The present invention is directed generally to a combined heating system capable of bi-directional heating. More specifically, the present invention is directed to a combined domestic water and space heating system having shared heat exchangers capable of causing heat transfer from domestic water side to space heating side or from space heating side to domestic water side.
Combined heating systems are commonly used in domestic water heating and space heating. Typically, a boiler is provided to a space heating flow loop, a domestic hot water storage tank is adapted to a domestic water flow loop and a heat exchanger powered by the same boiler is adapted to heat domestic water in the domestic hot water storage tank. The liquid stored in the domestic hot water storage tank is largely static as there is little flow that occurs around the heat exchanger due to the large volume of water held in the domestic hot water storage tank. The effective surface area for heat transfer is therefore relatively small. Further, heat transfer occurs only from the heat exchanger to the liquid stored in the hot water storage tank. In order to receive hot domestic water with little or no delay at the outlet of the hot water storage tank, the liquid stored in the hot water storage tank must be maintained at an appropriate temperature by the boiler which is also tasked to provide space heating. Therefore, in order to meet a large domestic hot water demand, a very large boiler or a group of boilers must be used as heat transfer from the heat exchanger is largely inefficient.
Thus, there is a need for a combined heating system capable of more efficient heating and capable of meeting domestic hot water and space heating without unduly large boilers.
In accordance with the present invention, there is provided a combined heating system comprising a first heating subsystem including a first fluid conductor having an inlet and an outlet, the first fluid conductor adapted to receive a first fluid at a first temperature at the inlet of the first fluid conductor, at least one heating unit adapted to heat a portion of the first fluid to a second temperature and output the portion of the first fluid at the outlet of the first fluid conductor, and a fluid mover adapted to move the portion of the first fluid through the at least one heating unit of the first heating subsystem, a second heating subsystem including a second fluid conductor having an inlet, the second fluid conductor adapted to receive a second fluid, a third fluid conductor having an outlet, at least one heating unit adapted to heat a portion of the second fluid at a third temperature received from the second fluid conductor and output the heated second fluid at a fourth temperature in the third fluid conductor, wherein the flowrate of the second fluid through the at least one heating unit of the second heating subsystem is configured to be controlled using a valve, a fluid mover adapted to move the second fluid from the outlet of the third fluid conductor to the inlet of the second fluid conductor, at least one heat exchanger operably connected to a downstream location of the at least one heating unit of the first heating subsystem and a fourth fluid conductor connecting the second fluid conductor and the third fluid conductor, wherein the flowrate of the second fluid through the fourth fluid conductor is configured to be controlled using a valve. If heating of any one of the first fluid and second fluid is desired, both the fluid mover of the first heating subsystem and the at least one heating unit of the first heating subsystem are turned on, both the fluid mover of the second heating subsystem and the at least one heating unit of the second heating subsystem are turned on or any combinations thereof.
In one embodiment, a present heating unit is a coil tube heater exchanger. In another embodiment, a present heating unit is an electric coil heat exchanger. In one embodiment, a present fluid mover is a pump.
In one embodiment, the first fluid and the second fluid include water and glycol.
In yet another embodiment, both the first fluid and the second fluid are water.
An object of the present invention is to provide an efficient combined domestic water and space heating system.
Another object of the present invention is to provide a combined domestic water and space heating system using shared hardware resources (heat exchangers) such that the total amount of equipment to serve both domestic water and space heating can be minimized.
Another object of the present invention is to provide a combined domestic water and space heating system using shared hardware resources (heat exchangers) such that that a shutdown in one or more heating units of any of the heating subsystems does not affect operations of the heating system as a whole, thereby allowing the system to continue to operate.
Whereas there may be many embodiments of the present invention, each embodiment may meet one or more of the foregoing recited objects in any combination. It is not intended that each embodiment will necessarily meet each objective. Thus, having broadly outlined the more important features of the present invention in order that the detailed description thereof may be better understood, and that the present contribution to the art may be better appreciated, there are, of course, additional features of the present invention that will be described herein and will form a part of the subject matter of this specification.
In order that the manner in which the above-recited and other advantages and objects of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present combined heating system provides a system for domestic water heating and space heating in a single system. The use of a present combined heating system allows a smaller total heating system to meet typical needs of domestic water and space heating. As space heating and hot domestic water may be required at different times, the ability to meet such requirements using a smaller number of dedicated heating units for each purpose becomes possible as some heating may be accomplished using shared heating units or even heating units dedicated for heating the other heating subsystem. The present combined heating system is capable of meeting small and large demands alike as heating units may be selectively turned on in various combinations.
