Combined cryotherapy and brachytherapy device and method

Information

  • Patent Grant
  • 8162812
  • Patent Number
    8,162,812
  • Date Filed
    Friday, March 12, 2010
    15 years ago
  • Date Issued
    Tuesday, April 24, 2012
    13 years ago
Abstract
Combined brachytherapy and ablation devices and methods. A combined brachytherapy and cryotherapy method, includes: inserting an ablation device into tissue of a subject; ablating tissue within an ablation zone of the device; detaching and removing a first part of the device while leaving a second part of the device in the tissue, the first part contacting the ablation zone; and inserting a brachytherapy rod into the second part of the device when the second part is detached from the first part, the brachytherapy rod connected to base at one end and retaining at least one radioactive seed at an opposing end, the brachytherapy rod configured and dimensioned so that when it is inserted into the device up to the base, the at least one radioactive seed is in the ablation zone.
Description
BACKGROUND

1. Technical Field


Embodiments of the present invention relate generally to cryotherapy and brachytherapy and, more particularly, to combined cryotherapy and brachytherapy methods and devices.


2. Description of Related Art


Several approaches to cancer treatment are known. The most common and effective approaches include: surgery, chemotherapy, radiation therapy, and cryotherapy. These approaches may be administered individually, in various combinations, and/or in succession. Often, a combination of cancer treatment approaches yields the most effective results.


Each cancer treatment option has positive aspects and drawbacks. For example, radiation therapy, which uses high-energy rays or particles to destroy cancer cells, can damage nearby healthy tissue along with the cancer cells because it is difficult to administer accurately. Chemotherapy, which uses drugs to kill cancer cells, is also difficult to administer accurately and locally because chemotherapy drugs are toxic to both normal and cancerous cells.


Radiation therapy is a primary cancer treatment. It can be administered externally or internally. Externally, radiation may be administered via external beam therapy (EBT), in which high-energy x-ray beams are directed at the tumor from outside the body. Internally, radiation may be administered via brachytherapy, in which one or more pellets or “seeds” of radioactive material are placed in, or adjacent to, a tumor.


A key feature of brachytherapy is that the irradiation is localized around the radiation source. Exposure to radiation of healthy tissues further away from the sources is therefore reduced. The result is the ability to use a higher total dose of radiation to treat a smaller area and in a shorter time than is possible with external radiation treatment.


Cryotherapy can be a particularly advantageous cancer treatment because it does not use radiation and is direct treatment that kills only the targeted tissue. Additionally, cryotherapy requires a small incision and causes less trauma. With cryotherapy, one or more thin needles are inserted into the tumor and the needles are cooled using extremely cold liquids or using high-pressure gas. The needles are cooled so as to form ice balls at the tips. These iceballs freeze and kill the tumor. Thus, the problems of irradiation are avoided.


Two common cancers that may be treated via brachytherapy and cryotherapy are prostate and breast cancer.


Conventional breast cancer treatment, for example, can include a surgical approach and an additional approach. First, a tumor is removed by surgery (a lumpectomy) followed by external radiation therapy. In recent years, there has been a trend to replace external radiation therapy with internal radiation therapy, like brachytherapy.


Brachytherapy, in the treatment of breast cancer, is performed by positioning a balloon in the void of the removed tumor, and then placing one or more radiation sources (seeds) in the balloon. Typically, the balloon is positioned once during surgery. Thereafter, the seed may be replaced or removed, as required. Accurate positioning of the source in the same place is important.


Cryotherapy and other emerging tumor ablation techniques are investigated as replacement to the surgical component (lumpectomy) in treatment of breast cancer. One challenge is that when the tumor is ablated rather than surgically removed, there is no room (void) for a brachytherapy balloon. Presently there is no brachytherapy solution for breast tumors that does not feature such a balloon.


Among the advantages of using a removable radioactive source in a balloon, rather than permanently implanting a radioactive source, is that higher radiation doses may be used.


BRIEF SUMMARY

The background art does not provide a breast brachytherapy solution that does not feature a balloon. Furthermore, it does not provide a removable brachytherapy solution that can be used following cryotherapy treatment.


