belt winding device in the sixth embodiment becomes unnecessary, and in addition, the projected corner canvas G1 and the rectangular canvas P2 are wound and unwound with a good balance in such a manner so that the canvases overlap, and in addition, there is the advantage of preventing rain from entering.
Here, though in the complex devices SQII5 to 7 in the fifth to seventh embodiments, all the foldable arms in the two end portions, front and rear are Y-shaped arms Y1 and Y2, the front end portion of the front bar R2 may be supported by a Y-shaped arm Y1 and the rear end portion thereof may be supported by a V-shaped arm V2 as a result of the combination with the V-shaped arms V1 and V2 in the complex devices SQII1 to 4 in the first to fourth embodiments.
In addition, in the case of the fifth to seventh embodiments, it is desirable to incorporate the winding rollers J1 and J2 with a bulk ring 331 shown in
Concerning Linking Structure
Though the cases where the winding rollers J1 and J2 in the complex devices SQII1 to 7 are manually rotated or rotated with electrical power are described in the above, two of the complex devices SQII1 to 7 face two projected corner portions N1 respectively as shown in
Concerning Complex Devices in Second Group
The complex devices SUII1 and 2 in this group are applied to linear sections with one end being the projected corner portion N1 and the other end being the recessed corner portion L, where long and short corner canvases P3 and P4 (hereinafter referred to as recessed corner canvases) in an approximate trapezoid form with right angles in a spread state which cover the corner space portion of the recessed corner portion L combined in place of the rectangular canvases P1 and P2 in the complex devices SQII1 to 7 of the first type, as shown in
In summary, the awning devices for a projected corner S1 and S2 and awning devices U1 and U2 for recessed corner canvases P3 and P4 which are either long or short (hereinafter referred to as awning devices for a recessed corner) are combined, and furthermore, the front bar F2 for the projected corner canvases G1 and G2 is inserted into, engaged with and supported by the front bar R2 for the recessed corner canvases P3 and P4 so as to be freely slidable, and the two front bars F2 and R2 are freely translatable linearly to the front by means of the V-shaped arms V1 and V2 in the configuration.
In the complex device SUII1 in the first embodiment shown in
The recessed corner canvas P3 is in an approximate reversed trapezoid form having right angles when spread in a plane wherein, as shown in
Therefore, as shown in
Next, when the projected corner canvas G1 and the recessed corner canvas P3 are driven and wound in such a state that the canvases overlap, the projected corner canvas G1 and the recessed corner canvas P3 are wound around one winding roller J1 or J2 as shown in
As a result, the entirety of the device is stored in a compact space in the wall portion between the projected corner portion N1 and the recessed corner portion L as shown in
In the complex device SUII2 in the second embodiment shown in
The configuration of other parts is the same as in the case of the above described first embodiment.
Here, embodiments using the complex device SUII1 and 2 in the second group are not limited to the above described first and second embodiments, and a great number of embodiments are possible in the same manner as in the case of the first group where the rectangular canvases P1 and P2 in the complex devices SQII2 to 7 in the first group are replaced with recessed corner canvases P3 and P4 in a trapezoid form with right angles and the foldable arms are replaced with Y-shaped arms Y1 and Y2 or a combination of a Y-shaped arm Y1 and a V-shaped arm V2.
Concerning Complex Devices in Third Group
In the complex device SQSIV in this group, as shown in
That is to say, a long casing K1 is attached to the linear section of the front wall W1 between the two projected corner portions N1 and N2, and one long winding roller J1 or J2 is supported inside the casing via a bearing.
Next, the front end portions of a pair of two from among V-shaped arms V1 to V4 are attached to the front half portion and the rear half portion of the long front bar R2 which has approximately the same length as the winding roller J1 or J2 so as to be symmetrical with a distance in between, and the rear end portions of the V-shaped arms V1 to V4 are attached to the front half portion and the rear half portion of the casing K1 with a distance in between.
Thus, the top hem 5 of the rectangular canvas P1 is attached to a canvas engaging trench 110 in the middle section of the winding roller J1 or J2 and the bottom hem 6 of this canvas is attached to the canvas engaging trench 381 in the middle section of the front bar R2. As a result, the rectangular awning device Q1 is formed in the middle section.
In addition, two sliders 12 are inserted into and engaged with the front half portion and the rear half portion of the slide guide path 112 of the winding roller J1 or J2, and the top hems 1 of the projected corner canvases G1 and G11 are attached to the canvas engaging trenches 121 of the respective sliders 12 so as to be symmetrical in the front and rear directions, and in addition, the respective bottom hems 2 of the canvas are attached to the canvas engaging trenches 351 of the front bar F2 which is inserted into and engaged with the front half portion and the rear half portion of the front bar R2. As a result, the awning devices S1 and S11 for a projected corner are formed in the front half portion and the rear half portion of the device so as to be symmetric.
