The invention described herein relates to a combined light fitting and ceiling fan having blades that are compactly folded when the fan is not in use and that move outwardly when the fan is started. More particularly the invention relates to improved fan blades for such an appliance.
Ceiling fans have long been recognized and used as an inexpensive way to provide movement of air within rooms of buildings. They can be simple to use and install, safe, and inexpensive to buy and run when compared to such alternatives as for example refrigerated and evaporative air conditioning units. They can often provide a surprisingly effective alternative to air conditioning as the air movement they generate can evaporate skin perspiration with a resulting cooling effect.
It is known to combine ceiling fans with lighting means, as firstly it is a common requirement to provide ceiling mounted light sources, and secondly it is convenient to provide a single power supply to operate a combined fan and light fitting.
Less commonly, it has also been known to provide a combined light fitting and ceiling fan with some form of folding or retracting blade arrangement. Le Velle has described three versions. U.S. Pat. No. 1,445,402 discloses a light fitting and ceiling fan in which blades move outwards under centrifugal force when the fan is switched on, and are retracted by springs when the fan is switched off. U.S. Pat. Nos. 1,458,348 and 2,079,942 disclose improved versions, in which (unlike the early version of U.S. Pat. No. 1,445,402) the inward and outward movements of the blades are synchronized. Synchronizing blade movement is important for preserving satisfactory balance of the rotating parts of the fan. More recently, a combined light fitting and ceiling fan has been disclosed by Villella (see international patent publication WO 2007/006096) with a concealed and simple blade movement synchronizing arrangement that lends itself to modern design.
A problem in the design of a combined light fitting and ceiling fan is to provide blades that when in use can provide useful air moving performance without requiring excessive power and that when not in use can fold into a reasonably compact overall form. The present invention addresses this problem.
References above and elsewhere in this specification to certain patents are not intended as or to be taken as admitting that anything therein forms a part of the common general knowledge in the art in any place.
A combined ceiling fan and light fitting will in this specification be referred to as a fan/light for convenience and brevity.
The invention relates to fan/lights having a plurality of fan blades that move outwardly to operating positions during fan operation and inwardly to stowed positions when fan operation ceases. Movement of the fan blades outwardly may be by action of centrifugal force when the blades are rotated about a fan axis by a motor. Retraction of the fan blades to their stowed positions may be by action of resilient means, for example one or more springs.
The blades are adapted and arranged when in their operating positions to move air downward as they rotate, and when in their stowed positions to lie within a defined radius from the fan axis, such as the radius of a translucent enclosure of circular form (when seen in plan view) for light emitting devices such as incandescent lamps. Each blade when stowed may overlap at least one other blade.
Preferred forms and relative positionings of blades are disclosed that are believed to provide a useful balance between the requirements of reasonable air movement and compact stowage of the blades when not in use. These forms are particularly characterized by certain distributions of incidence, blade chord (distance measured from leading edge to trailing edge) and dihedral. They are preferably of aerofoil cross section with such camber that lower blade surfaces are concave and upper blade surfaces convex.
More specifically, the invention provides in a first aspect a combined ceiling fan and light fitting having a plurality of fan blades, wherein:
each blade is pivotally mounted so as to be pivotable about an upright pivot axis of the blade between a stowed position and a deployed position;
each blade when in its stowed position lies within a specified radius from an upright fan rotation axis and above a light fitting portion and has an air moving portion that in the deployed position of the blade extends beyond said specified radius; and
each blade is generally elongate and arcuate when seen in plan view and in its stowed position extends peripherally within said specified radius between its pivot axis and a tip end of the blade and partially overlies a neighbouring one of the blades in its own stowed position;
the combined ceiling fan and light fitting characterized in that:
(a) each blade initially rises in height above a datum height with increasing distance along the blade from its pivot axis end so that the blade when in its stowed position overlies the pivot axis end of the neighbouring blade in its own stowed position and
(b) with increasing distance from a pivot-axis end of the air moving portion towards the tip end of the blade the leading edge of the air moving portion first increases in height above the said datum height and then turns downwardly whereby to limit the height of the tip end above the datum height.
The term “neighbouring blade” here means a blade that is first found by moving peripherally forward (i.e. in the direction of fan rotation) from one blade.