Embodiments of the present invention provide either a device or a method for combination cryotherapy and brachytherapy, which does not require a brachytherapy balloon.


Various non-limiting embodiments according to the present invention of a combined cryotherapy and brachytherapy device are described herein.


One aspect of the present invention provides a combined brachytherapy and ablation method, including: inserting an ablation device into tissue of a subject; ablating tissue within an ablation zone of the device; detaching and removing a first part of the device while leaving a second part of the device in the tissue, the first part contacting the ablation zone; and inserting a brachytherapy rod into the second part of the device when the second part is detached from the first part, the brachytherapy rod connected to base at one end and retaining a radioactive seed at an opposing end, the brachytherapy rod configured and dimensioned so that when it is inserted into the device up to the base, the radioactive seed is in the ablation zone. The seed dimensions may vary from sub-milimeters up to a few centimeters long.


Another aspect of the present invention provides a combined cryotherapy and brachytherapy method, including: inserting an ablation device into a tumor; ablating a zone that engulfs the tumor; detaching a part of the ablation device from the rest of the ablation device; fixing the detached part at a specified location in contact with the ablation zone; and placing at least one radioactive seed in a specified location in the detached part and in the ablation zone.


Still another aspect of the present invention provides a combined cryotherapy and brachytherapy method, including: ablating tissue in an ablation zone of a cryoprobe inserted into a tumor; separating at least a portion of the cryprobe from a handle; fixing a location of the at least a portion of the cryoprobe in the ablation zone; and positioning at least one radioactive element in the at least a portion of the cryprobe, after the ablating.


Yet another aspect of the present invention provides a device, including: a handle; a cryoprobe that is selectively detachable from the handle and has an ablation zone when activated; a brachytherapy rod adapted and configured to be removably insertable into at least a portion of the cryoprobe when it is detached from the handle, the rod having at least one radioactive seed at an end. When the brachytherapy rod is inserted into the cryoprobe, the at least one radioactive seed is disposed at a specified position in the ablation zone.


A further aspect of the present invention provides a tumor treatment method, including; encompassing a tumor in an ablation zone of an ablation device; ablating tissue in the ablation zone; and inserting a radiation source into the ablation zone via the ablation device.


These, additional, and/or other aspects and/or advantages of the present invention are set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are herein described, by way of examples only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


In the drawings:



FIG. 1 shows an exemplary device consistent with an embodiment of the present invention usable in cryotherapy;



FIGS. 2A-2D show exemplary brachytherapy rods usable with the device of FIG. 1;



FIG. 3 shows an exemplary use of the device of FIG. 1 with the brachytherapy rod 209 of FIG. 2A in the treatment of a tumor;



FIG. 4 shows an exemplary use of the device of FIG. 1 with the brachytherapy rod 209′ of FIG. 2B in the treatment of a tumor;



FIG. 5 illustrates a combined cryotherapy and brachytherapy method consistent with an embodiment of the present invention; and



FIG. 6 illustrates the use of an optional outer shaft 604 to accomplish the placing operation of the method of FIG. 5.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.


Before explaining any exemplary embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. Rather, the invention is capable of other embodiments and/or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Referring now to FIG. 1, there is illustrated a cryotherapy and brachytherapy device 100 consistent with an embodiment of the present invention. The device 100 includes a handle 101 to which a cryoprobe 104 is attached. The cryoprobe 104 has an associated ablation zone 105 of a specified shape. The ablation zone 105 has a center 106. At the end of the cryoprobe 104 distal from the handle 101 is a tip 107. As illustrated in FIG. 1, the cryprobe 104 is insertable into a tumor 103.


As is known, an associated ablation zone of a cryoprobe is a function of the configuration of the cryoprobe and how it is used. Using differently configured cryoprobes yields differently shaped ablation zones. Thus, desired ablation zone (one that engulfs a tumor) is achievable by selecting an appropriate cryoprobe and how it is used.


The part or parts of the ablation device that come(s) in contact with the patient are preferably constructed of a biocompatible material that can reside within the body for several days. This is in contrast to conventional ablation devices that are only in a body for a few minutes.


