The present disclosure relates to operational transconductance amplifiers (OTAs) and circuits that incorporate OTAs.
Embodiments of the present disclosure relate to circuitry, which includes an operational transconductance amplifier (OTA) and a passive circuit. The passive circuit is coupled to the OTA. Further, the passive circuit receives an input signal and the OTA provides an output current, such that the passive circuit and the OTA high-pass filter and integrate the input signal to provide the output current.
In one embodiment of the OTA, the OTA and the passive circuit provide a combined filter and OTA. Further, the OTA is a single OTA. By combining high-pass filter, integrator, and transconductance functions using a single OTA, the combined filter and OTA may operate with a higher bandwidth than if multiple OTAs were used. As a result, for a given process technology, a bandwidth of the combined filter and OTA may be maximized, thereby maximizing an allowable bandwidth of the input signal.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
In one embodiment of the combined filter and OTA 16, the OTA 18 is a single OTA. By combining high-pass filter, integrator, and transconductance functions using the single OTA, the combined filter and OTA 16 may operate with a higher bandwidth than if multiple OTAs were used. As a result, for a given process technology, a bandwidth of the combined filter and OTA 16 may be maximized, thereby maximizing an allowable bandwidth of the input signal INS. The OTA 18 receives a positive-side input voltage VP at the non-inverting input to the OTA 18. Further, the OTA 18 receives a negative-side input voltage VN at the inverting input to the OTA 18. The OTA 18 provides the output current IO based on a voltage difference between the positive-side input voltage VP and the negative-side input voltage VN. Specifically, the voltage difference is equal to a magnitude of the positive-side input voltage VP minus a magnitude of the negative-side input voltage VN. In this regard, since the OTA 18 provides the output current IO based on the voltage difference, the OTA 18 functions as a transconductance amplifier. As such, a transconductance GM of the OTA 18 is equal to a magnitude of the output current IO divided by the voltage difference. Additionally, the OTA 18 receives a first DC source signal DC1 and a second DC source signal DC2 to provide power to the OTA 18.
The OTA load circuit 22 has a load impedance ZL. The OTA load circuit 22 receives a load current IL, such that an output voltage VO from the OTA 18 is developed across the OTA load circuit 22. In this regard, a magnitude of the output voltage VO is equal to the magnitude of the load current IL times a magnitude of the load impedance ZL. Since the OTA 18 is an operational amplifier, the OTA 18 may have very high input impedances and an open-circuit transconductance of the OTA 18 may be very high. Therefore, the OTA 18 may combine the functionality of an operational amplifier with transconductance characteristics. A magnitude of the output current IO is about equal to a sum of a magnitude of the load current IL and a magnitude of the feedback current IF. In one embodiment of the combined filter and OTA 16, the feedback current IF is much less than the load current IL. As such, the load current IL may be about equal to the output current IO. In this regard, the magnitude of the output voltage VO is about equal to a magnitude of the output current IO times the magnitude of the load impedance ZL. In one embodiment of the combined filter and OTA 16, a magnitude of the output current IO is at least ten times greater than a magnitude of the feedback current IF.
The feedback impedance circuit 24 has a feedback impedance ZF. The shunt impedance circuit 26 has a shunt impedance ZS. The negative-side impedance circuit 28 has a negative-side impedance ZN. The positive-side impedance circuit 32 has a positive-side impedance ZP. The input signal INS has an input voltage VI. During a first set of operating conditions, a frequency of the input signal INS is significantly less than a cutoff frequency of the low-pass filter 30. During a second set of operating conditions, the frequency of the input signal INS is significantly greater than the cutoff frequency of the low-pass filter 30. As such, during the first set of operating conditions, the low-pass filter 30 substantially passes the input signal INS to the positive-side impedance circuit 32. Further, during the first set of operating conditions, the low-pass filter 30 presents a low-pass filter resistance RLP between the input IN and the positive-side impedance circuit 32. During the second set of operating conditions, the low-pass filter 30 substantially blocks the input signal INS from the positive-side impedance circuit 32. Further, during the second set of operating conditions, the low-pass filter 30 presents approximately a short circuit to ground to the positive-side impedance circuit 32.
In one embodiment of the passive circuit 20, during the first set of operating conditions, a magnitude of the negative-side impedance ZN is about equal to a sum of a magnitude of the positive-side impedance ZP and a magnitude of the low-pass filter resistance RLP. Further, during the first set of operating conditions, a magnitude of the feedback impedance ZF is about equal to a magnitude of the shunt impedance ZS. The shunt impedance circuit 26, the low-pass filter 30, and the positive-side impedance circuit 32 form a positive-side voltage divider, such that the positive-side input voltage VP is equal to the input voltage VI divided down by the positive-side voltage divider. Further, the feedback impedance circuit 24 and the negative-side impedance circuit 28 form a negative-side voltage divider, such that the negative-side input voltage VN is equal to the input voltage VI divided down by the negative-side voltage divider.
During the first set of operating conditions, the negative-side voltage divider is about equal to the positive-side voltage divider. Further, since the OTA 18 drives the output current IO to make the negative-side input voltage VN about equal to the positive-side input voltage VP, a magnitude of the output voltage VO is driven to be about equal to ground. Therefore, during the first set of operating conditions, the input signal INS is blocked and the combined filter and OTA 16 behaves as a high-pass filter.
During the second set of operating conditions, since the low-pass filter 30 presents approximately a short circuit to ground to the positive-side impedance circuit 32, a magnitude of the positive-side input voltage VP is about equal to ground. Since the OTA 18 drives the output current IO to make the negative-side input voltage VN about equal to the positive-side input voltage VP, a magnitude of the output voltage VO is driven based on the input voltage VI and a gain determined by the feedback impedance ZF and the negative-side impedance ZN. Therefore, during the second set of operating conditions, the input signal INS is amplified and the combined filter and OTA 16 behaves as a high-pass filter. In general, the output current IO is further based on low-pass filtering the input signal INS. As such, in one embodiment of the combined filter and OTA 16, a cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is equal to the cutoff frequency of the low-pass filter 30.
In one embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is greater than the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In an alternate embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is equal to at least two times the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In an additional embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is equal to at least three times the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In another embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is equal to at least five times the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In a further embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is equal to at least ten times the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In an extra embodiment of the combined filter and OTA 16, during the second set of operating conditions, the frequency of the input signal INS is less than 100 times the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16.