The phrase “turns downwardly” here does not necessarily mean that with increasing distance toward the tip end from such turning down the blade begins to actually descend. Rather it means that the blade increases in height at a lesser rate than before the turning down, which may still be positive although that is not to preclude a zero or negative rate of height increase.
Thus, the leading edge of the air moving portion of each blade may have a peak height above the datum height at a position between the pivot-axis end of the air moving portion and the tip end of the blade.
Further, the height above the datum height of the leading edge of the air moving portion may decline from said peak height with increasing distance along the leading edge toward the tip end of the blade.
The “specified radius” may be approximately a radius of a light fitting portion that is comprised in the combined ceiling fan and light fitting and located below the blade and that is of circular shape when seen in plan view.
The “datum height” may, purely for example, be the height of an upper surface of a horizontal platelike member to which each of the blades is pivotably mounted as in the case of the construction described by Villella.
The air moving portion of each blade may have a trailing edge that when seen in plan view is approximately a circular arc which when the blade is in its stowed position said is substantially centred on the fan rotation axis. This arrangement allows effectively use of the available space above a light fitting portion that is round when seen in plan view.
Preferably, for each blade when in its stowed position the radial distance between the leading and trailing edges of the air moving portion reduces progressively (i.e. the blade tapers as seen in plan view) from a maximum value partway along the length of the air moving portion towards the blade tip end.
More preferably, when all blades are in their stowed positions there is for each blade a first point on the leading edge of its air moving portion where the blade overlies its neighbouring blade which first point when seen in a notional radial plane including the fan rotation axis lies at a greater radius than a second point in the same notional plane that is on the leading edge of the overlain neighbouring blade.
Still more preferably, the said first point may be at a height above the datum height not exceeding the height of the said second point.
These arrangements can enhance the compactness of stowage of the blades.
It is preferred that the air moving portion of each blade has in the deployed position of the blade a maximum angle of incidence to the horizontal at a position partway along the air moving portion the angle of incidence decreasing with increasing distance from that position of maximum incidence towards the tip end of the blade.
Preferably also, the air moving portion has a positive angle of incidence to the horizontal at its pivot-axis end.
The position partway along the air moving portion of each blade at which its incidence to the horizontal is a maximum when the blade is in its deployed position may be radially inboard of a position at which the blade chord measured along an arc centred on the fan rotation axis is at a maximum value. It is thought (but not asserted) that this feature may smooth the distribution of downward thrust on the air along the blade, so reducing induced drag on the blade.
Although adaptable to other numbers of blades, for example three or five, the number of blades is preferably four with the blades' pivot axes being spaced 90 degrees apart from each other peripherally.
That section of each blade between its pivot axis and its tip end when the blade is in its stowed position may subtend an angle of about 160 to 170 degrees at the fan rotation axis. Values in this range allow reasonable blade areas within the available stowage space above the light fitting portion, but without at any point requiring the stacking of more than two blades. This assists in obtaining compact blade stowage.
Preferably, each blade pivots through an angle of about 180 degrees to move from its stowed position to its deployed position. This gives a satisfactory blade-swept area for a given blade size.
Preferably, the air moving section of each blade is upwardly cambered (i.e. Concave downwards) between its leading and trailing edges when seen in cross-section on a cylindrical surface centred on the fan rotation axis and intersecting the air moving section at a radius between the specified radius and the blade tip end.
It is also preferred for efficient air moving that the air moving section of each blade has a rounded leading edge and a sharp trailing edge over at least part of its along-blade length when seen in cross-section on a cylindrical surface centred on the fan rotation axis and intersecting the air moving section at a radius between the specified radius and the blade tip end.
The minimum height difference between each blade and its neighbouring blade when the blades are in their stowed positions may advantageously occur approximately where the blade overlies its neighbouring blade. If an overlying blade sags slightly, as may be the case with blades moulded from certain plastics if left unused for some time, this arrangement has been found to support the outer part of the blade reasonably well once contact between a blade and its underlying neighbour has been made.
The invention provides in another aspect a combined ceiling fan and light fitting having a plurality of elongate and arcuate planform blades that can move pivotally about upright axes between firstly stowed positions above a light fitting enclosure and secondly deployed positions in which the blades extend outwardly beyond the light fitting, characterized in that leading edges of the blades when in their deployed positions firstly rise with increasing radius beyond the light fitting enclosure first and thereafter are cranked downwardly.