In order to accurately position a radiation source in an ablation zone, the device 100 includes a mechanism that ensures correct position of the radiation source(s) when the user located them in the cryoprobe 104.


Referring to FIG. 2A, one non-limiting example of the positioning mechanism is a rod 209 that includes a base 208 at one end and a seed-retaining portion 206 at/near an opposing end 211. The rod 209 is dimensioned so that it will fit within the selected cryoprobe 104 and so that, when it is fully inserted into the cryoprobe 104, the opposing end 211 is at a specified location in the length of the cryoprobe 104 that will be in the ablation zone 105. This positions the radiation source (seed) 210 at a specified distance from base 208. Then, when the rod 209 is inserted into the cryoprobe 104, the radioactive part of the rod 209 is located in the ablation zone 105. In this configuration, the rod 209 and the cryoprobe 104 have substantially the same length.


It is preferable to position the seed in the center 106 of the ablation zone 105.


Optionally, as illustrated in FIG. 2D, the seed retaining portion 206 may be configured to retain a single elongated seed 206′.


Optionally, the base 208 of the rod 209 may be dimensioned so as to prevent the rod from entering too deeply into the cryoprobe 104.


It is to be understood that the seed-retaining portion 206 need not be located at the opposing end 211. Indeed, as FIG. 2B illustrates, the seed-retaining portion 206 of the rod 209′ may retain the radioactive seed 210 at a specified distance between the center of the rod 209′ and the tip 107. In the configuration of FIG. 2B, the rod 209′ is preferably configured so that the seed 210 is positioned in the ablation zone 105 when the rod 209′ is fully inserted into the cryoprobe 104. In this configuration, the rod 209′ is be shorter than the cryoprobe 104.


Alternatively, the seed-retaining portion 206 may be configured to retain multiple seeds 210, as FIG. 2C illustrates.


Optionally, as illustrated in FIG. 2C, the rod 209″ may have a protrusion 209a near the proximal end (near base 208), and radiation sources 210 are placed at fixed locations with respect to this protrusion. The rod 209′ may be inserted into the cryoprobe 104 until the protrusion 209a reaches the cryoprobe 104.


In operation, a user of the device 100 ablates the tissue in the ablation zone 105, which engulfs the tumor 103, and positions a radiation source 210 in the ablation zone 105. Several approaches to position the radiation source 210 are available.


One example is illustrated in FIG. 3, which illustrates use of rod 209 of FIG. 2A in the device 100. Referring to FIG. 3, because the radiation source (seed) 210 is retained near the opposing end 211 and the rod 209 is shorter than the cryoprobe 104, when the rod 209 is fully inserted into the cryoprobe 104, the seed 210 is positioned in/near the center 106 of the ablation zone 105, which is at a known distance from the base 208 of the cryoprobe 104 and from the tip of the probe 107.


Another example is illustrated in FIG. 4, which illustrates use of rod 209′ of FIG. 2B in the device 100. Referring to FIG. 4, because the radiation source (seed) 210 is retained between the center of the rod 209′ and opposing end 211 and the rod is substantially equal in length to the cryoprobe 104, when the rod 209′ is fully inserted into the cryoprobe 104, the seed 210 is positioned in/near the center 106 of the ablation zone 105, which is at a known distance from the base 208 of the cryoprobe 104 and from the tip of the probe 107.


After an ablation process is completed, the cryoprobe 104 is detached from the handle 101, and the radiation source 210 is delivered through the detached cryoprobe 104. Alternatively, as FIG. 6 illustrates, only an outer shaft 604 of the cryoprobe 104 may detach from the inner part of the cryoprobe 104 and the handle 101. In this alternative configuration, the radiation source is delivered through the external shaft 604


In other embodiments, the ablation device may use another ablation technology. Non-limiting examples of ablation technologies include RF, microwave, and laser.


Preferably, when multiple seeds are used during a multi-day treatment, the ablation device is securely attached to the tissue. This may be done by special retractable needles that extend from the ablation device into the tissue, or by a special cover 311 that attaches the external part of the ablation device to the skin 102. Optionally, a cover 311 may be applied to cover the base 208 in a multi-day treatment.


