Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein.
The present novel approach is based on maintaining a regular geometric pattern of cells. For three-dimensional (3-D) arbitrarily shaped geometries, the cell data structure is in the form of an oct-tree. (A cell corresponds to a cube of an oct-tree structure, as explained below.) The best combination, which yields a regular cell pattern, is a loosely bounded, spatially balanced decomposition into orthants. Empty cells are ignored in the pattern. A starting cell, c00, is the smallest cube that encloses the entire geometry. The superscript applied to a cube indicates the level of decomposition to which the cube belongs, while the subscript denotes the cube number in that level. Each cell is recursively decomposed into a maximum of eight cubes in 3-D, as shown in the examples illustrated in
where splitx, splity, and splitz are the split positions in the three orthogonal directions, and xmax, xmin, ymax, ymin, zmax, and zmin are the bounding coordinates of the cube.
Each cube cjl+1 resulting from this decomposition is called a child of cil and the latter is denoted as the parent of cjl+1;
P
c
=c
i
l. (2)
All the child cubes of cil are siblings of each other, where a sibling set is defined as:
S
c
={c
k
l+1
″k|P
c
=P
c
}. (3)
It is therefore possible to group source cubes and observer cubes of different interaction lists in order to compress larger matrices to low epsilon-ranks and thereby, gain in terms of overall compressibility. It should be noted that the common interaction list does not directly translate into a merged interaction, because the epsilon-rank of such an interaction sub-matrix will not in general be low. The common interaction list is decomposed into disjointed parts, such that the overall compression is optimized. Each such disjointed part is an interaction between grouped source cubes and observer cubes and forms an entry of the MIL denoted as μ, as schematically illustrated by the example provided in
The QR algorithm uses a predetermined matrix structure for arbitrary 3-D geometries that ensures efficient compression. Method of Moment (MoM) sub-matrices pertaining to interactions of the MIL are compressed by forming QRs from samples. Consider n source basis functions fi defined over domain Si, for i=1, 2, . . . , n, such that SiεRsrc, where Rsrc is the region of space inside an MIL entry source group. Similarly, consider m testing functions whose domains belong to region Robs, which is delimited by the MIL entry observer group. Let the sub-matrix
Using the Modified Gram-Schmidt (MGS), process and a user-specified tolerance ε,
where:
H
and the matrix norm ∥
The QR decomposition of
Once the sampled rows and columns are formed, the following steps enable the representation of
m×n
sub
=
m×r
r×n. (7)
c
=
m×r
rs′ (8)
where
r
=
s×r
r×n. (9)
To solve for
s×r
=
s×r
′
r×r. (10)
Using Eq. 8 and the properties of
{tilde over (Q)}
s×r′T
From Eq. (11),
The MLFMA is widely used for computing scattering from large electrical bodies by solving the EFIE using MoM. For a 3-D conducting structure, the EFIE can be obtained by considering the continuity of the tangential electric field at the surface S:
(Es(J)+El)tan=0 (12)
where Es is the scattered electric field, and El is the incident electric field. The scattered field Es is given by the mixed potential expression:
where G(r, r′)=eik|r r′|/|r−r′| is the free-space Green's function. Substituting Eq. (13) into Eq. (12) yields the EFIE. Using triangular tessellations, RWG basis functions and Galerkin testing, a dense Ne×Ne system of equations is obtained, where Ne is the number of RWG edges. The first step leading to the MLFMA is a hierarchical division of the given geometric structure or system into a multilevel oct-tree. The next step is to use the addition theorem to separate the interactions between the source and observer cubes.
Expressing the addition theorem in the spectral domain diagonalizes the interaction between the source and the observer cubes in the oct-tree, so that the matrix-vector product can be written in the following way:
for j=1, 2 . . . Ne. Here, Bm represents the neighbor and the self cubes, and thus, the first term represents the contribution from near-field cubes. The latter term represents the contribution from all other cubes, where Vm′i({circumflex over (k)})ai is the “outgoing” plane wave at the m′-th cube, and αmm, translates the “outgoing” plane waves into “incoming” plane waves and is given by:
Vmj({circumflex over (k)}) converts the incoming plane waves into electric fields at the m-th cube of the oct-tree. Eq. (15) can thus be used to construct the plane wave expansions to form the multipole operators at all levels.
Eq. (14) gives the single level FMM, which scales as O(N1.5) The multilevel FMM algorithm uses three sweeps. In a first sweep, outgoing plane wave expansions are constructed at the lowest level. These expansions are then shifted and interpolated to the higher level cubes. In a second sweep, outgoing plane waves are translated to the receiver cubes and are then shifted and anterpolated to cubes at lower levels. In the last sweep, the incoming plane waves are converted into fields via local operators and contributions from neighboring boxes are directly computed. The net cost of MLFMA is reduced to O(N log N).
The MLFMA breaks down for small electrical structures because, from Eq. (15), it will be apparent that the spherical Hankel function becomes almost singular when the oct-tree cube size is smaller than one-fifth of the wavelength of the frequency of the electrical signal. For such structures, QR-based methods can be used, because the integral kernel is smooth, and far-field interactions can be efficiently compressed using QR.