In this aspect, when the blades are in their stowed positions each blade overlies a part of its neighbouring blade which part is received in a gap above the light fitting enclosure and below the underside of the overlying blade said gap existing by virtue of the cranked shape of the overlying blade.
Each blade may be pivotally mounted to a rotating platelike member with said gap lying above said platelike member.
In a third aspect the invention provides a combined ceiling fan and light fitting having air moving blades that in use exhibit gullwing dihedral. It is thought that such a dihedral form may be advantageous in itself even apart from its ability to enable compact stowage of retracting blades. “Gullwing dihedral” is to be taken as meaning that a lifting blade or wing rises between its root end and a point or region along its length toward its tip end and then either falls, remains level or rises more slowly.
In a further aspect the invention provides a combined ceiling fan and light fitting having a plurality of fan blades, wherein:
each blade is pivotally mounted so as to be pivotable about an upright pivot axis of the blade between a stowed position and a deployed position;
each blade when in its stowed position lies within a specified radius from an upright fan rotation axis and above a light fitting portion and has an air moving portion that in the deployed position of the blade extends beyond said specified radius; and
each blade is generally elongate and arcuate when seen in plan view with concave and convex sides and in its stowed position extends peripherally within said specified radius between its pivot axis and a tip end of the blade,
characterized in that:
(a) each blade when deployed is so positioned that a concave side of the blade faces forward in the blade's direction of rotation and so that a radially outer portion of the blade's length extends both outwardly and forwardly;
there is a first position partway along the air moving portion of the blade at which the blade's chord as measured in a peripheral direction has a maximum value and a second position partway along the air moving portion of the blade at which the blade has a maximum positive angle of incidence to the horizontal; and
(c) the first position is at a greater radius than the second position.
That is, the distributions of incidence and chord disclosed herein are believed advantageous in themselves apart from the issue of blade stowage.
The invention further provides a blade adapted for use in fan/lights as disclosed.
It is explicitly intended that the specific four-blade embodiment described in detail below be taken to be a claimable aspect of the invention both as to the proportions of the blades and their relative positions when in their stowed and operating positions.
The invention is preferably applied in fan/lights having certain features of the construction described in International Patent Publication WO 2007/006096 (based on International Patent Application No. PCT/AU2006/000981 by Joe Villella).
In a still further aspect of the invention there is further provided a fan/light comprising a plurality of retractable fan blades, wherein:
each said blade is pivotally mounted to a fan member that is rotatable about an upright fan rotation axis so that said blade is pivotable between a retracted position and an operating position about an upright blade pivot axis of said fan member;
each said blade has an elongate and generally arcuate air moving blade portion that when said blade is in the retracted position of said blade lies within a space bounded by:
(a) an inner cylindrical surface coaxial with said fan rotation axis and touching an inner edge of said blade portion;
(b) an outer cylindrical surface coaxial with said fan rotation axis and touching an outer edge of said blade portion;
(c) a first radial plane containing said fan rotation axis and said blade pivot axis; and
a second radial plane containing said fan rotation axis and that touches a tip of the blade,
so that associated with every point on said blade portion is an angle theta being an angle between said first radial plane and a radial plane containing the fan rotation axis and that point; and
within a continuous section of the blade portion that lies between said first and second radial planes, said inner edge increases in height above a datum height with increasing theta, and a radial projection of said inner edge onto a cylindrical surface coaxial with said fan rotation axis is concave downwards.
Preferably, within said continuous section of said blade said inner edge increases in height above said datum height with increasing theta until a maximum value of the inner edge height is first reached at a point thereon whose value of theta is less than the value of theta at the blade tip.
Within said continuous section and for theta values greater than the smallest value at which said inner edge has its maximum height above said datum height, the height of said inner edge may decrease with increasing theta. This particular embodiment corresponds to the preferred embodiment described in detail herein.
In such a fan/light the other preferred features proportions and relative positioning of the blades as described herein may also be applied, including as to the blade trailing edge shape.
Further features, preferences and inventive concepts are disclosed in the following detailed description and appended claims.
In this specification, including in the appended claims, the word “comprise” (and derivatives such as “comprising”, “comprises” and “comprised”) when used in relation to a set of integers, elements or steps is not to be taken as precluding the possibility that other integers elements or steps are present or able to be included.