In one embodiment of the combined filter and OTA 16, during the first set of operating conditions, the frequency of the input signal INS is less than the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In an alternate embodiment of the combined filter and OTA 16, during the first set of operating conditions, the frequency of the input signal INS is less than one-half the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. In an additional embodiment of the combined filter and OTA 16, during the first set of operating conditions, the frequency of the input signal INS is less than one-tenth the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16.
In one embodiment of the combined filter and OTA 16, the high-pass filter as provided by the combined filter and OTA 16 is a single-pole filter. In an alternate embodiment of the combined filter and OTA 16, the high-pass filter as provided by the combined filter and OTA 16 is a two-pole filter. In an additional embodiment of the combined filter and OTA 16, the high-pass filter as provided by the combined filter and OTA 16 is a three-pole filter. In another embodiment of the combined filter and OTA 16, the high-pass filter as provided by the combined filter and OTA 16 is a four-pole filter. In a further embodiment of the combined filter and OTA 16, the high-pass filter as provided by the combined filter and OTA 16 is a five-pole filter.
In one embodiment of the low-pass filter 30, the low-pass filter 30 is a single-pole filter. In an alternate embodiment of the low-pass filter 30, the low-pass filter 30 is a two-pole filter. In an additional embodiment of the low-pass filter 30, the low-pass filter 30 is a three-pole filter. In another embodiment of the low-pass filter 30, the low-pass filter 30 is a four-pole filter. In a further embodiment of the low-pass filter 30, the low-pass filter 30 is a five-pole filter.
In one embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is greater than one megahertz. In an alternate embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is greater than two megahertz. In an additional embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is greater than five megahertz. In another embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is greater than ten megahertz. In a further embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is greater than fifty megahertz. In an exemplary embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is equal to about six megahertz. In another exemplary embodiment of the combined filter and OTA 16, the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16 is equal to about sixty megahertz.
In one embodiment of the OTA 18, the OTA 18 provides a derived output current DIO. The derived output current DIO is based on the output current IO, such that the derived output current DIO is representative of the output current IO. In one embodiment of the derived output current DIO, the derived output current DIO is about proportional to the output current IO. In one embodiment of the derived output current DIO, the derived output current DIO is based on a mirror current of the output current IO. In one embodiment of the derived output current DIO, a magnitude of the derived output current DIO is about equal to a first current scaling factor times a magnitude of the output current IO. In one embodiment of the OTA 18, the derived output current DIO is programmable. As such, in one embodiment of the OTA 18, the first current scaling factor is programmable. In this regard, in one embodiment of the OTA 18, a magnitude of the derived output current DIO is programmable.
G=VO/VI. EQ. 1:
However, the output voltage VO is based on the positive-side input voltage VP and the negative-side input voltage VN, which are both based on the input voltage VI, the passive circuit 20, and feeding back the output voltage VO. During the first set of operating conditions, the frequency of the input signal INS is significantly less than the cutoff frequency of the low-pass filter 30. As such, the frequency of the input signal INS is significantly less than the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16. Therefore, the first capacitive element C1 and the second capacitive element C2 may substantially behave as open circuits as shown. As such, the impedance of the low-pass filter 30 is about equal to the combined series resistance of the first resistive element R1 and the second resistive element R2. This series resistance is represented as 2R.
In this regard, the first resistive element R1, the second resistive element R2, the positive-side impedance circuit 32, and the shunt impedance circuit 26 form a voltage divider between the input IN and the ground to feed the non-inverting input to the OTA 18. In one embodiment of the OTA 18, the OTA has very high input impedances and an open-circuit transconductance of the OTA 18 is very high. As such, the OTA 18 drives the output voltage VO to make the negative-side input voltage VN about equal to the positive-side input voltage VP, as shown in EQ. 2 below. Further, the voltage divider is based on the series resistance 2R, the positive-side impedance ZP, and the shunt impedance ZS as shown in EQ. 3 below.
VN=VP. EQ. 2:
VP=VI(ZS/(ZS+ZP+2R)). EQ. 3:
Further, the feedback current IF flows through both the feedback impedance circuit 24 and the negative-side impedance circuit 28. However, if the negative-side impedance ZN is about equal to a sum of the series resistance 2R and the positive-side impedance ZP, as shown in EQ. 4 below, then a magnitude of the feedback current IF is about equal to a magnitude of the current flowing through the positive-side impedance circuit 32 and is about equal to a magnitude of the current flowing through the shunt impedance circuit 26. Additionally, if the feedback impedance ZF is about equal to the shunt impedance ZS, as shown in EQ. 5 below, then the voltage drop across the feedback impedance circuit 24 is about equal to the voltage drop across the shunt impedance circuit 26, as shown in EQ. 6 below.
ZN=ZP+2R. EQ. 4:
ZF=ZS. EQ. 5:
(VP−0)=(VN−VO) EQ. 6:
However, substituting EQ. 2 into EQ. 6 and then solving for the output voltage VO indicates that the output voltage VO is equal to zero, as shown in EQ. 7 below.
(VN−0)=(VN−VO), therefore, VO=0. EQ. 7:
Finally, substituting EQ. 7 into EQ. 1 indicates that the gain G of the combined filter and OTA 16 is equal to zero when the frequency of the input signal INS is significantly less than the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16, as shown in EQ. 8 below.
G=VO/VI=0/VI=0. EQ. 8:
Therefore, during the first set of operating conditions, the input signal INS is blocked and the combined filter and OTA 16 behaves as a high-pass filter.
Therefore, since the feedback current IF flows through both the feedback impedance circuit 24 and the negative-side impedance circuit 28, and since the OTA 18 drives the output voltage VO to make the negative-side input voltage VN about equal to the positive-side input voltage VP, the input voltage VI is across the negative-side impedance circuit 28 and the output voltage VO is across the feedback impedance circuit 24, as shown in EQ. 9 below.
VI/ZN=−VO/ZF. EQ. 9:
Substituting EQ. 9 into EQ. 1 indicates that the gain G of the combined filter and OTA 16 is equal to a negative ratio of a magnitude of the feedback impedance ZF divided by a magnitude of the negative-side impedance ZN when the frequency of the input signal INS is significantly greater than the cutoff frequency of the high-pass filter as provided by the combined filter and OTA 16, as shown in EQ. 10 below. Since the gain G is negative, the output voltage VO is phase-shifted from the input voltage VI by about 180 degrees.