Thus, in order to wind and store the two projected corner canvases G1 and G11 which extend into the corner space portions of the two projected corner portions N1 and N2 and the rectangular canvas P1 which spreads to the front of the front wall W1 as shown in
Thus, when the two projected corner canvases G1 and G11 and the rectangular canvas P1 are driven and wound in sync, the above described three canvases G1, G11 and P1 are wound around one winding roller J1 or J2 in such a manner so that the canvases overlap as shown in
As a result, the entirety of the device is stored in a compact space in the wall portion between the projected corner portions N1 and N2, as shown in
Here, in the above described case, an awning device S2 for a projected corner where the two projected corner canvases G1 and G11 are replaced with triangular canvases G2 as shown in
In addition, the foldable arms may be changed to Y-shaped arms Y1 to Y4 from the V-shaped arms V1 to V4, or Y-shaped arms Y1 and Y4 can be provided in the two end portions, front and rear of the device and V-shaped arms V2 and V3 can be provided in locations on the inside.
In this case, transverse movement of the spread projected corner canvas G1 can be achieved smoothly and without failure in comparison with the case where the V-shaped arms V1 to V4 are used, and in addition, it becomes easier for the front bar R2 to translate.
Concerning Complex Devices in the Fourth Group
In the complex device SSII in this group, as shown in
Therefore, in the winding roller J3 in the third embodiment which is supported by the casing K1 via a bearing, as shown in
The configuration of other parts is approximately the same as in the winding device shown in
R4 indicates a transverse guide rail which supports the front bars F2 and F3 for the two projected corner canvases G1, front and rear, in such a manner so that they are engaged with each other through insertion so as to be freely slidable relative to each other, and the front end portions of the two V-shaped arms V1 and V2 are attached to the two end portions, front and rear, and the rear end portions are attached to the wall portion W1.
The transverse guide rail R4 has a cross section in square cylindrical form, and an upper guide trench 441 and a lower guide trench 442 are created in the longitudinal direction of the upper plate portion and the lower plate portion so that protrusions of the upper guide trench 381 and the lower guide trench 382 of the front bar F3, which are formed so as to have approximately the same cross section as the above described front bar R2, are engaged with the two guide trenches 441 and 442 so as to be freely slidable.
In addition, a spacer 45 with a small width which has approximately the same cross section as the front bar F3 and functions as a slide stopper is engaged with and secured to the front end portion of the transverse guide rail R4 in the vicinity of the front end portion of the V-shaped arm V1.
Thus, the front bar F3 of the projected corner canvas G11 is inserted into the transverse guide rail R4 from the rear portion of the device, and then, the projected corner canvas G1 is inserted into the above described spacer 45 and the front bar F3 from the front end portion of the device, and as a result, the front bars F2 and F3 for the respective projected corner canvases G1 and G11 are inserted into, engaged with and supported by the transverse guide rail R4 so as to be freely slidable relative to each other.
In
Thus, as shown in
As a result, the two projected corner canvases G1 and G11, front and rear, are drawn down from the relative projected corner portions N1 and N2, and thus, overlap in the up and down directions, as shown in
Thus, when the two overlapping projected corner canvases G1 and G11 are driven and wound, the projected corner canvases G1 and G11 are wound around one winding roller J3 in such a state that the canvases overlap, as shown in
Though the transverse guide rail R4 is supported by the V-shaped arms V1 and V2 in the above described complex device SSII, they can be replaced with Y-shaped arms Y1 and Y2.
Concerning Transverse Device for Projected Corner Canvas
In the above described complex devices SQII1 to 7, SUII1 and 2, SQSIV and SSII, the projected corner canvases G1, G2 and G11 which are unwound and spread to the front are transversely slid through the operation in which an operation rod (not shown) is hooked to the engaging portion 241 formed on the front bars F2 and F3, or in the case where the engaging portion is at such a level that it can be reached by hand, the user grips it.
Here, manually operable devices using an engaging flap or a movement conveying rope other than the above, and moreover, the embodiments of a canvas winding device with a winding reel are described below in sequence.
Concerning Engaging Flap
In the complex device SQII8 shown in
Thus, an operation rod is hooked in the above described engaging hole 243, and the projected corner canvas G1 is transversely slid through the operation.
Here, in the case of the above, a slit (not shown) for guiding an operation rod, into which the operation rod is inserted, is created in the center portion of the bottom plate of the casing K1 in the longitudinal direction, or it may be necessary to use a casing K1 without the bottom plate portion. In the case where the above described engaging hole 243 is created in a location which is exposed from the opening through which the canvas is drawn out 131 in the casing K1, it is, of course, not necessary to provide a slit as described above.
Concerning Manually Operable Device Using Movement Conveying Rope
In the complex device SQII9 shown in
In the figures, 551 to 553 indicate slide guides formed at the upper end of the portion for supporting the V-shaped arm V1 around an axis, where the two movement conveying ropes 561 and 562 are stretched so as to face a trench in annular form created in the upper end portion of the slide guides 551 to 553 and prevent disengagement.
