Combined global positioning system receiver and radio

Information

  • Patent Grant
  • 6492941
  • Patent Number
    6,492,941
  • Date Filed
    Wednesday, January 9, 2002
    22 years ago
  • Date Issued
    Tuesday, December 10, 2002
    22 years ago
Abstract
A portable GPS/radio unit communicates over a wireless radio network with at least one other unit which is transmitting radio signals over the network indicative of that unit's location. The GPS/radio unit comprises a GPS receiver for receiving satellite signals from a plurality of satellites, a radio receiver for receiving the radio signals transmitted by the other unit, a processor for calculating the unit's location as a function of the received satellite signals and for identifying the location of the other unit based on the received radio signals, and a display for indicating the location of the other unit. The display may indicate the respective locations of multiple units and may also display unique identifiers for each of the units. A system and method for indicating the location of one portable GPS/radio unit on the display of another portable GPS/radio unit involves at least two such units communicating with one another over a wireless radio network.
Description




BACKGROUND OF THE INVENTION




The present invention is directed generally to a combined global positioning system receiver and radio unit and, more particularly, to a system and method for transmitting position information between a plurality of such units so that one unit can display the position of one or more other units.




A global positioning system (GPS) is an electronic satellite navigation system which permits a user of the system to determine his or her position with respect to the Earth. Global positioning is accomplished through the use of a handheld GPS receiver device which detects and decodes signals from a number of satellites orbiting the Earth. The signals from each of these satellites indicate the position of the satellite and the time at which the signal was sent. To decode the satellite signals, known as spread spectrum signals, and thereby calculate the desired navigational data, a GPS receiver must first “find” or acquire the signals emitted from a minimum number of satellites. Once the receiver is “locked on” to the spread spectrum signals, continuous real-time calculation and monitoring of the user's global position and other navigational data (e.g., velocity of movement) can be performed.




GPS receivers have clocks which are synchronized with clocks in each of the satellites to determine how long it takes the signals to travel from the satellites to the receiver. In this regard, GPS receivers require a highly accurate internal frequency reference in order to acquire the spread spectrum GPS satellite signals. Specifically, acquiring spread spectrum satellite signals from a sufficient number of satellites to perform calculations requires determining the frequency of oscillation of the crystal oscillator utilized in the GPS receiver.




Once the GPS receiver has acquired and decoded signals from a minimum of three satellites, the GPS receiver can calculate the user's position (i.e., latitude and longitude) by geometric triangulation. Upon acquiring signals from a minimum of four satellites, the GPS receiver can also calculate the user's altitude. In addition, GPS receivers are able to calculate the user's speed and direction of travel by continuously updating the user's position. Accordingly, GPS receivers are highly valuable and widely used in navigational systems because of their ability to accurately compute the user's position on or near the Earth in real-time, even as the user is moving.




In addition to the growing popularity and demand for GPS navigational devices, portable two-way radios continue to enjoy widespread popularity. In 1996, the Federal Communications Commission (FCC) established the Family Radio Service (FRS) so that families and other small groups could communicate with one another over very short distances (typically less than one mile) at no charge and without an FCC license. The FRS, which is one of the Citizens Band Radio Services, includes 14 channels in the UHF 460 MHz band. There are a number of commercially available two-way radios which are designed for use with the FRS. The increasing use of both portable radios and global positioning systems has led to proposals to incorporate GPS receivers into portable radio devices.




Notwithsanding the many recent technological advancements in GPS and wireless radio equipment, and increased applications for those technologies, there is not currently a combined portable GPS/radio unit capable of displaying the location of another GPS/radio unit. Likewise, there is not currently a combined portable GPS/radio unit capable of displaying the location of multiple GPS/radio units.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a combined GPS/radio unit which is capable of displaying the location of at least one other such unit.




Another object of the present invention is to provide a combined GPS/radio unit which is capable of displaying its location and the location of at least one other such unit.




A further object of the present invention is to provide a combined GPS/radio unit which displays the location of another unit together with an identifier for that unit.




Still another object of the present invention is to provide a system in which a plurality of portable units communicate with one another over a wireless radio network and at least one of the units displays the location of other units.




Yet another object of the present invention is to provide a method for displaying the location of a first portable GPS/radio unit on a second portable GPS/radio unit.