G=VO/VI=−ZF/ZN. EQ. 10:
Therefore, during the second set of operating conditions, the input signal INS is allowed to pass and the combined filter and OTA 16 again behaves as a high-pass filter.
The load capacitive element CO and the load resistive element RO are coupled in series between the output from the OTA 18 and the ground. The feedback capacitive element CF and the feedback resistive element RF are coupled in parallel with one another. As such, the feedback capacitive element CF is coupled between the output from the OTA 18 and the inverting input to the OTA 18, and the feedback resistive element RF is coupled between the output from the OTA 18 and the inverting input to the OTA 18. The shunt capacitive element CS and the shunt resistive element RS are coupled in parallel with one another. As such, the shunt capacitive element CS is coupled between the non-inverting input to the OTA 18 and the ground, and the shunt resistive element RS is coupled between the non-inverting input to the OTA 18 and the ground.
In one embodiment of the combined filter and OTA 16, during the first set of operating conditions, a magnitude of the feedback impedance ZF is about equal to a magnitude of the shunt impedance ZS. Therefore, during the first set of operating conditions, a resistance of the feedback resistive element RF is about equal to a resistance of the shunt resistive element RS. Further, a capacitance of the feedback capacitive element CF is about equal to a capacitance of the shunt capacitive element CS.
The negative-side capacitive element CN and the negative-side resistive element RN are coupled in series between the inverting input to the OTA 18 and the input IN. The positive-side capacitive element CP and the positive-side resistive element RP are coupled in series between the first end of the second capacitive element C2 and the non-inverting input to the OTA 18. In one embodiment of the combined filter and OTA 16, during the first set of operating conditions, a magnitude of the negative-side impedance ZN is about equal to a sum of a magnitude of the positive-side impedance ZP and a magnitude of the low-pass filter resistance RLP. Therefore, during the first set of operating conditions, a resistance of the negative-side resistive element RN is about equal to a sum of a resistance of the positive-side resistive element RP, a resistance of the first resistive element R1, and a resistance of the second resistive element R2. Further, during the first set of operating conditions, a capacitance of the negative-side capacitive element CN is about equal to a capacitance of the positive-side capacitive element CP.
In one embodiment of the combined filter and OTA 16, during the second set of operating conditions, the combined filter and OTA 16 behaves as a combined high-pass filter and integrator. In this regard, in one embodiment of the feedback impedance circuit 24 and the negative-side impedance circuit 28, during the second set of operating conditions, a resistance of the feedback resistive element RF is significantly larger than a capacitive reactance of the feedback capacitive element CF, a resistance of the negative-side resistive element RN is significantly larger than a capacitive reactance of the negative-side capacitive element CN, a resistance of the load resistive element RO is significantly larger than a capacitive reactance of the load capacitive element CO, and the capacitive reactance of the feedback capacitive element CF is significantly larger than the resistance of the load resistive element RO.
Therefore, the negative-side impedance ZN is mainly resistive, the feedback impedance ZF is mainly capacitive, the load impedance ZL is mainly resistive, and the feedback current IF is significantly less than the output current 10. Since the negative-side impedance ZN is mainly resistive and the feedback impedance ZF is mainly capacitive, the output voltage VO is approximately an integral of the input voltage VI. Further, since the feedback current IF is significantly less than the output current IO and since the load impedance ZL is mainly resistive, the output voltage VO and the output current IO are substantially phase-aligned. Therefore, the output current IO is an integral of the input voltage VI. Thus, the combined filter and OTA 16 behaves as a combined high-pass filter and integrator.
In one embodiment of the circuitry 14, the RF front-end circuitry 38 receives via the RF antenna 40, processes, and forwards an RF receive signal RFR to the RF system control circuitry 36. The RF system control circuitry 36 provides an envelope power supply control signal VRMP and a transmitter configuration signal PACS to the transmitter control circuitry 44. The RF system control circuitry 36 provides an RF input signal RFI to the RF PA 46. The DC power source 42 provides a DC source signal VDC to the envelope tracking power supply 48. In one embodiment of the DC power source 42, the DC power source 42 is a battery.
The transmitter control circuitry 44 is coupled to the envelope tracking power supply 48 and to the PA bias circuitry 50. The envelope tracking power supply 48 provides an envelope power supply signal EPS to the RF PA 46 based on the envelope power supply control signal VRMP. The DC source signal VDC provides power to the envelope tracking power supply 48. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The envelope power supply control signal VRMP is representative of a setpoint of the envelope power supply signal EPS. The RF PA 46 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply signal EPS. The envelope power supply signal EPS provides power for amplification. The RF front-end circuitry 38 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 40. In one embodiment of the RF transmitter circuitry 34, the transmitter control circuitry 44 configures the RF transmitter circuitry 34 based on the transmitter configuration signal PACS.
The PA bias circuitry 50 provides a PA bias signal PAB to the RF PA 46. In this regard, the PA bias circuitry 50 biases the RF PA 46 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 50, the PA bias circuitry 50 biases the RF PA 46 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 38, the RF front-end circuitry 38 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, at least one RF amplifier, the like, or any combination thereof. In one embodiment of the RF system control circuitry 36, the RF system control circuitry 36 is RF transceiver circuitry, which may include an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof. In one embodiment of the RF transmitter circuitry 34, the envelope tracking power supply 48 provides the envelope power supply signal EPS, which has switching ripple. In one embodiment of the RF transmitter circuitry 34, the envelope power supply signal EPS provides power for amplification and envelope tracks the RF transmit signal RFT.
In one embodiment of the OTA 18, the derived output current DIO is programmable, such that the derived output current DIO is based on the output current IO and the OTA configuration signal OCS. In one embodiment of the derived output current DIO, the magnitude of the derived output current DIO is about equal to the first current scaling factor times a magnitude of the output current IO, such that the first current scaling factor is based on the OTA configuration signal OCS. In one embodiment of the OTA 18, the first current sense signal CS1 is programmable, such that the first current sense signal CS1 is based on the derived output current DIO and the OTA configuration signal OCS. In one embodiment of the first current sense signal CS1, the magnitude of the first current sense signal CS1 is about equal to the second current scaling factor times a magnitude of the derived output current DIO, such that the second current scaling factor is based on the OTA configuration signal OCS. In one embodiment of the OTA 18, both the first current scaling factor and the second current scaling factor are based on the OTA configuration signal OCS.