Referring now to FIG. 5, there is illustrated a combined cryotherapy and brachytherapy method 500 consistent with an embodiment of the present invention. The method 500 includes the following operations: inserting an ablation device into a tumor (operation 510); ablating a zone that engulfs the tumor (the ablated zone) (operation 520); detaching part of the ablation device (e.g., a cryoprobe) from the rest of the ablation device (operation 530); fixing the detachable part in place (operation 540); placing at least one radioactive seed in the detachable part substantially in the center of the ablated zone (operation 550); and removing the detached detachable part (operation 560). It is to be understood that these various operations may be executed in the illustrated order. Rather, they may be executed in an order that differs from that illustrated in FIG. 5.


In operation 510, it is particularly advantageous to insert the ablation device into the tumor under imaging guidance. Non-limiting examples of systems that may provide such guidance include ultrasound, MRI, CT, and X-ray.


In operation 540, it is preferable to fix the detachable part substantially in the center of the ablated zone. As FIG. 6 illustrates, the detachable part may comprise only an outer shaft 604 of the cryoprobe 104.


In operation 550, one or more seeds may be positioned in the detachable part. When more than one seed is placed, the various seeds may share the same intensity and profile.


The method 500, or portions thereof, may be repeated as necessary and/or desired to achieve a desired result.


The method 500 may be performed with the device 100 of FIG. 1.


Advantageously and optionally, when the method 500 is performed via the device 100 of FIG. 1, the cryoprobe 104 may be a disposable cryoprobe, and the cryoprobe may contain an inner tube that is used for in-flow of cryogenic liquid or gas. The entire disposable cryoprobe may be detached from the handle 101, and the radiation source(s) 210 may be inserted into the cryoprobe through the inner tube. Additionally, the cryoprobe 104 may also include an outer shaft 604 (illustrated in FIG. 6 and, when the cryoprobe 104 is detached from the handle 101, the outer shaft 604 detaches from the inner tube. When the outer shaft 604 is present, the radiation source(s) 210 may be inserted into the cryoprobe 104 through the outer shaft 604.


By way of non-limiting example, the radiation source(s) 210 may be placed at specified locations with respect to the distal end of the rod 209, 209′, or 209″. As a result, when the rod is fully inserted into the cryoprobe 104, it reaches the tip 107 and stops. The location(s) of the radiation source(s) may be determined by the distance between the inner part of the tip 107 of the cryoprobe 104 and the center 106 of the ablation zone 5. Alternatively, the rod 209′ may be inserted until protrusion 209a contacts cryoprobe 104.


As the foregoing illustrates, embodiments of the present invention provide a device that features a removable cryogenic device that is insertable to an area of tissue to be treated, such as for example in the breast, for treatment of a tumor. The device may feature a removable core that includes a shaft for receiving a cryogen and a tip for being cooled by the cryogen and for being inserted to the tissue to be treated. After cryogenic treatment, the removable core is removed from the device and a radiation source is inserted through the device to the tissue to be treated. In place of a balloon as is known in the art, the cryoprobe portion of the device, the tip of which cryogenically freezes the tissue, receives the radiation source. The core may optionally surround at least a proximal part of the cryoprobe portion and/or may optionally be removably connected to the cryoprobe portion, for example.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


The various described embodiments and/or examples may be combined.


Although at least one selected embodiment of the present invention has been shown and described, it is to be understood the present invention is not limited to the described embodiment(s). Instead, it is to be appreciated that changes may be made to this/these embodiment(s) without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.