In order that the invention may be better understood there will now be described, non-limitingly, preferred embodiments of the invention as shown in the attached Figures, of which:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Blades 1-4 each extend outwardly to the operating positions shown in
Pivoting of blades 1-4 on blade support plate 14 is respectively about axes 21, 22, 23 and 24 parallel to the axis 15 of rotation of the motor. When the motor is switched on, blades 1-4 pivot outwardly under the influence of centrifugal force, pivoting around their respective pivot axes 21-24, until the operating positions shown in
In international patent No. publication WO 2007/006096 (based on International Patent Application No. PCT/AU2006/000981 by Villella), which is incorporated herein in its entirety by reference, there is described a fan/light generally in accordance with the above principles and arrangement, albeit with three blades instead of the four blades 1-4 of fan/light 10. The present invention in its preferred embodiment is made in accordance with the principles and arrangement set out in Villella's disclosure save for the use of the four blades 1-4 instead of three.
In particular, synchronization of the pivoting movement of blades 1-4 and their refraction, may be by means of a simple adaptation to four blades of the approach disclosed by Villella, now briefly described.
Secured below blade support plate 36 is a sun gear 38. (The term “sun gear” is here used as it is in the art of so-called planetary gearing systems, where it refers to a gear that meshes with a number of “planetary” gears arrayed around its periphery.) Sun gear 38 is coaxial with the motor 34 when support plate 36 is mounted to motor 34, and is able to rotate about its axis relative to support plate 36. Meshing with sun gear 38 are planetary gears 41, 42 and 43, each of which rotates as its associated one of blades 31-33 pivots between its stowed and operating positions. Each of gears 41-43 is secured to a short shaft (not visible) that passes downwardly from its associated one of blades 31-33 and can rotate within support plate 36. The gears 41-43 are equispaced around the periphery of sun gear 38 and are themselves all at the same radius as each other from the rotation axis 35 of motor 34. The effect of this arrangement is that provided blades 31-33 are identical and identically positioned in their working positions relative to support plate 36, they will be kept synchronized always when they pivot between their operating and retracted positions.
To retract blades 31-33 when motor 34 is switched off, coil springs 44 are provided. One end of each spring is secured to a formation 46 depending from support plate 36 and the other end is secured to a formation 48 depending from sun gear 38. Coil springs 44 are arranged to be in tension when blades 31-33 are in their retracted position and are extended as centrifugal force urges blades 31-33 out when motor 34 is started. When motor 34 is stopped, springs 44 urge sun gear 38 to rotate relative to support plate 34 so as to retract the blades 31-33.
For further information on, and options relating to, this arrangement for blade synchronization and retraction, refer can be made to the cited publication of Villella.
The way to adapt this arrangement to the four blades 1-4 of the embodiment of the present invention here described will be readily apparent to persons skilled in the art. There would be provided four planetary gears (not shown, but equivalent to gears 41-43) instead of three, equispaced around the sun gear (not shown, but equivalent to sun gear 38) and each associated with one blade.
In the following description, it will be assumed that blades 1-4 are pivotally mounted to support plate 14 essentially similar to support plate 36 and synchronized and refracted in the same way as blades 31-33 of subassembly 30. However, it is emphasized that the aerodynamic design of blades 1-4 and the way that they “nest” together when refracted are by no means limited to this particular fan/light construction. The configuration and arrangement of blades 1-4 could be applied to fan/lights of other constructions and to fans requiring retractable blades and without any lighting capability.
The blades 1-4 and their arrangement in fan/light 10 will now be described. Blades 1-4 are intended to provide fan/light 10 with a useful balance between satisfactory air-moving performance, compactness when the blades are in their stowed (i.e. refracted or folded) position, together with a diameter of the translucent enclosure 12 that is large enough to provide a reasonably diffuse lighting effect. The blades 1-4 are intended to lie substantially above the translucent enclosure 12 when retracted. In the embodiment shown and described herein, the enclosure 12 has a diameter that is about 39% of the overall diameter of fan/light 10 with its blades 1-4 extended for operation. The diameter of the hub of a conventional ceiling fan or fan/light without retractable blades is typically smaller than 39% of the overall diameter over the blades. The larger the diameter of enclosure 12 for a given overall diameter, the easier it is to meet the requirement of compact folding, with blades 1-4 above enclosure 12, but the more difficult it is to provide satisfactory air moving performance at normal fan rotational speeds. A range of from about 36% to about 42% for the above ratio is believed to be possible by straightforward adaptation of the blade shapes as described herein, but a figure in the region of 38% to 40% is preferred.