571 is a protruding piece formed on the rear surface in the front end portion of the front bar F2, and the front end portion of one rope 561 which is wound from the rear portion of the slide guide 553, which is formed in the upper portion of the bracket 262 of the V-shaped arm V1, to the front is bound to the protruding piece by a nut 573 so as to be fixed.
572 is a protruding piece formed in the middle portion between the front and the rear of the front bar F2 towards the rear surface in the rear portion, and the front end portion of the other rope 562 which is wound from the front of the slide guide 553 to the rear is bound to the protruding piece by a nut 574 so as to be fixed.
In addition, the base end portions of the movement conveying ropes 561 and 562 on the wall side lead out through a through hole created vertically to the main body portion of the bracket 261 of the V-shaped arm V1 and are hung downwards. 563 and 564 are handles for operating base end portions of the movement conveying ropes 561 and 562 and are formed in aring or node form.
Thus, when one of the movement conveying ropes 561 and 562 which runs in the complex device SQII9 shown in
In contrast, when the handle 564 of the other movement conveying rope 562 is pulled downwards, the bracket 572 in the rear portion of the middle of the front bar F2 is pulled towards the front end of the device. As a result, the corner projected canvas G1 transversely slides towards the corner space portion, and thus, moves forward while being kept in a spread state, as shown in
Accordingly, one movement conveying rope 561 functions as a means for moving the projected corner canvas G1 backwards, and the other movement conveying rope 562 functions as a means for moving the projected corner canvas G1 forwards.
In the case of the above, though two movement conveying ropes 561 and 562 are stretched, they can be replaced with one rope, for example, an endless rope where the portions of the operation handles 563 and 564 are directly connected.
Here, though in the above described case, the movement conveying ropes 561 and 562 are stretched to the V-shaped arm V1, this can be stretched between the rear half portion of the main link 291 and the sub-link 292 in the Y-shaped arm Y1 shown in the complex devices SQII5 to 7, and thus, can be incorporated in the same manner as the above.
Concerning Canvas Winding Device Having Winding Reel
Next, in the complex device SQII10 shown in
Thus, one wire for forward movement 562 from among the movement conveying wires 561 and 562 that lead out from the slide guide 551 in the base end portion is wound around the rear reel 602 located approximately directly above the bracket 261 in spiral form, as shown in
581 and 582 are coil springs which are attached to the front end portions of the respective movement conveying wires 561 and 562 so as to press and support the movement conveying wires 561 and 562 which stretch between the front bar F2, the V-shaped arm V1 and the winding reel 60 in a tense state.
Other parts of the structure of the movement conveying wires 561 and 562 are the same as in the case of the above described movement conveying rope, and therefore, the same symbols are attached, and description thereof is omitted.
Next, the schematic diagram of
In addition, in the case of the schematic diagram shown in
As a result, the winding and unwinding of the projected corner canvas G1 and the rectangular canvas P1 as well as the transverse movement of the projected corner canvas G1 can be carried out by one electrically driven motor M5.
Thus, the winding roller J4 in the fourth example for individually rotating the two electrically driven motors M1 and M4 shown in
Furthermore, cases where differential gear mechanisms shown in
(1) Concerning Fourth Example of Winding Roller
In
Thus, the rear half portion of the main body of the electrically driven motor M4 penetrates through the front end portion of the roller main body 11, and the winding reel 60 is engaged in the front half portion of the main body of the electrically driven motor M4 so as to be fixed, and in addition, the front end axial portion 591 of the electrically driven motor M4 is engaged in an long hole in the bearing portion 147 of the end cap 146 so as to be secured. Other parts of the configuration are the same as in the winding roller J2 in the second example shown in
Thus, the electrically driven motor M4, which is incorporated as described above, is rotated in either direction, forward and backward, for example it is rotated so that the main body of the motor rotates, the winding reel 60 rotates together in such a manner so that one wire, that is to say, the wire for backward movement 561, is wound around the front reel 601 in spiral form, and at the same time, the other wire wound around the rear reel 602, that is to say, the wire for forward movement 562, is unwound.
As a result, as shown in
When this is sensed, the electrically driven motor M1 shown in
In addition, when the electrically driven motor M1 is driven so as to rotate in the opposite direction so that the two canvases G1 and P1 which are wound around the winding roller J4 are unwound, the front bars F2 and R2 are translated and pushed linearly toward the front so that the two canvases G1 and P1 are unwound to the front so as to spread when a force for extending and spreading works by means of the V-shaped arms V1 and V2.
When this is sensed, the electrically driven motor M4 rotates in the direction opposite to the above so that the winding reel 60 rotates and the wire 562 for the forward movement is wound around the rear reel 602, and at the same time, the wire 561 for the backward movement, which is wound around the front reel 601, is unwound.