The parallel amplifier 64 is coupled to the power supply control circuitry 56 and is powered via the DC source signal VDC. The parallel amplifier offset capacitive element CA is coupled between the parallel amplifier 64 and the RF PA 46 (
The power supply control circuitry 56 controls the parallel amplifier 64 and the switching circuitry 66. The parallel amplifier 64 and the switching supply 60 provide the envelope power supply signal EPS, such that the parallel amplifier 64 partially provides the envelope power supply signal EPS and the switching supply 60 partially provides the envelope power supply signal EPS. The switching supply 60 may provide power more efficiently than the parallel amplifier 64. However, the parallel amplifier 64 may provide the envelope power supply signal EPS more accurately than the switching supply 60. As such, the parallel amplifier 64 regulates the voltage of the envelope power supply signal EPS based on the setpoint of the envelope power supply signal EPS. The switching supply 60 operates to drive the output current from the analog supply 58 toward zero to maximize efficiency based on the second current sense signal CS2. In this regard, the parallel amplifier 64 behaves like a voltage source and the switching supply 60 behaves like a current source.
The switching circuitry 66 is coupled to the power supply control circuitry 56 and is powered via the DC source signal VDC. The switching supply inductive element LW is coupled between the switching circuitry 66 and the RF PA 46 (
During a peak of the square wave signal, the voltage of the inductor input signal LIN is positive with respect to the voltage of the envelope power supply signal EPS, thereby causing the inductor current IL to increase. Conversely, during a valley of the square wave signal, the voltage of the inductor input signal LIN is negative with respect to the voltage of the envelope power supply signal EPS, thereby causing the inductor current IL to decrease. As a result, a square wave voltage is developed across the switching supply inductive element LW. Due to integration by the switching supply inductive element LW, this square wave voltage produces a triangular wave ripple current in the inductor current IL. This ripple current is undesirable and may be problematic for proper operation of the RF PA 46 (
As such, the active ripple cancellation circuit 62 at least partially cancels the triangular wave ripple current by providing the derived output current
DIO, which is based on estimating the ripple current using the inductor input signal LIN. The derived output current DIO is an inverted estimated ripple current, which at least partially cancels the triangular wave ripple current in the inductor current IL.
Specifically, the delay circuit 68 is coupled between the switching circuitry 66 and the combined filter and OTA 16. The combined filter and OTA 16 is coupled between the delay circuit 68 and the ripple circuit offset capacitive element CR. The ripple circuit offset capacitive element CR is coupled between the combined filter and OTA 16 and the RF PA 46 (
The delay circuit 68 receives and delays the inductor input signal LIN to provide the input signal INS. Delaying the inductor input signal LIN may be needed to properly time-align the inverted estimated ripple current with the triangular wave ripple current. In one embodiment of the power supply control circuitry 56, the power supply control circuitry 56 feeds the OTA configuration signal OCS to the delay circuit 68. The power supply control circuitry 56 controls the delay of the delay circuit 68 via the OTA configuration signal OCS. The delay may be adjusted based on the envelope power supply control signal VRMP (
The power supply control circuitry 56 provides the OTA configuration signal OCS to the combined filter and OTA 16. As such, the power supply control circuitry 56 may configure the combined filter and OTA 16 as needed via the OTA configuration signal OCS. The combined filter and OTA 16 provides the first current sense signal CS1 to the switching circuitry 66 based on the derived output current DIO. As such, in one embodiment of the switching supply 60, the switching supply 60 operates to drive the output current from the analog supply 58 toward zero to maximize efficiency based on both the first current sense signal CS1 and the second current sense signal CS2.
Some of the circuitry previously described may use discrete circuitry, integrated circuitry, programmable circuitry, non-volatile circuitry, volatile circuitry, software executing instructions on computing hardware, firmware executing instructions on computing hardware, the like, or any combination thereof. The computing hardware may include mainframes, micro-processors, micro-controllers, DSPs, the like, or any combination thereof.
None of the embodiments of the present disclosure are intended to limit the scope of any other embodiment of the present disclosure. Any or all of any embodiment of the present disclosure may be combined with any or all of any other embodiment of the present disclosure to create new embodiments of the present disclosure.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/544,051, filed Oct. 6, 2011, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3969682 | Rossum | Jul 1976 | A |
3980964 | Grodinsky | Sep 1976 | A |
4587552 | Chin | May 1986 | A |
4692889 | McNeely | Sep 1987 | A |
4831258 | Paulk et al. | May 1989 | A |
4996500 | Larson et al. | Feb 1991 | A |
5099203 | Weaver et al. | Mar 1992 | A |
5146504 | Pinckley | Sep 1992 | A |
5187396 | Armstrong, II et al. | Feb 1993 | A |
5311309 | Ersoz et al. | May 1994 | A |
5317217 | Rieger et al. | May 1994 | A |
5351087 | Christopher et al. | Sep 1994 | A |
5414614 | Fette et al. | May 1995 | A |
5420643 | Romesburg et al. | May 1995 | A |
5486871 | Filliman et al. | Jan 1996 | A |