Claims
  • 1. A combined cryotherapy and brachytherapy method, comprising: ablating tissue in an ablation zone of a cryoprobe inserted into a tumor, the cryoprobe extending into the tumor and having a closed end;separating the cryoprobe from a handle;fixing a location of the cryoprobe; andpositioning at least one radioactive element in the cryoprobe, after the ablating,wherein, in the positioning, the radioactive element is guided into the tumor by the cryoprobe, without contacting the tumor.
  • 2. The method of claim 1, wherein the positioning comprises providing a rod that is adapted and configured to be removably insertable into the cryoprobe, and the at least one radioactive element is disposed at an end of the rod.
  • 3. The method of claim 1, wherein, in the positioning, the at least one radioactive element is a single seed that is positioned at a substantial center of the ablation zone.
  • 4. The method of claim 1, wherein, in the positioning, the radioactive element extends along a portion of a length of the cryoprobe and is positioned through at least a substantial center of the ablation zone.
  • 5. The method of claim 1, wherein the cryoprobe includes an inner tube usable for an inflow of cryogenic liquid or gas and wherein, in the positioning, the radioactive element is inserted into the cryoprobe through the inner tube.
  • 6. The method of claim 1, wherein the cryoprobe includes an outer shaft and, wherein, in the positioning, the at least one radiation element is inserted into the cryoprobe through the outer shaft.
  • 7. The method of claim 6, wherein the radioactive element is a plurality of radioactive elements that are located at specified locations with respect to a distal end of a rod.
  • 8. A device, comprising: a handle;a cryoprobe that (i) has a proximal end that is selectively detachable from the handle,(ii) has an ablation zone when activated, and(iii) has a closed, pointed tip at a distal end, the tip adapted and configured to pierce a tumor so that at least a portion of the cryoprobe may be inserted into the tumor such that the tumor is disposed within the ablation zone;a brachytherapy rod adapted and configured to be removably insertable into at least a portion of the cryoprobe when it is detached from the handle, the rod having at least one radioactive seed at an end,wherein the cryoprobe guides the brachytherapy rod in the tumor,wherein both the cryoprobe and the brachytherapy rod may be in the tumor contemporaneously, andwherein, when the brachytherapy rod is inserted into the cryoprobe, the at least one radioactive seed is disposed at a specified position in the ablation zone and in the tumor.
  • 9. The device of claim 8, wherein the rod includes a base opposite the end and the base is configured and dimensioned so as to limit travel of the rod into the cryoprobe.
  • 10. The device of claim 8, wherein the rod has a protrusion near a base opposite the end that limits travel of the rod into the cryoprobe.
  • 11. The device of claim 8, wherein the cryoprobe includes an inner tube usable for an inflow of cryogenic liquid or gas, and wherein the brachytherapy rod is inserted into the cryoprobe through the inner tube.
  • 12. The device of claim 8, wherein the cryoprobe includes an outer shaft, wherein only the outer shaft remains in the subject after the cryoprobe has been activated, and wherein the brachytherapy rod is inserted into the cryoprobe through the outer shaft.
  • 13. The device of claim 8, wherein, when a portion of the cryoprobe is disposed in the tumor, neither the brachytherapy rod nor the radioactive seed contact the tumor.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. provisional patent application No. 61/159,497, filed Mar. 12, 2009.