The geometry of blades 1-4 will be described below by reference to quantities and sections defined in
Blades 1-4 of fan/light 10 are shown (by arrow 7) as rotating clockwise when seen from above. It is to be understood however, that counter-clockwise rotation could equally well be chosen, in which case the term “counter-clockwise” would be applicable where in the present description “clockwise” now appears, including in the definitions given below of the terms “next blade” and “previous blade”. (Note that for counter-clockwise rotation, the blades would be made of opposite hand to blades 1-4, as it is preferred that each blade's leading edge be its concave one.)
In relation to any given one of blades 1-4, the term “next blade” refers to the blade whose pivot axis is 90 degrees in the rotation direction (here clockwise) from the pivot axis of the given blade, and the term “previous blade” refers to the blade whose pivot axis is 90 degrees in a counter-direction opposite to the rotation direction (i.e. counter-clockwise here) from the pivot axis of the given blade. Thus, in relation to blade 1, the next blade is blade 2 and the previous blade is blade 4. The blade shape will be described mainly by reference to blade 1 for convenience, noting that blades 1-4 are substantially identical.
To show how blades 1-4 are arranged relative to each other in nesting fashion when refracted, it will be convenient to use sectional views on radial planes, i.e. planes that include the fan axis 15. Such a plane 42 is shown in
For discussion of the blade shape from the point of view of aerodynamic characteristics when in the deployed position, it will be useful to consider blade sections taken on surfaces that are cylindrical, coaxial with fan axis 15, and located at stations radially spaced apart along a blade. Arcs numbered 1 to 8 in
Each of blades 1-4 pivots through 180 degrees between its retracted and operating positions. From axis 21 to tip 61, representative blade 1 when retracted extends from theta=0 degrees to theta=approximately 168 degrees. The angle 168 degrees is chosen to be close to, but below, 180 degrees so as to provide a blade 1 whose tip 61 is well clear of enclosure peripheral edge 26 when blade 1 is deployed, but with no more than two of blades 1-4 overlapping each other at any point when the blades are retracted. This is important in keeping the overall height of the group of blades 1-4, when retracted, to a compactly small value. Note that if tip 61 where at theta=180 degrees, all three of blades 1, 2 and 3 would overlap at theta=180 degrees.
As can be seen in
Root end portion 80 comprises a plate 84 that lies above and, approximately parallel to support plate upper surface 46. A hole 86 in plate 84 permits a stub shaft (not shown) to pass through it and through to the underside of support plate 14 to be secured there to a planet gear (not shown) of the blade synchronization mechanism as described previously. Root end portion 80 further comprises a blade end plate formation 88 whose function is to provide a suitably strong connection between portions 80 and 82 with blade portion 82 inclined at an angle of incidence to plate 84 (see below).
Sections (a) to (c) of
As can be best seen in
Sections (a) to (f) of
As illustrated by the edge heights in
It will be noted in
In addition to folding neatly, the blades 1-4 must move air downwards reasonably efficiently when deployed and rotating about fan axis 15, so the shapes of blades 1-4 as they affect air movement will now be discussed. The arcs in
It is also helpful in the following discussion of the representative blade 1 when it is deployed to make mention of values of the angle theta that was used above in describing its geometry when retracted. Theta is in effect a measure of position along the scimitar-shaped blade 1. In
It has been found that fan/light 10 with blades 1-4 having the geometry shown does move air reasonably satisfactorily despite the comparatively large ratio of the diameter of enclosure 12 to the overall diameter swept by the deployed blades 1-4 and the scimitar-like shape (in plan view) of the blades.
Generally, the blades 1-4 thrust air downward (and themselves experience a corresponding reactive lifting force) as they rotate. The effectiveness of a blade in this (for a given speed of rotation) is believed to be dependent on, at least, its aerofoil-type cross sectional shape, its incidence to the horizontal, its size (for example its chord as measured from leading edge to trailing edge), the distribution of these along the blade's length (span) and its shape as seen in plan view.