5532916 | Tamagawa | Jul 1996 | A |
5541547 | Lam | Jul 1996 | A |
5581454 | Collins | Dec 1996 | A |
5646621 | Cabler et al. | Jul 1997 | A |
5715526 | Weaver, Jr. et al. | Feb 1998 | A |
5767744 | Irwin et al. | Jun 1998 | A |
5822318 | Tiedemann, Jr. et al. | Oct 1998 | A |
5898342 | Bell | Apr 1999 | A |
5905407 | Midya | May 1999 | A |
5936464 | Grondahl | Aug 1999 | A |
6043610 | Buell | Mar 2000 | A |
6043707 | Budnik | Mar 2000 | A |
6055168 | Kotowski et al. | Apr 2000 | A |
6070181 | Yeh | May 2000 | A |
6118343 | Winslow | Sep 2000 | A |
6133777 | Savelli | Oct 2000 | A |
6141541 | Midya et al. | Oct 2000 | A |
6147478 | Skelton et al. | Nov 2000 | A |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6204731 | Jiang | Mar 2001 | B1 |
6256482 | Raab | Jul 2001 | B1 |
6300826 | Mathe et al. | Oct 2001 | B1 |
6313681 | Yoshikawa | Nov 2001 | B1 |
6348780 | Grant | Feb 2002 | B1 |
6483281 | Hwang | Nov 2002 | B2 |
6559689 | Clark | May 2003 | B1 |
6566935 | Renous | May 2003 | B1 |
6583610 | Groom et al. | Jun 2003 | B2 |
6617930 | Nitta | Sep 2003 | B2 |
6621808 | Sadri | Sep 2003 | B1 |
6624712 | Cygan et al. | Sep 2003 | B1 |
6658445 | Gau et al. | Dec 2003 | B1 |
6681101 | Eidson et al. | Jan 2004 | B1 |
6690652 | Sadri | Feb 2004 | B1 |
6701141 | Lam | Mar 2004 | B2 |
6703080 | Reyzelman et al. | Mar 2004 | B2 |
6728163 | Gomm et al. | Apr 2004 | B2 |
6744151 | Jackson et al. | Jun 2004 | B2 |
6819938 | Sahota | Nov 2004 | B2 |
6958596 | Sferrazza et al. | Oct 2005 | B1 |
6995995 | Zeng et al. | Feb 2006 | B2 |
7038536 | Cioffi et al. | May 2006 | B2 |
7043213 | Robinson et al. | May 2006 | B2 |
7058373 | Grigore | Jun 2006 | B2 |
7099635 | McCune | Aug 2006 | B2 |
7164893 | Leizerovich et al. | Jan 2007 | B2 |
7200365 | Watanabe et al. | Apr 2007 | B2 |
7233130 | Kay | Jun 2007 | B1 |
7253589 | Potanin et al. | Aug 2007 | B1 |
7254157 | Crotty et al. | Aug 2007 | B1 |
7279875 | Gan et al. | Oct 2007 | B2 |
7394233 | Trayling et al. | Jul 2008 | B1 |
7405618 | Lee et al. | Jul 2008 | B2 |
7411316 | Pai | Aug 2008 | B2 |
7414330 | Chen | Aug 2008 | B2 |
7515885 | Sander et al. | Apr 2009 | B2 |
7528807 | Kim et al. | May 2009 | B2 |
7529523 | Young et al. | May 2009 | B1 |
7539466 | Tan et al. | May 2009 | B2 |
7595569 | Amerom et al. | Sep 2009 | B2 |
7609114 | Hsieh et al. | Oct 2009 | B2 |
7615979 | Caldwell | Nov 2009 | B2 |
7627622 | Conrad et al. | Dec 2009 | B2 |
7646108 | Paillet et al. | Jan 2010 | B2 |
7653366 | Grigore | Jan 2010 | B2 |
7679433 | Li | Mar 2010 | B1 |
7684216 | Choi et al. | Mar 2010 | B2 |
7696735 | Oraw et al. | Apr 2010 | B2 |
7715811 | Kenington | May 2010 | B2 |
7724837 | Filimonov et al. | May 2010 | B2 |
7773691 | Khlat et al. | Aug 2010 | B2 |
7777459 | Williams | Aug 2010 | B2 |
7782036 | Wong et al. | Aug 2010 | B1 |
7783269 | Vinayak et al. | Aug 2010 | B2 |
7800427 | Chae et al. | Sep 2010 | B2 |
7805115 | McMorrow et al. | Sep 2010 | B1 |
7859336 | Markowski et al. | Dec 2010 | B2 |
7880547 | Lee et al. | Feb 2011 | B2 |
7894216 | Melanson | Feb 2011 | B2 |
7898268 | Bernardon et al. | Mar 2011 | B2 |
7898327 | Nentwig | Mar 2011 | B2 |
7907010 | Wendt et al. | Mar 2011 | B2 |
7915961 | Li | Mar 2011 | B1 |
7923974 | Martin et al. | Apr 2011 | B2 |
7965140 | Takahashi | Jun 2011 | B2 |
7994864 | Chen et al. | Aug 2011 | B2 |
8000117 | Petricek | Aug 2011 | B2 |
8008970 | Homol et al. | Aug 2011 | B1 |
8022761 | Drogi et al. | Sep 2011 | B2 |
8026765 | Giovannotto | Sep 2011 | B2 |
8044639 | Tamegai et al. | Oct 2011 | B2 |
8068622 | Melanson et al. | Nov 2011 | B2 |
8081199 | Takata et al. | Dec 2011 | B2 |
8093951 | Zhang et al. | Jan 2012 | B1 |
8159297 | Kumagai | Apr 2012 | B2 |
8164388 | Iwamatsu | Apr 2012 | B2 |
8174313 | Vice | May 2012 | B2 |
8183917 | Drogi et al. | May 2012 | B2 |
8183929 | Grondahl | May 2012 | B2 |
8198941 | Lesso | Jun 2012 | B2 |
8204456 | Xu et al. | Jun 2012 | B2 |
8242813 | Wile et al. | Aug 2012 | B1 |
8274332 | Cho et al. | Sep 2012 | B2 |
8289084 | Morimoto et al. | Oct 2012 | B2 |
8362837 | Koren et al. | Jan 2013 | B2 |
8541993 | Notman et al. | Sep 2013 | B2 |
8542061 | Levesque et al. | Sep 2013 | B2 |
8548398 | Baxter et al. | Oct 2013 | B2 |
8558616 | Shizawa et al. | Oct 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8611402 | Chiron | Dec 2013 | B2 |
8618868 | Khlat et al. | Dec 2013 | B2 |
8624576 | Khlat et al. | Jan 2014 | B2 |
8624760 | Ngo et al. | Jan 2014 | B2 |
8626091 | Khlat et al. | Jan 2014 | B2 |
8638165 | Shah et al. | Jan 2014 | B2 |
8648657 | Rozenblit | Feb 2014 | B1 |
8659355 | Henshaw et al. | Feb 2014 | B2 |
8718582 | See et al. | May 2014 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20030031271 | Bozeki et al. | Feb 2003 | A1 |
20030062950 | Hamada et al. | Apr 2003 | A1 |
20030137286 | Kimball et al. | Jul 2003 | A1 |
20030198063 | Smyth | Oct 2003 | A1 |
20030206603 | Husted | Nov 2003 | A1 |
20030220953 | Allred | Nov 2003 | A1 |
20030232622 | Seo et al. | Dec 2003 | A1 |
20040047329 | Zheng | Mar 2004 | A1 |
20040051384 | Jackson et al. | Mar 2004 | A1 |
20040124913 | Midya et al. | Jul 2004 | A1 |
20040184569 | Challa et al. | Sep 2004 | A1 |
20040196095 | Nonaka | Oct 2004 | A1 |
20040219891 | Hadjichristos | Nov 2004 | A1 |
20040239301 | Kobayashi | Dec 2004 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20040267842 | Allred | Dec 2004 | A1 |
20050008093 | Matsuura et al. | Jan 2005 | A1 |
20050032499 | Cho | Feb 2005 | A1 |
20050047180 | Kim | Mar 2005 | A1 |
20050064830 | Grigore | Mar 2005 | A1 |
20050093630 | Whittaker et al. | May 2005 | A1 |
20050110562 | Robinson et al. | May 2005 | A1 |
20050122171 | Miki et al. | Jun 2005 | A1 |
20050156582 | Redl et al. | Jul 2005 | A1 |
20050156662 | Raghupathy et al. | Jul 2005 | A1 |
20050157778 | Trachewsky et al. | Jul 2005 | A1 |
20050200407 | Arai et al. | Sep 2005 | A1 |
20050286616 | Kodavati | Dec 2005 | A1 |
