Embodiments of the invention relate generally to turbines and, more particularly, to steam turbines, single-shaft combined-cycle turbines, and turbine systems having novel cooling flow configurations.
In single-shaft combined-cycle turbines and turbine systems, a gas turbine may be operated independently from a steam turbine using appropriate bypass systems. In such a case, the steam turbine rotates, at least at some point, only under the force of the gas turbine. That is, the steam turbine does not rotate as a result of steam being supplied, as would occur when the steam turbine is fully operating, but is driven by the gas turbine. Permitting such unpowered rotation of the steam turbine, particularly as rotation speed increases toward the normal operational speed, may result in undesirable overheating due to windage heating caused by the large rotating metal mass.
A second portion 420B of the cooling steam 420 comprising approximately 10% of the cooling steam flows in the opposite direction along each of the intermediate-pressure stages 242A-G, ultimately exiting the intermediate-pressure section 240 through a condenser outlet 250, and traveling along a condenser line 510 to the condenser 500 (
While the above approach is sometimes capable of reducing “no load” overheating of the low-pressure steam turbine section 210, it is achieved at considerable expense and with limited efficiency. For example, the above approach requires between about 50,000 lb/hour and about 70,000 lb/hour of “cooling” steam from the auxiliary boiler 400 (
In addition, known turbines and systems employing cooling steam do not distribute or target the steam based on the extent of temperature difference from the cooling steam temperature within stages 212A-H of the low-pressure section 210. That is, while some stages of the low-pressure section 210 may experience a greater temperature difference (e.g., the larger stages, such as 212A-C), known turbines and systems do not direct the cooling steam 420 to most efficiently reduce temperature differences across the stages 212A-H. For example, small (e.g., 212H) and large (e.g., 212A) stages of the low-pressure section 210 may experience “full load” temperatures between about 650° F. and about 100° F., respectively, during a startup right after a full load rejection, with a cooling steam 420 (typically having a temperature of about 360° F.) is introduced into the low-pressure section 210 nearer the smaller, hotter stages (e.g., 212H), as shown in
In one embodiment, the invention provides a single-shaft combined-cycle turbine comprising: a gas turbine; a steam turbine including: a high-pressure section; an intermediate-pressure section; and a low-pressure section having a plurality of stages; a turbine shaft disposed within and between both the gas turbine and the steam turbine; a first cooling steam flow inlet adjacent a first of the plurality of stages of the low-pressure section; and a second cooling steam flow inlet adjacent a second of the plurality of stages of the low-pressure section.
In another embodiment, the invention provides a single-shaft combined-cycle turbine comprising: a gas turbine; a steam turbine including: a high-pressure section; an intermediate-pressure section adjacent the high-pressure section; and a low-pressure section adjacent the intermediate-pressure section, the low-pressure section having a plurality of stages, a first of the plurality of stages located furthest from the intermediate-pressure section and a second of the plurality of stages located adjacent and between the first and a third of the plurality of stages; a turbine shaft disposed within and between both the gas turbine and the steam turbine; and a cooling steam flow inlet adjacent the third of the plurality of stages of the low-pressure section.
In still another embodiment, the invention provides a steam turbine comprising: a high-pressure section; an intermediate-pressure section adjacent the high-pressure section; and a low-pressure section adjacent the intermediate-pressure section, the low-pressure section having a plurality of stages, a first of the plurality of stages located furthest from the intermediate-pressure section and a second of the plurality of stages located adjacent and between the first and a third of the plurality of stages; and a cooling steam flow inlet adjacent the third of the plurality of stages of the low-pressure section.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
A second portion 1420B of the cooling steam 1420 is directed across the smaller, cooler stages 1212D-H. A first subportion 1420B1 of the cooling steam 1420 then passes through an additional condenser outlet 1252 and an additional condenser line 1512 to the condenser 1500 (
In the embodiment of the invention shown in
One skilled in the art would recognize, of course, that other configurations and steam flows are possible. For example, the additional cooling steam line 2412 may be connected directly to the auxiliary boiler 2400 rather than to the cooling steam line 2410. Similarly, the additional condenser line 2512 may be connected to the condenser line 2510 rather than directly to the condenser. These and other such configurations and steam flows are within the scope of the invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any related or incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.