As seen in the cross-sections of representative blade 1 in
Representative blade 1 has positive incidence to the horizontal (and is of cambered aerofoil cross-section) near its pivot end where, when deployed, it crosses the enclosure peripheral edge 26, and this is believed to be one factor in its air-moving performance. This positive incidence (alpha greater than zero) is apparent in the section numbered 1 in
It is thought desirable that the lift distribution (and the consequent distribution of air moving effect) along the length of a blade should be generally smoothly varying and in particular that there should be no strong concentration of the effect close to the outer (tip) end. Such a concentration is thought to produce a tendency for high pressure air below the tip area to “leak” upward over the tip end (61 in representative blade 1) to the area above the tip area, merely agitating the air locally (and wasting power) rather than moving it bodily downward. Therefore, the distribution of incidence angle alpha shown in
The incidence distribution shown in
A further way to influence the lift distribution along the blade is by control of its width (chord) distribution. If one imagines a scimitar shaped blade of constant width along its length (for example for all values of the theta) deployed in the way shown for blades 1-4 in
As mentioned above the blades may be made conveniently by injection molding in suitable plastics materials. As unobtrusiveness is a desired feature of fan/lights according to the invention, one way of enhancing this is to provide that the blades be formed from a transparent or at least translucent material. This feature is believed to be inventive in itself.
Although the blade stowage arrangement and method described herein provides for stowage of the blades without contact between blades, the described stowage positions of the blades are such that slight sagging of one blade so as to contact another may not cause failure to deploy. It will be noted in
The possibility of blades that are comparatively thin (so that they may sag over time if not used) also means that the blades when in use may flex upwardly toward their tip ends. This can it is believed advantageously direct air slightly more outwardly as well as downwardly than if the blades were rigid.
The particular shape of the translucent lower section 9 of enclosure 2 is by no means the only possible one. Even a shape that is not of the circular shape in plan, as shown in the
A further invention will now be disclosed. In fan/lights such as those described by Villella in his aforementioned PCT application, the “sun gear” may comprise a single member to which toothed segments are secured for engagement with the “planet gears”, instead of a complete gear. This possibility, which it has been found can reduce manufacturing costs arises because suitable sun and planet gear proportions can be chosen which do not require the sun gear to rotate far enough during deployment and refraction for any one tooth thereof to encounter more than one planet gear.
It will be readily apparent to persons skilled in the art that many other variations and choices can be made to the fan/light described above without exceeding the scope of the invention as stated
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005903707 | Jul 2005 | AU | national |
2008905097 | Sep 2008 | AU | national |
2008905201 | Oct 2008 | AU | national |
This application is a continuation of International application PCT/AU2008/001874 filed Dec. 19, 2008, which, claims priority to AU2008905097 filed Sep. 30, 2008 and AU2008905201 filed Oct. 5, 2008. This application is also a continuation-in-part of U.S. application Ser. No. 11/995,585 filed Jan. 14, 2008, now U.S. Pat. No. 8,317,470, which is incorporated in its entirety by reference herein, which is a U.S. national phase of International application PCT/AU2006/000981 filed Jul. 13, 2006, claiming priority to AU 2005903707 filed Jul. 13, 2005.
Number | Name | Date | Kind |
---|---|---|---|
1361785 | Tucker | Dec 1920 | A |
1445402 | Le Velle | Feb 1923 | A |
1458348 | Le Velle | Jun 1923 | A |
2079942 | Le Velle | May 1937 | A |
3692427 | Risse | Sep 1972 | A |
4776761 | Diaz | Oct 1988 | A |
5672002 | Todd, Jr. | Sep 1997 | A |
6010308 | Youn | Jan 2000 | A |
6213716 | Bucher et al. | Apr 2001 | B1 |
6309083 | Lathrop et al. | Oct 2001 | B1 |
6666652 | Bucher et al. | Dec 2003 | B2 |
6719533 | Bird | Apr 2004 | B2 |
7037074 | Hoshino | May 2006 | B2 |
7131819 | Bird | Nov 2006 | B2 |
7210910 | Parker et al. | May 2007 | B1 |
7625186 | Lueddecke | Dec 2009 | B1 |
7857581 | Mons et al. | Dec 2010 | B2 |
20060140769 | Frampton et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
2007006096 | Jan 2007 | WO |
Entry |
---|
International Search Report for PCT/AU2008/001874, Completed by the Australian Patent Office on Feb. 18, 2009, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20120045331 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AU2008/001874 | Dec 2008 | US |
Child | 13029700 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11995585 | US | |
Child | PCT/AU2008/001874 | US |