20060006946 | Burns et al. | Jan 2006 | A1 |
20060062324 | Naito et al. | Mar 2006 | A1 |
20060097711 | Brandt | May 2006 | A1 |
20060128324 | Tan et al. | Jun 2006 | A1 |
20060178119 | Jarvinen | Aug 2006 | A1 |
20060181340 | Dhuyvetter | Aug 2006 | A1 |
20060220627 | Koh | Oct 2006 | A1 |
20060244513 | Yen et al. | Nov 2006 | A1 |
20070008804 | Lu et al. | Jan 2007 | A1 |
20070014382 | Shakeshaft et al. | Jan 2007 | A1 |
20070024360 | Markowski | Feb 2007 | A1 |
20070063681 | Liu | Mar 2007 | A1 |
20070082622 | Leinonen et al. | Apr 2007 | A1 |
20070146076 | Baba | Jun 2007 | A1 |
20070182392 | Nishida | Aug 2007 | A1 |
20070183532 | Matero | Aug 2007 | A1 |
20070259628 | Carmel et al. | Nov 2007 | A1 |
20080003950 | Haapoja et al. | Jan 2008 | A1 |
20080044041 | Tucker et al. | Feb 2008 | A1 |
20080081572 | Rofougaran | Apr 2008 | A1 |
20080104432 | Vinayak et al. | May 2008 | A1 |
20080150619 | Lesso et al. | Jun 2008 | A1 |
20080205095 | Pinon et al. | Aug 2008 | A1 |
20080242246 | Minnis et al. | Oct 2008 | A1 |
20080252278 | Lindeberg et al. | Oct 2008 | A1 |
20080258831 | Kunihiro et al. | Oct 2008 | A1 |
20080280577 | Beukema et al. | Nov 2008 | A1 |
20090004981 | Eliezer et al. | Jan 2009 | A1 |
20090097591 | Kim | Apr 2009 | A1 |
20090160548 | Ishikawa et al. | Jun 2009 | A1 |
20090167260 | Pauritsch et al. | Jul 2009 | A1 |
20090174466 | Hsieh et al. | Jul 2009 | A1 |
20090184764 | Markowski et al. | Jul 2009 | A1 |
20090190699 | Kazakevich et al. | Jul 2009 | A1 |
20090218995 | Ahn | Sep 2009 | A1 |
20090230934 | Hooijschuur et al. | Sep 2009 | A1 |
20090261908 | Markowski | Oct 2009 | A1 |
20090284235 | Weng et al. | Nov 2009 | A1 |
20090289720 | Takinami et al. | Nov 2009 | A1 |
20090319065 | Risbo | Dec 2009 | A1 |
20100001793 | Van Zeijl et al. | Jan 2010 | A1 |
20100019749 | Katsuya et al. | Jan 2010 | A1 |
20100019840 | Takahashi | Jan 2010 | A1 |
20100026250 | Petty | Feb 2010 | A1 |
20100045247 | Blanken et al. | Feb 2010 | A1 |
20100171553 | Okubo et al. | Jul 2010 | A1 |
20100253309 | Xi et al. | Oct 2010 | A1 |
20100266066 | Takahashi | Oct 2010 | A1 |
20100301947 | Fujioka et al. | Dec 2010 | A1 |
20100308654 | Chen | Dec 2010 | A1 |
20100311365 | Vinayak et al. | Dec 2010 | A1 |
20100321127 | Watanabe et al. | Dec 2010 | A1 |
20100327825 | Mehas et al. | Dec 2010 | A1 |
20110018626 | Kojima | Jan 2011 | A1 |
20110058601 | Kim et al. | Mar 2011 | A1 |
20110084760 | Guo et al. | Apr 2011 | A1 |
20110148375 | Tsuji | Jun 2011 | A1 |
20110234182 | Wilson | Sep 2011 | A1 |
20110235827 | Lesso et al. | Sep 2011 | A1 |
20110279180 | Yamanouchi et al. | Nov 2011 | A1 |
20110298539 | Drogi et al. | Dec 2011 | A1 |
20120025907 | Koo et al. | Feb 2012 | A1 |
20120025919 | Huynh | Feb 2012 | A1 |
20120034893 | Baxter et al. | Feb 2012 | A1 |
20120049953 | Khlat | Mar 2012 | A1 |
20120068767 | Henshaw et al. | Mar 2012 | A1 |
20120074916 | Trochut | Mar 2012 | A1 |
20120133299 | Capodivacca et al. | May 2012 | A1 |
20120139516 | Tsai et al. | Jun 2012 | A1 |
20120154035 | Hongo et al. | Jun 2012 | A1 |
20120154054 | Kaczman et al. | Jun 2012 | A1 |
20120170334 | Menegoli et al. | Jul 2012 | A1 |
20120176196 | Khlat | Jul 2012 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200354 | Ripley et al. | Aug 2012 | A1 |
20120236444 | Srivastava et al. | Sep 2012 | A1 |
20120244916 | Brown et al. | Sep 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130034139 | Khlat et al. | Feb 2013 | A1 |
20130094553 | Paek et al. | Apr 2013 | A1 |
20130169245 | Kay et al. | Jul 2013 | A1 |
20130214858 | Tournatory et al. | Aug 2013 | A1 |
20130229235 | Ohnishi | Sep 2013 | A1 |
20130307617 | Khlat et al. | Nov 2013 | A1 |
20130328613 | Kay et al. | Dec 2013 | A1 |
20140009200 | Kay et al. | Jan 2014 | A1 |
20140009227 | Kay et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
0755121 | Jan 1997 | EP |
1492227 | Dec 2004 | EP |
1569330 | Aug 2005 | EP |
2214304 | Aug 2010 | EP |
2244366 | Oct 2010 | EP |
2372904 | Oct 2011 | EP |
2462204 | Feb 2010 | GB |
2465552 | May 2010 | GB |
2484475 | Apr 2012 | GB |
0048306 | Aug 2000 | WO |
04002006 | Dec 2003 | WO |
2004082135 | Sep 2004 | WO |
2005013084 | Feb 2005 | WO |
2006021774 | Mar 2006 | WO |
2006070319 | Jul 2006 | WO |
2006073208 | Jul 2006 | WO |
2007107919 | Sep 2007 | WO |
2007149346 | Dec 2007 | WO |
2012151594 | Nov 2012 | WO |
2012172544 | Dec 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability for PCT/US2012/024124, mailed Aug. 22, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/023495, mailed Aug. 15, 2013, 10 pages. |
Wu, Patrick Y. et al., “A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers with 9% Efficiency Improvement,” IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, pp. 2543-2556. |
Yousefzadeh, Vahid et al., “Band Separation and Efficiency Optimization in Linear-Assisted Switching Power Amplifiers,” 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, pp. 1-7. |
International Preliminary Report on Patentability for PCT/US2012/040317, mailed Dec. 12, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/531,719, mailed Dec. 30, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/022,940, mailed Dec. 20, 2013, 5 pages. |
International Search Report and Written Opinion for PCT/US2013/052277, mailed Jan. 7, 2014, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 13/188,024, mailed Feb. 5, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/188,024, mailed Jun. 18, 2013, 7 pages. |
International Preliminary Report on Patentability for PCT/US2011/044857 mailed Mar. 7, 2013, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/218,400 mailed Apr. 11, 2013, 7 pages. |
International Search Report for PCT/US2011/054106 mailed Feb. 9, 2012, 11 pages. |
International Preliminary Report on Patentability for PCT/US2011/054106 mailed Apr. 11, 2013, 8 pages. |