As a result, the projected corner canvas G1 transversely slides towards the corner space portion so as to protrude, and thus, the outside of the building, which includes the corner space portion of the projected corner portion N1, is covered with the projected corner canvas G1 and the rectangular canvas P1.
(2) Concerning Fifth Example of Winding Roller
In
Thus, a protrusion 604 formed in the inner wall portion of the winding reel 60 is engaged in a trench 592 created in the front half portion of the main body of the electrically driven motor M5, the rear half portion of the main body of the electrically driven motor M5 is inserted into the front end portion of the roller main body 11, and the motor output axis 594 is inserted into, engaged with and secured to a through hole 282 of the movement conveying socket 281, which is engaged in the roller main body 11.
In addition, the support axis 593 of the electrically driven motor M5 is supported by the bearing portion 143 of the end cap 146, which functions as the casing of the winding reel 60, so as to be freely rotatable.
135 indicates a guide protrusion which protrudes from the inner wall surface of the rear surface plate portion of the casing K1 in the lateral direction, and 611 indicates a rotation stopper in band plate form having the elasticity of a spring, where the base end portion is secured to the rear end portion of the roller main body 11 with a screw 612, and the front end portion of the stopper is engaged with the above described guide protrusion 135 so as to move and be guided together with the roller main body 11 or make contact with the outer periphery surface of the roller main body 11 and be wound around it when the engagement is released.
The configuration of the other parts is the same as in the winding roller J2 in the second example shown in
Thus, the process for operation using one electrically driven motor M5, which is incorporated as described above, is described below in reference to
In addition,
Here, in each figure, gray arrows indicate the actual operation and white arrows having a two-dotted chain line indicate the reaction force generated at that time.
Concerning Process in which Projected Corner Canvas Slides and Recedes and Process for Winding and Storing a Number of Canvases
Thus, when the projected corner canvas G1 is wound and stored from this state, first, the electrically driven motor M5 is driven, and then the roller J5 and the reel 60 are rotated relative to each other so that the winding roller J5 rotates clockwise, as seen in
At this time, the load applied by the wire 562 for backward movement, which pulls the front bar F2 for the counterclockwise rotation of the winding reel 60 as seen in the figure, is approximately the same as the resistance due to friction created between the front bars F2 and R2, which is extremely small.
In contrast, the load applied to the front bars F1 and F2, which is pressed to extend and open in the right direction, as seen in
Therefore, the winding roller J5 stays still without rotating and only the winding reel 60 rotates counterclockwise, as seen in
Thus, the wire 561 for the backward movement is wound around the front reel 601 and the wire 562 for the forward movement wound around the rear wheel 602 is unwound so that the force for driving is conveyed in such a direction that the front bar F2 of the projected corner canvas G1 is pulled to the rear. As a result, as shown in
As shown in
As a result, as shown in
In the initial stage of this winding, as shown in
Concerning Process for Unwinding and Spreading a Number of Canvases and Process for Sliding Projected Corner Canvas Forward
In order to spread the projected corner canvas G1 and the rectangular canvas P1 wound and stored as described above, the electrically driven motor M5 is rotated in the direction opposite to that above, and the winding roller J5 and the winding reel 60 rotate relative to each other so that the winding roller J5 rotates counterclockwise, as seen in
At this time, a force for extending and opening the V-shaped arms V1 and V2 forward works on the winding roller J5 and the force for spreading and tensing the front bar F2 and the projected corner canvas G1 make the torque for counter-clockwise rotation as seen in the figure work on the winding roller J5.
At this point in time, the wire for forward movement 562 and the wire for backward movement 561 are not in such a state as to work as a load for preventing rotation or torque for accelerating rotation, in terms of clockwise rotation of the winding reel 60 as seen in the figure.
When the winding roller J5 and the winding reel 60 rotate relative to each other in this state, as shown in
Thus, as shown in
The electrically driven motor M5 still continues rotating, and as a result, the winding reel 60 starts rotating clockwise as seen in
Thus, the wire for forward movement 562 is wound around the rear reel 602, and in addition, the wire for backward movement 561 is unwound from the front reel 601, and thus, the front bar F2 transversely slides in the forward direction and the spread projected corner canvas G1 extends into the corner space portion.
Though the process for operating the winding rollers J4 and J5 in the fourth and fifth embodiments as a driving device in the complex device SQII10 shown in
Concerning Winding Roller in Sixth Example
The winding roller J6 in the sixth example, in which the differential gear mechanism shown in
Accordingly, in the case of this winding reel 60a, protrusions 604 formed on the above described winding reel 60 become unnecessary and the trench 592 created in the main body portion of the electrically driven motor M6 is also unnecessary. 283 indicates a bearing socket for supporting the rear end portion of the electrically driven motor M6, and 284 indicates a through hole in this socket. Thus, the rear half portion of the main body of the electrically driven motor M6 penetrates through the front end portion of the roller main body 11, and the rear end portion of the motor penetrates through and is supported by the bearing socket 283, which is engaged with the roller main body 11.