These and other related objects of the present invention will become readily apparent upon further review of the specification and drawings. To accomplish the objects of the present invention, a portable GPS/radio unit is provided which is capable of communicating with one or more other such units over a wireless radio network, wherein each of the other units is adapted to transmit radio signals over the network indicative of that unit's location. The GPS/radio unit comprises a GPS receiver for receiving satellite signals from a plurality of satellites, a processor coupled with the GPS receiver for calculating the location of the GPS/radio unit as a function of the received satellite signals, and a radio receiver coupled with the processor for receiving the radio signals transmitted by said other units. The processor is adapted to identify the location of the other units based on the received radio signals. The GPS/radio unit also includes a display for indicating the location of at least one of the other units.




In another aspect of the present invention, a system is provided in which a plurality of portable GPS/radio units communicate with one another over a wireless radio network. The system comprises a first portable GPS/radio unit which has a GPS receiver for receiving satellite signals from a plurality of satellites, a processor for calculating the location of the first unit as a function of the received satellite signals, and a radio transmitter for transmitting radio signals indicative of the location of said first unit. The system for comprises a second portable GPS/radio unit having a GPS receiver for receiving satellite signals from a plurality of satellites, a processor for calculating the location of the second unit as a function of the received satellite signals, a radio receiver for receiving radio signals from one or more other portable units, and a display for indicating the location of the other portable units. Upon receiving radio signals indicative of the location of the first unit, the processor of the second unit identifies the location of the first unit based on the received radio signals.




In still another aspect of the present invention, a method is provided for displaying the location of a first portable GPS/radio unit on a second portable GPS/radio unit. The method comprises receiving a first set of satellite signals from a plurality of satellites at a first portable GPS/radio unit, calculating the location of the first unit as a function of the first set of received satellite signals, receiving a second set of satellite signals from a plurality of satellites at a second portable GPS/radio unit, calculating the location of the second unit as a function of the second set of received satellite signals, transmitting the location of the first unit to the second unit over a wireless radio network, and displaying the location of the first unit on the second unit.











BRIEF DESCRIPTION OF THE DRAWINGS




In the accompanying drawings which form a part of the specification and are to be read in conjunction therewith and in which like reference numerals are used to indicate like parts in the various views:





FIG. 1

is a perspective view of a combined GPS/radio unit in accordance with a preferred embodiment of the present invention;





FIG. 2

is a block diagram of the components of the GPS/radio unit of

FIG. 1

;





FIG. 3

is a block diagram of a communications networking linking the GPS/radio unit of

FIG. 1

with a plurality of other GPS/radio units; and





FIG. 4

is a schematic representation of a display on the GPS/radio unit of

FIG. 1

, wherein the display indicates the location of multiple GPS/radio units on an electronic map.











DETAILED DESCRIPTION OF THE DRAWINGS




Referring to the drawings in greater detail, and initially to

FIGS. 1 and 2

, the combined GPS/radio unit of the present invention is designated generally by reference numeral


10


. Unit


10


comprises a GPS receiver


12


, a GPS antenna


14


, a radio transceiver


16


and a radio antenna


18


. GPS receiver


12


and radio transceiver


16


are electronically coupled with a processor


20


which has an associated memory


22


for storing information such as cartographic data (i.e., electronic maps). The cartographic data may be stored on cartridges which can be removably attached to the unit. For example, an electronic map of a particular city or national park may be stored in a single cartridge. The memory may also store historical location data for the unit


10


or for other units which have transmitted location data to unit


10


.




The handheld unit


10


also includes a microphone


24


, a speaker


26


, an input


28


and a display


30


, which is preferably a liquid crystal display (LCD). The user input


28


is preferably an alphanumeric keypad, such as a telephone keypad, which may be used to select and input a name or other identifier for the unit using any combination of the letters, numbers or symbols which are available on the keypad. The keypad


28


shown in

FIG. 1

includes four control buttons (the far right column of buttons) in addition to the


12


buttons which are standard on a telephone keypad. In a preferred embodiment, a first control button


32


is coupled with the processor so that depressing that button causes the unit


10


to immediately transmit a radio signal over the network indicative of the location of the unit


10


. Similarly, a second control button


34


is preferably coupled with the processor so that depressing that button causes the unit


10


to immediately transmit a radio signal over the network requesting that other users transmit their locations over the network. As will be understood, the user input could be inputs other than a keypad, such as a microphone/voice recognition input, or touch screen, or a menu-driven display input.




As shown in

FIG. 3

, unit


10


communicates with a plurality of other such units


10


A,


10


B,


10


C,


10


D and


10


E over a wireless communications network


36


. In the preferred embodiment of the present invention, units


10


and


10


A-


10


E communicate with one another over a public radio network such as the Family Radio Service. While six units


10


and


10


A-


10


E are shown in the exemplary embodiment of

FIG. 3

, only two such units are necessary for the purposes of the present invention.