US Referenced Citations (275)
Number Name Date Kind
3234746 Smith Feb 1966 A
3358472 Kipling Dec 1967 A
3664344 Bryne May 1972 A
3699775 Cowans Oct 1972 A
3712306 Bryne Jan 1973 A
3736936 Basiulis Jun 1973 A
3800552 Sollami Apr 1974 A
3862630 Balamuth Jan 1975 A
3882849 Jamshidi May 1975 A
3938505 Jamshidi Feb 1976 A
3971383 Van Gerven Jul 1976 A
4082096 Benson Apr 1978 A
4091634 Shepherd May 1978 A
4127903 Schachar Dec 1978 A
4200104 Harris Apr 1980 A
4211231 Rzasa Jul 1980 A
4279626 Buchmuller Jul 1981 A
4306568 Torre Dec 1981 A
4313306 Torre Feb 1982 A
4367744 Sole Jan 1983 A
4428748 Peyman Jan 1984 A
4463458 Seidner Aug 1984 A
4481948 Sole Nov 1984 A
4487253 Malek Dec 1984 A
4552208 Sorensen Nov 1985 A
4570626 Norris Feb 1986 A
4573525 Boyd Mar 1986 A
4611654 Buchsel Sep 1986 A
4617018 Nishi Oct 1986 A
4676225 Bartera Jun 1987 A
4726194 Mackay Feb 1988 A
4765396 Seidenberg Aug 1988 A
4770171 Sweren Sep 1988 A
4802475 Weshahy Feb 1989 A
4831856 Gano May 1989 A
5026387 Thomas Jun 1991 A
5047043 Kubota Sep 1991 A
5108390 Potocky Apr 1992 A
5147355 Friedman Sep 1992 A
5188102 Idemoto Feb 1993 A
5214925 Hoy Jun 1993 A
5222937 Kagawa Jun 1993 A
5224943 Goddard Jul 1993 A
5243826 Longsworth Sep 1993 A
5254082 Takase Oct 1993 A
5254116 Baust Oct 1993 A
5261923 Soares Nov 1993 A
5263957 Davison Nov 1993 A
5264116 Apelian Nov 1993 A
5267960 Hayman et al. Dec 1993 A
5275595 Dobak Jan 1994 A
5281215 Milder Jan 1994 A
5295484 Marcus Mar 1994 A
5324286 Fowle Jun 1994 A
5330745 Mcdow Jul 1994 A
5334181 Rubinsky Aug 1994 A
5342380 Hood Aug 1994 A
5361591 Caldwell Nov 1994 A
5391144 Sakurai Feb 1995 A
5411374 Gram May 1995 A
5417073 James May 1995 A
5423807 Milder Jun 1995 A
5429138 Jamshidi Jul 1995 A
5438837 Caldwell Aug 1995 A
5441512 Muller Aug 1995 A
5445462 Johnson Aug 1995 A
5452582 Longsworth Sep 1995 A
5488831 Griswold Feb 1996 A
5516505 Mcdow May 1996 A
5520682 Baust May 1996 A
5526821 Jamshidi Jun 1996 A
5547473 Peyman Aug 1996 A
5573532 Chang Nov 1996 A
5600143 Roberts Feb 1997 A
5647868 Chinn Jul 1997 A
5654279 Rubinsky Aug 1997 A
5658276 Griswold Aug 1997 A
5674218 Rubinsky Oct 1997 A
5683592 Bartholomew et al. Nov 1997 A
5687776 Forgash Nov 1997 A
5716353 Matsuura Feb 1998 A
5720743 Bischof Feb 1998 A
5728130 Ishikawa Mar 1998 A
5735845 Zupkas Apr 1998 A
5771946 Kooy Jun 1998 A
5787940 Bonn Aug 1998 A
5800448 Banko Sep 1998 A
5800487 Mikus Sep 1998 A
5814040 Nelson Sep 1998 A
5868673 Vesely Feb 1999 A
5885276 Ammar Mar 1999 A
5899897 Rabin May 1999 A
5906612 Chinn May 1999 A
5906628 Miyawaki May 1999 A
5910104 Dobak Jun 1999 A
5921982 Lesh Jul 1999 A
4946460 Merry Aug 1999 A
5976092 Chinn Nov 1999 A
5976505 Henderson Nov 1999 A
5992158 Goddard Nov 1999 A
6012453 Tsals Jan 2000 A
6024750 Mastri Feb 2000 A
6027499 Johnston Feb 2000 A
6032068 Daniel Feb 2000 A
6032675 Rubinsky Mar 2000 A
6035657 Dobak Mar 2000 A
6036667 Manna Mar 2000 A
6039730 Rabin Mar 2000 A
6041787 Rubinsky Mar 2000 A