Next, the end cap 156, from which a planetary gear 72 protrudes, is engaged with the front end portion of the roller main body 11, and the planetary gear 72 is engaged with the sun gear 70.
Thus, the winding reel 60a is engaged with the front end portion of the electrically driven motor M6 and the inner gear 71 is engaged with the planetary gear 72, so that a differential gear column is formed.
In addition, the support axis 591 for securing the front end portion of the electrically driven motor M6 is engaged with and secured to the long hole in the bearing portion 147 of the end cap 146.
The configuration of other parts is the same as for the winding roller J5 in the fifth example shown in
In this case, when the operation of either the winding roller J6 or the winding reel 60a is restricted, so that rotation is stopped, as is the winding roller J5 in the above described fifth example, the structure allows the other to rotate in the opposite direction.
Accordingly, when the electrically driven motor M6 is driven and rotated, and then the winding reel 60b is prevented from rotating, the winding roller J6 rotates with reduced speed in the same direction as the electrically driven motor M6, so that the projected corner canvas G1 and the rectangular canvas P1 are wound and stored or unwound and spread to the front through operation.
In addition, when the winding roller J6 is prevented from rotating, the winding reel 60b rotates in the opposite direction at the same speed and operates in such a manner so that the spread projected corner canvas G1 is pulled out into the corner space portion or drawn back to the rear.
In the case of the above described differential gear column, the rotational speed of the winding reel 60b becomes two times greater than that of the winding roller J6, and therefore, the transverse sliding operation of the front bar F2 with a small load is carried out, due to the high-speed rotation with low torque, and in addition, the operation of winding the canvas with a large load is carried out, due to the low-speed rotation with high torque, and thus, the operations are carried out efficiently.
Here, the process for sliding the projected corner canvas G1 to the rear when driven by the electrically driven motor M6 and the process for winding the projected corner canvas G1 and the rectangular canvas P1 around the winding roller J6 include the process shown in
In addition, the process for unwinding and spreading the projected corner canvas G1 and the rectangular canvas P1 and the process for sliding the projected corner canvas G1 forward include the process shown in
Concerning Winding Roller in Seventh Example
The winding roller J7 in the seventh example, in which the differential gear mechanism shown in
Thus, the bearing socket 283 is engaged inside the roller main body 11 and the end cap 156, from which the planetary gear 72 protrudes, is engaged in the front end portion of the roller main body 11.
Next, the rear half portion of the main body of the driving axis 73 with which the sun gear 70 is engaged is inserted into the roller main body 11 from the through hole 158 of the end cap 156, so that the rear end portion of the driving axis 73 is inserted in the through hole 285 of the bearing socket 283 so as to be supported, and the planetary gear 72 and the sun gear 70 are engaged with each other. In addition, the winding reel 60b is engaged with the driving axis 73 and the internal gear 71 formed in the inner periphery portion of this rear reel 602 is engaged with the above described planetary gear 72, and thus, a differential gear column is formed.
In addition, a worm gear 161 is engaged in a location in the driving axis 73 close to the front end, and the roller 163, with which the worm gear 162 which is engaged with the gear 161 is engaged, is supported by a bearing in such a manner so as to be perpendicular to the end cap 146, and in addition, the front end portion of the driving axis 73 is supported by the bearing portion 143 of the end cap 146 in such a manner so as to be freely rotatable.
The configuration of other parts is the same as in the case of the winding roller J6 in the sixth example shown in
This is a case where a manually driven device for rotating the driving axis 73 forward and backward through manual operation is used in place of the electrically driven motor M6 for driving the winding roller J6 in the sixth example. The process for operation is the same as in the case of the sixth example, and therefore, description thereof is omitted.
Concerning Lateral Arm Type Complex Device
This is a complex case where the awning device S1 for a projected corner according to the present invention is organically incorporated in the lateral arm type movable awning device where the front bar R2 of the rectangular canvas P1 is supported by foldable arms which freely extend upward in the vertical direction, or by an extendable link having a pantograph structure, and this is mainly incorporated in the projected corner portion N1 of shops located at the corner of a building.
In the complex device SQL1 shown in
641 is a bracket fixed to pillars H1 and H2 or a gate type frame or a longitudinal wall portion in portions on the two sides of the shop, and the lower end portion of the above described inner pipe 651 is supported around a pin. The upper end portion of the outer pipe 652 is attached to the two end portions of the front bar R2. 654 is a reinforcing rod for the extendable arms Z1 and Z2 which is diagonally fixed to a portion where the outer pipe 652 and the front bar R2 are put in the corner.