FIG. 4

is a schematic representation of an exemplary display on unit


10


in which the display


30


indicates the location of four different GPS/radio units. Although darkened circles are used in

FIG. 4

to indicate the location of the four units, any other location designator could be used. Display


30


also indicates a unique alphanumeric identifier for each of the four units. For example, the identifiers A


1


, A


2


, A


3


and A


4


may correspond to units


10


A,


10


B,


10


C and


10


D, in which case the location of unit


10


would not be shown. Alternatively, the identifier A


1


may correspond to unit


10


and the identifiers A


2


-A


4


may correspond to units


10


A-


10


C so that the location of unit


10


is shown on its display. While alphanumeric identifiers were selected in the example of

FIG. 4

, any available identifier (or combination of identifiers) could be used (e.g., letters, numbers, symbols, icons, colors, etc.) for the units. Moreover, an identifier could perform the dual function of identifying the unit and of indicating the location of the unit, thus eliminating the need for a darkened circle or other such location designator.




In use, unit


10


communicates with other GPS/radio units (e.g., units


110


A-E) over the wireless communications network


36


in the same manner that conventional 2-way radios communicate with one another. In addition, these units are able to calculate their location and communicate that location data to one another since they are also equipped with GPS receivers. One way to communicate the location data over the network


36


is to divide the available bandwidth into a voice portion and a data portion so that voice and data are communicated simultaneously over the network. If only a small portion of the bandwidth is allocated for data transmission, there should be no noticeable degradation of the voice communication. Alternatively, the entire communication channel could be used for voice communication except for periodic interruptions during which a burst of location data is sent. If the period of the interruption is short, there should be no noticeable effect on the quality of the voice communication. The timing of the location data transmission should be based on the GPS clock. To decrease the likelihood of data collisions, the units can be configured to transmit location data on a “pseudo-random” basis. Preferably, the units continue to retransmit the location data until an acknowledgment is received. A third approach for communicating location data would be to monitor the network for the absence of voice communication and to transmit location data at that time.




There are many practical applications which would utilize the advantages of the present invention. For example, if a family or other small group is camping or hiking and each person is carrying a GPS/radio unit, then everyone can communicate with one another and see where everyone else is located. Since each person's position would be indicated on the electronic map displayed on each of the units, the other members of the group could quickly locate a member who becomes lost or injured. This would also be the case if the group is located in an urban or residential area.




From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure.




It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.




Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.