6042342 Orian Mar 2000 A
6053906 Honda Apr 2000 A
6059820 Baronov May 2000 A
6063098 Houser May 2000 A
6095149 Sharkey Aug 2000 A
6142991 Schatzberger Nov 2000 A
6152894 Kubler Nov 2000 A
6182666 Dobak Feb 2001 B1
6200308 Pope Mar 2001 B1
6206832 Downey Mar 2001 B1
6212904 Arkharov Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6235018 LePivert May 2001 B1
6237355 Li May 2001 B1
6251105 Mikus Jun 2001 B1
6270494 Kovalcheck Aug 2001 B1
6280407 Manna Aug 2001 B1
6354088 Emmer Mar 2002 B1
6355033 Moorman Mar 2002 B1
6358264 Banko Mar 2002 B2
6379348 Onik Apr 2002 B1
6383180 Lalonde May 2002 B1
6383181 Johnston May 2002 B1
6411852 Danek Jun 2002 B1
6413263 Lobdill Jul 2002 B1
6423009 Downey Jul 2002 B1
6432102 Joye Aug 2002 B2
6457212 Craig Oct 2002 B1
6468268 Abboud Oct 2002 B1
6468269 Korpan Oct 2002 B1
6471217 Hayfield Oct 2002 B1
6482178 Andrews Nov 2002 B1
6497714 Ishikawa Dec 2002 B1
6500109 Tokita Dec 2002 B2
6503246 Har-Shai Jan 2003 B1
6508814 Tortal Jan 2003 B2
6513336 Zurecki Feb 2003 B2
6547784 Thompson Apr 2003 B1
6551309 LePivert Apr 2003 B1
6562030 Abboud May 2003 B1
6565556 Korpan May 2003 B1
6581390 Emmer Jun 2003 B2
6582426 Moorman Jun 2003 B2
6631615 Drube Oct 2003 B2
6640556 Ursan Nov 2003 B2
6659730 Gram Dec 2003 B2
6659956 Barzell Dec 2003 B2
6672095 Luo Jan 2004 B1
6678621 Wiener et al. Jan 2004 B2
6682525 Lalonde Jan 2004 B2
6698423 Honkonen Mar 2004 B1
6702761 Damadian Mar 2004 B1
6761715 Carroll Jul 2004 B2
6765333 Mariaucue Jul 2004 B1
6768917 Van Vaals Jul 2004 B1
6772766 Gallo Aug 2004 B2
6786902 Rabin Sep 2004 B1
6824543 Lentz Nov 2004 B2
6852706 Heber-Katz Feb 2005 B1
6858025 Maurice Feb 2005 B2
6866624 Chornenky et al. Mar 2005 B2
6869439 White Mar 2005 B2
6889695 Pankratov May 2005 B2
6898940 Gram May 2005 B2
6908472 Wiener Jun 2005 B2
6910510 Gale Jun 2005 B2
6913604 Mihalik Jul 2005 B2
6918869 Shaw et al. Jul 2005 B2
6932771 Whitmore Aug 2005 B2
6936045 Yu Aug 2005 B2
6942659 Lehmann Sep 2005 B2
6951569 Nohilly Oct 2005 B2
6954977 Maguire Oct 2005 B2
6995493 Isoda Feb 2006 B2
7001378 Yon Feb 2006 B2
7025762 Johnston Apr 2006 B2
7025767 Schaefer Apr 2006 B2
7071690 Butts Jul 2006 B2
7081111 Svaasand Jul 2006 B2
7101367 Xiao et al. Sep 2006 B2
7128739 Prakash et al. Oct 2006 B2
7144228 Emmer Dec 2006 B2
7151374 Doty Dec 2006 B2
7160291 Damasco Jan 2007 B2
7160292 Moorman Jan 2007 B2
7165422 Little Jan 2007 B2
7189228 Eum Mar 2007 B2
7207985 Duong Apr 2007 B2
7213400 Dickerson May 2007 B2
7223080 Duron May 2007 B2
7250046 Fallat Jul 2007 B1
7252648 Honda Aug 2007 B2
7255693 Johnston Aug 2007 B1
7273479 Littrup Sep 2007 B2
7278991 Morris Oct 2007 B2
7280623 Gupta Oct 2007 B2
7282919 Doty Oct 2007 B2
7288089 Yon Oct 2007 B2
7318327 Dickerson Jan 2008 B2
7344530 Bischoff Mar 2008 B2
7344531 Bischoff Mar 2008 B2
7354434 Zvuloni Apr 2008 B2
7361187 Duong Apr 2008 B2
7381207 Duong Jun 2008 B2
7458968 Carroll Dec 2008 B2
7485117 Damasco Feb 2009 B2