International Preliminary Report on Patentability for PCT/US2011/061007 mailed May 30, 2013, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470 mailed May 8, 2013, 15 pages. |
International Preliminary Report on Patentability for PCT/US2011/061009 mailed May 30, 2013, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453 mailed Feb. 21, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/423,649, mailed May 22, 2013, 7 pages. |
International Search Report for PCT/US2012/40317 mailed Sep. 7, 2012, 7 pages. |
International Search Report for PCT/US2012/046887 mailed Dec. 21, 2012, 12 pages. |
Final Office Action for U.S. Appl. No. 13/222,484 mailed Apr. 10, 2013, 10 pages. |
Advisory Action for U.S. Appl. No. 13/222,484, mailed Jun. 14, 2013, 3 pages. |
International Search Report and Written Opinion for PCT/US2012/053654 mailed Feb. 15, 2013, 11 pages. |
International Search Report and Written Opinion for PCT/US2012/062070, mailed Jan. 21, 2013, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/067230 mailed Feb. 21, 2013, 10 pages. |
International Preliminary Report on Patentability for PCT/US2011/064255, mailed Jun. 20, 2013, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/343,840, mailed Jul. 1, 2013, 8 pages. |
Dixon, N., “Standardisation boosts momentum for Envelope tracking,” Microwave Engineers, Europe, Apr. 20, 2011, 2 pages. |
Choi, J. et al., “A New Power Management IC Architecture for Envelope Tracking Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, No. 7, Jul. 2011, pp. 1796-1802. |
Kim, N. et al, “Ripple feedback filter suitable for analog/digital mixed-mode audio amplifier for improved efficiency and stability,” 33rd Annual Power Electronics Specialists Conference, vol. 1, Jun. 23, 2002, pp. 45-49. |
Kim et al., “High Efficiency and Wideband Envelope Tracking Power Amplifier with Sweet Spot Tracking,” 2010 IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, pp. 255-258. |
Knutson, P, et al., “An Optimal Approach to Digital Raster Mapper Design,” 1991 IEEE Transactions on Consumer Electronics held Jun. 5-7, 1991, vol. 37, Issue 4, published Nov. 1991, pp. 746-752. |
Le, Hanh-Phuc et al., “A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Convertor Delivering 0.55W/mm^2 at 81% Efficiency,” 2010 IEEE International Solid State Circuits Conference, Feb. 7-11, 2010, pp. 210-212. |
Sahu, B. et al., “Adaptive Power Management of Linear RF Power Amplifiers in Mobile Handsets—An Integrated System Design Approach,” submission for IEEE Asia Pacific Microwave Conference, Mar. 2004, 4 pages. |
Unknown, “Nujira files 100th envelope tracking patent,” CS: Compound Semiconductor, Apr. 11, 2011, 1 page. |
Non-final Office Action for U.S. Appl. No. 12/112,006 mailed Apr. 5, 2010, now Patent No. 7,884,681, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/112,006 now Patent No. 7,884,681, mailed Jul. 19, 2010, 6 pages. |
International Search Report for PCT/US11/033037 mailed Aug. 9, 2011, 10 pages. |
International Search Report for PCT/US2011/044857 mailed Oct. 24, 2011, 10 pages. |
International Search Report for PCT/US11/49243 mailed Dec. 22, 2011, 9 pages. |
International Search Report for PCT/US2011/064255 mailed Apr. 3, 2012, 12 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691 mailed Feb. 1, 2008, 17 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jul. 30, 2008, 19 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Nov. 26, 2008, 22 pages. |
Final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed May 4, 2009, 20 pages. |
Non-final Office Action for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Feb. 3, 2010, 21 pages. |
Notice of Allowance for U.S. Appl. No. 11/113,873, now Patent No. 7,773,691, mailed Jun. 9, 2010, 7 pages. |
International Search Report for PCT/US06/12619 mailed May 8, 2007, 2 pages. |
Extended European Search Report for application 06740532.4 mailed Dec. 7, 2010, 7 pages. |
International Search Report for PCT/US2011/061009 mailed Feb. 8, 2012, 14 pages. |
International Search Report for PCT/US2012/023495 mailed May 7, 2012, 13 pages. |
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2011/061007 mailed Feb. 13, 2012, 7 pages. |
Hekkala, A. et al., “Adaptive time misalignment compensation in envelope tracking amplifiers,” International Symposium on Spread Spectrum Techniques and Applications, Aug. 2008, pp. 761-765. |
Invitation to Pay Additional Fees and Where Applicable Protest Fee for PCT/US2012/024124 mailed Jun. 1, 2012, 7 pages. |
Li et al., “A highly efficient SiGe differential power amplifier using an envelope-tracking technique for 3GPP LTE applications,” IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Oct. 4-6, 2010, pp. 121-124. |
Cidronali, A. et al., “A 240W dual-band 870 and 2140 MHz envelope tracking GaN PA designed by a probability distribution conscious approach,” IEEE MTT-S International Microwave Symposium Digest, Jun. 5-10, 2011, 4 pages. |
International Search Report for PCT/US2011/061007 mailed Aug. 16, 2012, 16 pages. |
International Search Report for PCT/US2012/024124 mailed Aug. 24, 2012, 14 pages. |
Non-final Office Action for U.S. Appl. No. 13/218,400 mailed Nov. 8, 2012, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229 mailed Nov. 14, 2012, 9 pages. |
Non-final Office Action for U.S. Appl. No. 13/222,484 mailed Nov. 8, 2012, 9 pages. |
International Preliminary Report on Patentability for PCT/US11/49243 mailed Nov. 13, 2012, 33 pages. |
Non-final Office Action for U.S. Appl. No. 13/089,917 mailed Nov. 23, 2012, 6 pages. |
International Preliminary Report on Patentability for PCT/US2011/033037 mailed Oct. 23, 2012, 7 pages. |
Non final Office Action for U.S. Appl. No. 13/222,453 mailed Dec. 6, 2012, 13 pages. |
Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 25, 2013, 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858, mailed Oct. 25, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/550,049, mailed Nov. 25, 2013, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Nov. 5, 2013, 6 pages. |