Claims
  • 1. A portable communication and navigation unit comprising:a navigation receiver for receiving signals from a plurality of sources; a computing device coupled with the navigation receiver for calculating a location of the communication and navigation unit as a function of the received signals; voice communication equipment for permitting voice communications with another communication and navigation unit; a radio receiver coupled with the computer device for receiving from the other unit a radio signal indicative of a location of the other unit; a display coupled with the computing device for indicating the location of the other unit; a radio transmitter coupled with the computing device for transmitting to the other unit a radio signal indicative of the location of the communication and navigation unit; and a portable, handheld housing for housing the navigation receiver, the computing device, the voice communication equipment, the radio receiver, the display, and the transmitter.
  • 2. The unit of claim 1, wherein the navigation receiver is a GPS receiver, the plurality of sources are satellites, and the signals from the plurality of sources are satellite signals.
  • 3. The unit of claim 1, wherein the voice communication equipment includes a speaker and a microphone.
  • 4. The unit of claim 1, wherein the processor is adapted to identify the location of the other unit based on the received radio signal.
  • 5. The unit of claim 1, wherein the display also indicates the location of the communication and navigation unit.
  • 6. The unit of claim 1, further comprising a memory associated with the processor.
  • 7. The unit of claim 6, wherein cartographic data is stored in the memory, and wherein the display indicates at least a portion of the cartographic data.
  • 8. The unit of claim 6, wherein historical location data for the communication and navigation unit is stored in the memory.
  • 9. The unit of claim 1, wherein the radio signal received from the other unit includes an identifier associated with the other unit.
  • 10. The unit of claim 9, wherein the display indicates the identifier.
  • 11. The unit of claim 1, wherein the radio receiver and the radio transmitter are embodied in a radio transceiver.
  • 12. The unit of claim 1, further comprising an in put coupled with the processor for permitting a user to select an identifier for the communication and navigation unit.
  • 13. A system in which a plurality of portable communication and navigation units wirelessly communicate with one another, the system comprising:a first portable communication and navigation unit having a navigation receiver for receiving signals from a plurality of sources, a processor coupled with the navigation receiver for calculating a location of the first unit as a function of the received signals, a radio transmitter coupled with the processor for transmitting a radio signal including information indicative of the location of the first unit, a radio receiver, a microphone, a speaker, and a display; and a second portable communication and navigation unit having a navigation receiver for receiving signals from a plurality of sources, a processor coupled with the navigation receiver for calculating a location of the second unit as a function of the received signals, a radio receiver coupled with the processor for receiving the radio signal from the first unit, a display coupled with the processor, a microphone and a speaker for permitting voice communications with the first unit, and a radio transmitter coupled with the processor for transmitting a radio signal including information indicative of the location of the second unit; wherein the processor of the second unit, upon receiving the information indicative of the location of the first unit, displays an indication thereof on the display of the second unit, and wherein the processor of the first unit, upon receiving the information indicative of the location of the second unit, displays an indicating thereof on the display of the first unit.
  • 14. The system of claim 13, wherein the navigation receiver for both the first and second units is a GPS receiver, the plurality of sources are satellites, and the signals from the plurality of sources are satellite signals.
  • 15. The system of claim 13, wherein the processor of the first unit is adapted to identify the location of the second unit based on the information indicative of the location of the second unit.
  • 16. The system of claim 13, wherein the first unit further comprises a memory associated with the processor for storing cartographic data and historical location data.
  • 17. The system of claim 13, wherein the second unit further comprises a memory associated with the processor for storing cartographic data and historical location data.
  • 18. A method for displaying the location of a first portable communication and navigation unit on a second portable communication and navigation unit, the method comprising:receiving a first set of signals from a plurality of sources at the first portable communication and navigation unit; calculating a location of the first unit as a function of the first set of received signals; receiving a second set of signals from a plurality of sources at the second portable communication and navigation unit; calculating a location of the second unit as a function of the second set of received signals; transmitting the location of the first unit to the second unit over a wireless radio network in association with a voice communication transmitted from the first unit to the second unit; and displaying the location of the first unit on the second unit.
  • 19. The method of claim 18, wherein the plurality of sources are satellites and the signals from the plurality of sources are satellite signals.
  • 20. The method of claim 18, further including the step of displaying the location of the second unit on the second unit.
  • 21. A method for displaying a location of a first portable GPS/radio unit on a second portable GPS/radio unit, the method comprising the steps of:receiving a first set of signals from a plurality of sources at the first portable communication and navigation unit; calculating a location of the first unit as a function of the first set of received signals; receiving a second set of signals from a plurality of sources at the second portable communication and navigation unit; calculating a location of the second unit as a function of the second set of received signals; transmitting the location of the first unit to the second unit over a wireless radio network in association with a voice communication transmitted from the first unit to the second unit; and displaying the location of the first unit on the second unit.
  • 22. The method of claim 21, wherein the plurality of sources are satellites and the signals from the plurality of sources are satellite signals.
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 09/306,938, filed May 7, 1999, and entitled “Combined Global Positioning System Receiver and Radio” now U.S. Pat. No. 6,373,430.