Next, a configuration where a movement conveying rope 66 for operating and sliding the front bar F2 is stretched is described. 671 and 672 are engaging portions which are attached to the bottom of the front end and the bottom in the vicinity of the middle of the front bar F2, and 673 and 674 are engaging portions which are attached to the upper and lower two end portions of the outer pipe 652, and one movement conveying rope 66 stretches around these engaging portions 671 to 674.
One front end portion of the movement conveying rope 66 is tied to the engaging portion 671 at the front end of the front bar F2, and the other is pulled along the front bar F2 to the vicinity of the middle of the front bar so as to penetrate through the engaging portion 673 at the upper end of the outer pipe 652 and bend downward, pulled downward along the outer pipe 652, penetrates through the engaging portion 674 at the lower end, returns, and after that is pulled up, again penetrates through the engaging portion 673 at the upper end, and is bent to the rear, and then the rear end portion of this rope is tied to the engaging portion 672 in the middle of the front bar F2.
Here, engaging portions 241 which are operated manually are also formed in the vicinity of the rear portion and the middle portion of the front bar F2.
Thus, as shown in
Thus, the force pulling in the direction of the arrows in the figure is conveyed and the front bar F2 of the projected corner canvas G1 transversely slides along the front bar R2 of the rectangular canvas P2 and the slider 12 to which the top hem 1 of the projected corner canvas G1 is secured transversely slides to the rear along the slide guide path 112 of the roller main body 11 in parallel.
As a result, the projected corner canvas G1, which is pulled down to such a degree that the canvas does not protrude from the corner projected portion N1, overlaps with the long, rectangular canvas P2 from the top.
Next, the thumb screw 653 or the ring nut is loosened, before winding the two canvases G1 and P2, and in addition, the front bars F2 and R2 are pulled down, as shown in
Next, when the projected corner canvas G1 and the rectangular canvas P2 are wound around one winding roller J1 or J2, as shown in
In addition, when the two canvases G1 and P2 are unwound, the two canvases spread forward with a relatively steep inclination, that is to say, in a state where the front lowers a considerable degree, as shown in
Next, as shown in
In addition, an operation rod (not shown) is hooked onto the engaging portion 241 from beneath and pulled toward the front end of the device, and thus, the projected corner canvas G1 is transversely slid so as to extend into the corner space portion.
Alternatively, as shown in the top of
Thus, the tenseness is conveyed in the direction opposite to the arrows in the figure, and the front bar F2 of the projected corner canvas G1 transversely slides along the front bar R2 of the rectangular canvas P2, and the slider 12 for the top hem of the projected corner canvas G1 transversely slides along the slide guide trenches 111 and 112 of the roller main body 11 in parallel, and thus, the projected corner canvas G1 extends into the corner space portion.
Though a case where the foldable arms are extendable arms Z1 and Z2 which stand in the vertical direction and lie down through operation is described above, the front bar R2 can be pushed up by pushing arms (not shown) having a constant length, so that the projected corner canvas G1 and the rectangular canvas P2 which spread to the front can be supported with tenseness, for example.
Here, though a case where a long, rectangular canvas P2 is attached to the winding roller J1 or J2 and the front bar R2 is described above, a short, rectangular canvas P1 having a margin with a small width where the rear end portion of the projected corner canvas G1 which extends into the projected corner portion N1 and the front end portion of the rectangular canvas P1 overlap can be provided.
In the complex device SQL2 shown in
682 is a long guide hole which is longitudinally provided in an upper portion of the bracket 681, and the rear end portion of the equal length link 691 in the rear portion is provided in the long guide hole. In addition, a rising link 693 which is appropriately bent is formed in the front end portion of the other equal length link 692 in the front portion, and the front bar R2 of the long rectangular canvas P2 is attached to this front end portion.
In this case, the front bars F2 and R2 are held with both hands and pulled to the front so that the extendable links Z3 and Z4 extend through operation, and thus, the projected corner canvas G1 and the rectangular canvas P2 are spread to the front, and in contrast, they are pushed to the rear so that the two canvases G1 and P1 can be wound and stored in the wall.
Though in the case of the above, the front bars F2 and R2 are pulled out or pushed in through manual operation, the above described extendable links Z3 and Z4 can be operated so as to extend or be drawn in by means of an electrically driven device (not shown).
Other parts of the configuration are the same as in the above described complex device SQL1, and therefore, the same symbols are attached in the drawings, and description thereof is omitted.
In the case of the above described various types of complex devices, top hems 1, 5 and 5a of a number of canvases G1, G2 and P1 to P4 are attached in the circumference of one winding roller J1 to J7 at appropriate intervals in parallel, and in addition, the front bars F2, F3 and R2 to R4 for supporting the bottom hems 2, 2a and 6 of a number of canvases G1, G2 and P1 to P4 usually spread to the front in such a state that the front lowers at an appropriate angle of inclination.