Examination Report for European Patent Application No. 11720630, mailed Aug. 16, 2013, 5 pages. |
Lie, Donald Y.C. et al., “Design of Highly-Efficient Wideband RF Polar Transmitters Using Envelope-Tracking (ET) for Mobile WiMAX/Wibro Applications,” IEEE 8th International Conference on ASIC (ASCION), Oct. 20-23, 2009, pp. 347-350. |
Lie, Donald Y.C. et al., “Highly Efficient and Linear Class E SiGe Power Amplifier Design,” 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 23-26, 2006, pp. 1526-1529. |
Notice of Allowance for U.S. Appl. No. 13/363,888, mailed Jul. 18, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,453, mailed Aug. 22, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/367,973, mailed Sep. 24, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/423,649, mailed Aug. 30, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/316,229, mailed Aug. 29, 2013, 8 pages. |
Quayle Action for U.S. Appl. No. 13/531,719, mailed Oct. 10, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,060, mailed Aug. 16, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/222,484, mailed Aug. 26, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/602,856, mailed Sep. 24, 2013, 9 pages. |
Hassan, Muhammad, et al., “A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications,” IEEE Journal of Solid-State Circuits, vol. 47, No. 5, May 1, 2012, pp. 1185-1198. |
Hoversten, John, et al., “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 2010-2020. |
Notice of Allowance for U.S. Appl. No. 12/836,307 mailed May 5, 2014, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/297,490, mailed Feb. 27, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Feb. 20, 2014, 16 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,858 mailed May 27, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/367,973 mailed Apr. 25, 2014, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 13/486,012, mailed Jul. 28, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/550,049, mailed Mar. 6, 2014, 5 pages. |
International Preliminary Report on Patentability for PCT/US2012/046887, mailed Jan. 30, 2014, 8 pages. |
International Preliminary Report on Patentability for PCT/US2012/053654, mailed Mar. 13, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883 mailed Mar. 27, 2014, 13 pages. |
International Preliminary Report on Patentability for PCT/US2012/062070 mailed May 8, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,552, mailed Feb. 21, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/661,552, mailed Jun. 13, 2014, 5 pages. |
International Search Report and Written Opinion for PCT/US2012/062110 issued Apr. 8, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2012/062110 mailed May 8, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/692,084 mailed Apr. 10, 2014, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/692,084, mailed Jul. 23, 2014, 7 pages. |
International Preliminary Report on Patentability and Written Opinion for PCT/US2012/067230, mailed Jun. 12, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/684,826 mailed Apr. 3, 2014, 5 pages. |
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Jul. 18, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/022,940, mailed Jun. 10, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed May 9, 2014, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 13/951,976 mailed Apr. 4, 2014, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/065403, mailed Feb. 5, 2014, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/028089, mailed Jul. 17, 2014, 10 pages. |
Examination Report for European Patent Application No. 11720630.0 issued Mar. 18, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Aug. 27, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/072,225, mailed Aug. 15, 2014, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/548,283, mailed Sep. 3, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/689,883, mailed Aug. 27, 2014, 12 pages. |
Notice of Allowance for U.S. Appl. No. 13/690,187, mailed Sep. 3, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/782,142, mailed Sep. 4, 2014, 6 pages. |
European Search Report for Patent Application No. 14162682.0, issued Aug. 27, 2014, 7 pages. |
Invitation to Pay Additional Fees and Partial International Search Report for PCT/US2014/028178, mailed Jul. 24, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 14/072,140, mailed Dec. 2, 2014, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/486,012, mailed Nov. 21, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,749, mailed Nov. 12, 2014, 32 pages. |
Extended European Search Report for European Patent Application No. 12794149.0, issued Oct. 29, 2014, 6 pages. |
International Search Report and Written Opinion for PCT/US2014/012927, mailed Sep. 30, 2014, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/028178, mailed Sep. 30, 2014, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 12/836,307, mailed Sep. 25, 2014, 5 pages. |
Advisory Action for U.S. Appl. No. 13/297,470, mailed Sep. 19, 2014, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/297,470, mailed Oct. 20, 2014, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/367,973, mailed Sep. 15, 2014, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/661,227, mailed Sep. 29, 2014, 24 pages. |
Notice of Allowance for U.S. Appl. No. 13/684,826, mailed Sep. 8, 2014, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 13/714,600, mailed Oct. 15, 2014, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/914,888, mailed Oct. 17, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/747,725, mailed Oct. 7, 2014, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130088291 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61544051 | Oct 2011 | US |