The setup cost for this method is O(N2) if a conventional MGS technique is used to perform the QR factorization. Another method suggested in the literature uses sampled rows and columns for reducing the setup cost to O(N log N). An EFIE algorithm employed in one exemplary embodiment uses this sampled rows and columns method for low frequencies and is described as follows.
The algorithm has the following key steps:
The performance of QR compression degrades as frequency is increased leading to more oscillations of the kernel involved, making it necessary to hybridize the two algorithms in order to be applicable at all frequencies.
An exemplary FMM-QR technique is based on the following points. Both MLFMA and the present exemplary approach use the same oct-tree structure for decomposing a 3-D computational domain or system. These two methods work for different oct-tree cube sizes. For cube sizes smaller than one-fifth of the wavelength of the signal frequency, QR compression can be used, whereas FMM operators can be used to compute the interactions for larger oct-tree cube sizes. Thus, it is apparent that at the lower levels of the oct-tree structure, the interactions can be QR compressed, while at higher levels, multipole FMM operators can be used for computing the far-field. The exemplary technique is described below and in connection with a flowchart of exemplary steps illustrated in
Depending on the electrical size of the problem, there can be three cases—no FMM levels (i.e., all QR levels), no QR levels (i.e., all FMM levels), and both FMM and QR levels, which is the more general case. Thus, all operators are free of breakdown and at the same time, efficient compression is achieved at the lower levels. Since the number of operations is bounded by O(N log N) for the oct-tree approach that is used for FMM, the net setup cost is also O(N log N) in this exemplary embodiment.
Matrix-vector product A step 152 provides for executing an iterative solver ∥b-Ax∥, where x includes QR and FMM elements. This step further includes the following:
A step 154 combines the matrix vector products that have thus been determined to obtain a Net ΔFMM AND QR. A decision step 156 then determines if the desired residual has thus been obtained, i.e., is this result equal to or less than some predefined maximum value. If not, a step 158 provides for iterating the step 152 and 154 to determine a new Net ΔFMM AND QR. After sufficient iterations have produced a result that satisfies decision step 156, the process continues with a step 160, which provides for some tangible use of the result. Thus, the result may be stored on a hard drive, displayed to a user on a display device, or otherwise used in some physical and tangible manner.
Again, all of the involved steps in the matrix-vector products take O(N log N) operations, preserving the linear nature of the matrix-vector product. Notice, that in the FMM levels, there is a tree ascent step and a tree descent step during the step of determining the matrix-vector product. However, in the QR levels, there is no tree traversal during the step of determining the matrix-vector product, since each interaction is compressed separately, and thus, there is no interaction between levels.
The approach presented in the above algorithm is depicted in a schematic diagram 90 shown in
In this exemplary embodiment, the desired parameter to be determined as the solution to the problem is the current density of a system or device. To compute the current density, the iterative solver determines the current densities from the matrix-vector products (by treating each matrix-vector product as a black box) and then iteratively computes the next approximation. The following steps are used to compute the current density:
It is expected that the present approach can also be used to determine a solution for other desired parameters of a system or a device. For example, this approach should also be useful in solving for desired parameters of a system or device, such as the radiated electric fields, the radar cross section of scatterers, and the reflection pattern due to impedance mismatch in circuits, to name only a few.
The FMM-QR EFIE algorithm was implemented in the C programming language and was tested on a Linux machine in an exemplary embodiment; however, the language and operating system used to implement are not limited to these two choices. Many different programming languages, and other operating systems, such as Microsoft Corporation's WINDOWS™, can be used instead. The memory-time scaling of the tested algorithm is given in the following Table. The electrical size of the tested object was fixed at ka=1 and the number of patches were increased in this evaluation. With the increase in the number of levels, QR compression was used at lower levels. The number of FMM levels is not increased after cube size drops below the threshold. The overall method scaled almost linearly with time and the memory available on the computing system used to implement the task.
1)
The EFIE code was used to find the Radar Cross Section (RCS) of a cube structure 120 at 40 GHz, as shown in
There are several advantages for using the present combined FMM-QR approach to solve a system. These advantages include the ease with which it is implemented. Since this approach is a hybrid method that uses the same oct-tree structure as employed for MLFMA, it can be integrated using existing programming code, and it is unnecessary to separately implement the LF-MLFMA operators. This process is easy to implement. Since this approach uses a hybrid algorithm having the same oct-tree structure as the LF-MLFMA technique, it can be integrated using existing software code. For example, it is unnecessary to implement the LF-MLFMA operators separately. This approach is stable and can be used for structures that require variable meshing for finer and coarser regions. Current distributions for the whole structure can be performed using the same code at all frequencies.
Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is based on a prior copending provisional application, Ser. No. 60/807,462, filed on Jul. 14, 2006, the benefit of the filing date of which is hereby claimed under 35 U.S.C. §119(e).
| Number | Date | Country | |
|---|---|---|---|
| 60807462 | Jul 2006 | US |