US Referenced Citations (103)
Number Name Date Kind
3063048 Lehan et al. Nov 1962 A
4021807 Culpepper et al. May 1977 A
4445118 Taylor et al. Apr 1984 A
4459667 Takeuchi Jul 1984 A
4475010 Huensch et al. Oct 1984 A
4593273 Narcisse Jun 1986 A
4651157 Gray et al. Mar 1987 A
4675656 Narcisse Jun 1987 A
D291288 Suzuki Aug 1987 S
4750197 Denekamp et al. Jun 1988 A
4809005 Counselman, III Feb 1989 A
D301882 Watanabe Jun 1989 S
D302271 Watanabe Jul 1989 S
4884132 Morris et al. Nov 1989 A
4891650 Sheffer Jan 1990 A
4907290 Crompton Mar 1990 A
4912756 Hop Mar 1990 A
4953198 Daly et al. Aug 1990 A
4972479 Tobias, Jr. et al. Nov 1990 A
D312650 Charrier Dec 1990 S
4977399 Price et al. Dec 1990 A
D314713 Cirrany et al. Feb 1991 S
5021794 Lawrence Jun 1991 A
5043736 Darnell et al. Aug 1991 A
5055851 Sheffer Oct 1991 A
D326450 Watanabe May 1992 S
5119504 Durboraw, III Jun 1992 A
5144323 Yonkers Sep 1992 A
5146231 Ghaem et al. Sep 1992 A
5155689 Wortham Oct 1992 A
5172110 Tiefengraber Dec 1992 A
5193215 Oimers Mar 1993 A
5208756 Song May 1993 A
5218367 Sheffer et al. Jun 1993 A
5219067 Lima et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
D337582 Lewo Jul 1993 S
5235633 Dennison et al. Aug 1993 A
5245314 Kah, Jr. Sep 1993 A
5265150 Helmkamp et al. Nov 1993 A
5289195 Inoue Feb 1994 A
5299132 Wortham Mar 1994 A
5301368 Hirata Apr 1994 A
5307277 Hirano Apr 1994 A
5315636 Patel May 1994 A
5323164 Endo Jun 1994 A
5327144 Stilp et al. Jul 1994 A
5334974 Simms et al. Aug 1994 A
5341410 Aron et al. Aug 1994 A
5043736 Darnell et al. Sep 1994 A
5355511 Hatano et al. Oct 1994 A
5361212 Class et al. Nov 1994 A
5364093 Huston et al. Nov 1994 A
5365450 Schuchman et al. Nov 1994 A
5379224 Brown et al. Jan 1995 A
5389934 Kass Feb 1995 A
5408238 Smith Apr 1995 A
5414432 Penny et al. May 1995 A
5434789 Fraker et al. Jul 1995 A
5438518 Bianco et al. Aug 1995 A
5448773 McBurney et al. Sep 1995 A
D363488 Shumaker Oct 1995 S
5469175 Boman Nov 1995 A
D365032 Laverick et al. Dec 1995 S
D365292 Laverick et al. Dec 1995 S
5493309 Bjornholt Feb 1996 A
5506587 Lans Apr 1996 A
5513183 Kay et al. Apr 1996 A
5539398 Hall et al. Jul 1996 A
5555286 Tendler Sep 1996 A
5557606 Moon et al. Sep 1996 A
5570095 Drouilhet, Jr. et al. Oct 1996 A
5581259 Schipper Dec 1996 A
5650770 Schlager et al. Jul 1997 A
5654718 Beason et al. Aug 1997 A
5689269 Norris Nov 1997 A
5689809 Grube et al. Nov 1997 A
5712899 Pace, II Jan 1998 A
5742666 Alpert Apr 1998 A
5781150 Norris Jul 1998 A
5786789 Janky Jul 1998 A
5826195 Westerlage et al. Oct 1998 A
5848373 DeLorme et al. Dec 1998 A
5902347 Backman et al. May 1999 A
5914675 Tognazzini Jun 1999 A
5929752 Janky et al. Jul 1999 A
5952959 Norris Sep 1999 A
5959529 Kail Sep 1999 A
5963130 Schlager et al. Oct 1999 A
6002982 Fry Dec 1999 A
6009375 Sakumoto et al. Dec 1999 A
6011510 Yee et al. Jan 2000 A
6028537 Suman et al. Feb 2000 A
6052597 Ekstrom Apr 2000 A
6085090 Yee et al. Jul 2000 A
6111539 Mannings et al. Aug 2000 A
6144336 Preston et al. Nov 2000 A
6148262 Fry Nov 2000 A
6166626 Janky et al. Dec 2000 A
6204276 Camp, Jr. May 2001 B1
6278402 Pippin Aug 2001 B1
6295449 Westerlage et al. Sep 2001 B1
6373430 Beason et al. Apr 2002 B1
Foreign Referenced Citations (5)
Number Date Country
0 061 674 Oct 1982 EP
0 123 562 Oct 1984 EP
0 242 099 Apr 1987 EP
2 541 801 Feb 1983 FR
10319396 Dec 1998 JP
Non-Patent Literature Citations (5)
Entry
“Tendler Updates FoneFinder”, Jun. 28, 1999 Wreless Week.
“Automatic Vehicle Monitoring” by J.S. Bravman et al., Fairchild Space & Electronics, Co., Germantown, MD.
“Application of the Global-Positioning System (GPS) to Automatic Vehicle Monitoring”—1981 Carnahan Conference on Crime Countermeasures, University of Kentucky, Lexington, May 13-15, 1981.
“AX.25 Amateur Packet-Radio Link-Layer Protocol”, Version 2.2, Nov., 1997 fom http://www.tapr.org.
APRS Guide—“The Automatic Position Reporting System”, compiled from a series of articles by Arte Booten, from http://www.oarc.net.
Continuations (1)
Number Date Country
Parent 09/306938 May 1999 US
Child 10/043033 US