7498812 Doty Mar 2009 B2
7510554 Duong Mar 2009 B2
7563260 Whitmore Jul 2009 B2
20010047129 Hall et al. Nov 2001 A1
20020016540 Mikus et al. Feb 2002 A1
20020022832 Mikus et al. Feb 2002 A1
20020040220 Zvuloni et al. Apr 2002 A1
20020077654 Javier Jun 2002 A1
20020085921 Gram Jul 2002 A1
20020144509 Chalk Oct 2002 A1
20020156469 Yon Oct 2002 A1
20020157402 Drube Oct 2002 A1
20020160640 Korpan Oct 2002 A1
20020161385 Wiener Oct 2002 A1
20030060762 Zvuloni Mar 2003 A1
20030079480 Emmer May 2003 A1
20030126867 Drube Jul 2003 A1
20030135119 Lee et al. Jul 2003 A1
20030181897 Thomas Sep 2003 A1
20030220635 Knowlton Nov 2003 A1
20040024391 Cytron Feb 2004 A1
20040055316 Emmer et al. Mar 2004 A1
20040078033 Levin Apr 2004 A1
20040215178 Maurice Oct 2004 A1
20050016185 Emmer Jan 2005 A1
20050038422 Maurice Feb 2005 A1
20050056027 White Mar 2005 A1
20050086949 Noble Apr 2005 A1
20050106153 Nordouist May 2005 A1
20050177147 Vancelette Aug 2005 A1
20050192564 Cosman et al. Sep 2005 A1
20050214268 Cavanagh Sep 2005 A1
20050274142 Corey Dec 2005 A1
20060049274 Hume Mar 2006 A1
20060053165 Hume Mar 2006 A1
20060079867 Berzak Apr 2006 A1
20060122590 Bliweis Jun 2006 A1
20060155267 Berzak Jul 2006 A1
20060155268 Amir Jul 2006 A1
20060264920 Duong Nov 2006 A1
20060293647 McRae Dec 2006 A1
20070000259 Brook Jan 2007 A1
20070093710 Maschke Apr 2007 A1
20070123815 Mark May 2007 A1
20070129626 Mahesh Jun 2007 A1
20070129629 Beauregard Jun 2007 A1
20070149959 DeLonzor Jun 2007 A1
20070153969 Maschke Jul 2007 A1
20070166171 Kondo Jul 2007 A1
20070167939 Duong Jul 2007 A1
20070276360 Johnston Nov 2007 A1
20080027419 Hamel Jan 2008 A1
20080051774 Ofir Feb 2008 A1
20080051776 Bliweis Feb 2008 A1
20080115509 Gullickson May 2008 A1
20080119834 Vancelette May 2008 A1
20080119838 Vancelette May 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080319433 Geiselhart Dec 2008 A1
20090011032 LePivert Jan 2009 A1
Foreign Referenced Citations (37)
Number Date Country
2437079 Jun 2004 CA
202004008875 Aug 2004 DE
102005050344 May 2007 DE
0292922 Nov 1988 EP
395307 Oct 1990 EP
570301 Nov 1993 EP
955012 Nov 1999 EP
919197 Feb 2005 EP
1108905 Apr 1968 GB
1402737 Aug 1975 GB
1473856 May 1977 GB
1534472 Dec 1978 GB
2336781 Nov 1999 GB
2409815 Jul 2005 GB
2004041428 Feb 2004 JP
2007144180 Jun 2007 JP
2007167100 Jul 2007 JP
WO8303961 Nov 1983 WO
WO9637158 Nov 1996 WO
WO9639960 Dec 1996 WO
WO9947876 Sep 1999 WO
WO0137919 May 2001 WO
WO0141683 Jun 2001 WO
WO0197702 Dec 2001 WO
WO0202026 Jan 2002 WO
WO03015651 Feb 2003 WO
WO2004051409 Aug 2004 WO
WO0189183 Oct 2004 WO
WO2004060465 Feb 2005 WO
WO2004093635 Jun 2005 WO
WO2005098308 Oct 2005 WO
WO2005000106 Dec 2005 WO
WO2006116457 Nov 2006 WO
WO2006127467 Nov 2006 WO
WO2007028232 Mar 2007 WO
WO2007086056 Aug 2007 WO
WO2007129308 Nov 2007 WO
Related Publications (1)
Number Date Country
20100234670 A1 Sep 2010 US
Provisional Applications (1)
Number Date Country
61159497 Mar 2009 US