Therefore, in the case where the tenseness of the number of canvases is set so as to be approximately the same when spread, the canvas on the upper side is finally wound in such a state that slack of several centimeters to approximately 10 cm remains, unlike with the canvas on the lower side, when the number of canvases are wound and stored in such a state as to overlap.
A simple means for solving this problem is described on the basis of the complex devices SQII11 and the embodiment of the complex devices SQII11 shown in
Concerning Fixture for Supporting Canvas in Tense State, that is, Fixture for Preventing Slack when the Canvas is Stored
In
Accordingly, as the projected corner canvas G1 and the rectangular canvases P1 and P2 of the complex device SQII11 are wound in such a state that the canvases overlap, as shown in
As a result, the projected corner canvas G1 can be prevented from slacking when the canvas is wound and stored, and thus, an appropriate tenseness can be maintained.
In the case of the above, the upper side is the projected corner canvas G1 and the lower side is the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 in combination, while in the case of a complex device (not shown) where these canvases are placed in the opposite top-bottom relation in the layout, the bottom hems 6 of the rectangular canvases P1 and P2 on the upper side are pressed and pushed up by the fluctuation flap 62.
Concerning Device for Supporting Canvas in Tense State, that is to say, Device for Absorbing Slack Canvas at Time of Storage
In
633 is a flat ring string attached to the rear portion in the vicinity of the bottom hem 2 with a space, and a rod 632 penetrates through this ring string 633 and a rubber string 631 which is freely extendable crosses in zigzag form between the rod 632 and the rear end portion of the upper plate portion 342 of the front bar F2, and thus, the extendable net 63 is created.
Accordingly, as shown in
In contrast, when the projected corner canvas G1 is wound and stored, as shown in
The above described case provides a so-called inner slider structure where sliders 12, 12a and 12w which transversely slide in the axis line direction are incorporated in the winding rollers J1 to J7 for the projected corner canvases G1 and G2, and the winding rollers J8 to J10 in the eighth to tenth examples, which have the same functions and of which the configuration is simplified, are described in reference to
Concerning Eighth Example of Winding Roller
In
115 indicates a thin cover cap having a cross section in Ω form which lines the slits 111 and the inner wall surface of the slide guide path 114 inside the slits.
12
x indicates a slide cap which is engaged with the top hems 1 of the projected corner canvases G1 and G2, and the slide cap is engaged in a lining cover cap 115 in such a state that the slide cap and the cover cap move relative to each other.
Thus, as shown in
In the case of the above, the cover cap 115 reduces the sliding resistance when the slide cap 12x which is engaged with the top hem 1 of the canvas transversely slides, and prevents the slide guide path 114 from making direct contact with the slide cap 12x, and thus, sliding is made easy.
As a result, the cover cap has the same function as the winding rollers J1 and J2 having the slider 12 and 12a structure for the complex devices in the first to third groups, and contributes to simplification of the configuration.
Concerning Ninth and Tenth Examples of Winding Rollers
The winding roller J9 in the ninth example shown in
The winding roller J10 in the tenth example shown in
Concerning Front Bar Having Structure that is Movable Through Rotation
Though in the case of the above described complex devices SQII1 to 12, the front bar F2 on the outside is formed on the front bar R2 on the inside in such a manner so as to be guided and freely slidable, the relationship between the two can be replaced with that of the front bars F5 and R5 having a structure that is movable through rotation, as shown in
The front bar F5 on the outside is made of a steel material and has an opening in the center portion on the rear surface, as well as a front plate portion 831, an upper plate portion 832 and a lower plate portion 833, and furthermore, an upper engaging trench 841 to which the bottom hem 2 of the projected corner canvases G1 and G2 is attached is created in the border portion between the upper plate portion 832 and an eave plate portion 834 which extends to the rear. An engaging flange 851 is formed so as to hang from beneath the upper engaging trench 841. The lower engaging trench 842 to which the front skirt 221 is attached is created in a rear portion of the bottom plate portion 833, and the engaging flange 853 is formed in the upper portion so as to protrude perpendicularly. 854 indicates a bracket which protrudes from an upper portion on the inside of the rear end portion of the front plate portion 831.
861 and 862 are guide wheels incorporated in upper and lower portions on the inside of the rear end portion of the front bar F5, and from among these, the upper wheel 861 is secured to and supported by the above described bracket 854 in such a manner so as to be freely rotatable horizontally around an axis pin 863. The lower wheel 862 is secured to and supported by the lower plate portion 833 in such a manner so as to be freely rotatable horizontally around an axis pin 864.
The front bar R5 on the inside is made of a steel material and has a cross section in square cylindrical form, as well as a front plate portion 871, a rear plate portion 872, an upper plate portion 873 and a lower plate portion 874, and furthermore, wheel chambers 881 and 882 for containing the above described upper wheel 861 and lower wheel 862 so that they are guided and move through rotation and formed in sections with partitions 891 and 892 on the upper side and the lower side of the front bar R5.
Thus, an upper engaging trench 901 to which the bottom hems 6 of the rectangular canvases P1 and P2 or the recessed corner canvases P3 and P4 are attached and the lower engaging trench 902 to which the front skirt 391 is attached are respectively created in the end portions of the partitions 891 and 892 which protrude to the rear from the rear plate portion 872. An engaging flange 911 is formed at the bottom of the upper engaging trench 901 in such a manner so as to protrude downward, and an engaging flange 912 which faces upward protrudes from the upper portion of the lower engaging trench 902.
92 indicates a wheel holder which is engaged with and secured to the front end portion of the front bar R5, and guide wheels 931 and 932 are supported above and below the protrusion at the front end in such a manner so as to be freely rotatable horizontally around the wheel axes 933. 941 indicates a guide slit created in the center portion of the lower plate portion 874, and guides the axis pin 864 of the lower wheel 862 so that it moves freely. 942 indicates an upward facing guide slit in the front plate portion 871, and the above described bracket 854 is inserted and guided in the slit.
Thus, the front bar F5, where guide wheels 861 and 862 are incorporated in upper and lower locations in the rear end portion, is inserted into and engaged with the front bar R5, where guide wheels 931 and 932 are provided in the front end portion and wheel chambers 881 and 882 are provided in upper and lower portions. As a result, one guide wheel 931 or 932 is engaged in the front bar F5 in the up-down direction and the other guide wheel 861 or 862 is engaged in the above described wheel chamber 881 or 882, and thus, the front bar R5 and the front bar F5 are combined so as to be guided and able to move freely through rotation.
Accordingly, in the case where the front bars F5 and R5 having the above described structure which moves through rotation are incorporated in the complex devices SQII1 to 7, SUII1 and 2 and SQSIV in the first to third groups, the sliding resistance when the front bar F5 moves forward and backward can be greatly reduced, so that the smoothness of the operation further increases.
Here, though according to the present invention, the outside of buildings that include projected corer portions and recessed corner portions are covered by the complex devices in the first to fourth groups so that the appearance of the building becomes excellent, in the case where the linear sections around the outside of the building are long, the foldable arm type movable awning device described at the beginning of the present specification, where the top hem of the rectangular canvas is attached to a winding roller and the bottom hem of the canvas is attached to a front bar is incorporated.
In addition, in the case of a simple recessed corner portion or in the case where the distance between two recessed corner portions is relatively short, a single movable awning device for winding or unwinding either a recessed corner canvas in a reverse trapezoid form with right angles or a recessed corner canvas in a reverse trapezoid form is incorporated, as disclosed in
Accordingly, complex devices according to the present invention can be laid out freely in accordance with the appearance of the building, and thus, the outside of various types of buildings including a projected corner portion and a recessed corner portion can be made uniform so as to provide good design and a good appearance, and in addition, an awning system which can be freely built for a gallery can be provided in the industry.
The present invention provides a novel complex awning device which is technologically advanced and very useful, as described above, and a winding roller for a number of canvases which forms the main portion of the complex awning device, and therefore, the appearance of the outside of various types of buildings including projected corner portions and recessed corner portions improves significantly, and thus, the invention can contribute to progress and development in the industry a great deal.
This is a continuation of International Application No. PCT/JP2005/023688, filed on 13 Dec. 2005.
Number | Name | Date | Kind |
---|---|---|---|
483950 | Vayre | Oct 1892 | A |
584075 | Fogh | Jun 1897 | A |
619957 | Hettrick | Feb 1899 | A |
642423 | Brodie | Jan 1900 | A |
799719 | Cummings | Sep 1905 | A |
1171510 | Forsyth | Feb 1916 | A |
1361747 | Dare | Dec 1920 | A |
1842598 | Fogh | Jan 1932 | A |
2060582 | Leffert | Nov 1936 | A |
2140286 | Frazce | Dec 1938 | A |
2486568 | Lukaszevig | Nov 1949 | A |
2498094 | Plaum | Feb 1950 | A |
3389738 | Roth | Jun 1968 | A |
3446263 | Roth | May 1969 | A |
4979775 | Klose | Dec 1990 | A |
5084473 | Mikami et al. | Jan 1992 | A |
6012505 | Wurz et al. | Jan 2000 | A |
6460593 | Floyd | Oct 2002 | B1 |
20060175019 | Rewak | Aug 2006 | A1 |
20070246168 | Ito | Oct 2007 | A1 |
20080053624 | Ito | Mar 2008 | A1 |
20080277073 | Ito | Nov 2008 | A1 |
20080308238 | Ito | Dec 2008 | A1 |
20090050277 | Ito | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
2653393 | Oct 1989 | FR |
Number | Date | Country | |
---|---|---|---|
20080308238 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2005/023688 | Dec 2005 | US |
Child | 12137785 | US |