The present combined heating system takes advantage of the use of flow movers to encourage heat transfer, replacing the use of an inefficient heat transfer system where heat is transferred to a large static volume of liquid from a small coil with forced flow of a heated liquid.
The present combined heating system mitigates a planned or unplanned shutdown of a dedicated heating unit by using one or more shared heating units or one or more dedicated heating units of the other heating subsystem. The present combined heating system provides backups not only from multiples of a type of heating unit (e.g., dedicated or shared), but also from cross heating of one heating subsystem with another heating subsystem.
The term “about” is used herein to mean approximately, roughly, around, or in the region of. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20 percent up or down (higher or lower).
As will be disclosed elsewhere herein, the present combined heating system provides a system for domestic water heating and space heating in a single system. The use of a present combined heating system allows a smaller total heating system to meet typical needs of domestic water and space heating in residential, commercial or industrial applications. As space heating and hot domestic water may be required at different times, the ability to meet such requirements using a smaller number of dedicated heating units for each purpose becomes possible as some heating may be accomplished using shared heating units or even heating units dedicated for heating the other loop as will be disclosed elsewhere herein.
The second heating subsystem 30 includes a second fluid conductor 24 having an inlet 14, the second fluid conductor 24 adapted to receive a second fluid 34, a third fluid conductor 26 having an outlet 16, at least one heating unit 4 adapted to heat a portion of the second fluid 34 at a third temperature T3 received from the second fluid conductor 24 and output the heated second fluid 34 at a fourth temperature T4 in the third fluid conductor 26. If necessary, a fluid mover 6 can be adapted to move the second fluid 34 from the outlet 16 of the third fluid conductor 26 to the inlet 14 of the second fluid conductor 24. In the embodiment shown in
At least one heat exchanger 8 is operably connected to a downstream location of the at least one heating unit 4 of the first heating subsystem 28 and a fourth fluid conductor 27 connecting the second fluid conductor 24 and the third fluid conductor 26.
Heating of one or both of the fluids 32 and 34 can be effected in the following ways. If heating of the first fluid 32 is desired, the heating units 4 and the fluid movers 6 of the first heating subsystem 28 can be turned on. Either or both groups of the heating units 4 directly connected to the heat exchangers 8 or the heating units 4 not directly connected to the heat exchangers 8 may be used. If one or more groups directly connected to the heat exchangers 8 are used and heating of the second fluid 34 is not desired, valves 18 are preferably closed. If enhanced heating of the first fluid 32 is desired, the second heating subsystem 30 may be first turned on with one or more of its heating units 4 adding heat to the second fluid even without a demand of the second fluid 34. The fluid flows involved in enhancing heating of the first fluid is shown in
It shall be apparent now that the heating of the second fluid 34 can be used to heat the first fluid 32. Such arrangement is especially useful when a high heating rate is required of the first fluid 32 while no demand of the second fluid 34 exists. This way, heat addition from the heating units 4 of the second heating subsystem 30 can occur concurrently with heat addition from the heating units 4 of the first heating subsystem 28. The heat exchanger 8-coupled heating units 4 may be left off or turned on simultaneously to heat the first fluid 32. If the heat exchanger 8-coupled heating units 4 are turned on, care must be taken to ensure that a temperature gradient which favors the transfer of heat from the second fluid 34 to the first fluid 32 if the second heating subsystem 30 is currently turned on with valves 18 at least partially open or the heat generated in the heat exchanger 8-coupled heating units 4 will be inadvertently transferred to the second fluid 34 from the first fluid 32. In one example, the heated second fluid 34 (at 180 degrees Fahrenheit) is configured to “give up” some of its heat to the first fluid 32 via a heat exchanger 8. Upon flowing through a heat exchanger 8, the heated second fluid 34 experiences a drop in temperature from about 180 degrees Fahrenheit to about 130 degrees Fahrenheit while the first fluid 32 is heated from about 125 degrees Fahrenheit to about 175 degrees Fahrenheit.
A condition can also exist where the heating units 4 dedicated for the first fluid 32 (or heating units of the first heating subsystem which are not directly connected to the heat exchangers 8) and the heating units 4 directly connected to the heat exchangers 8 may be removed for service and temporarily replaced with non-heating elements. Under this condition, heating of the first fluid 32 may be carried out solely using the heating units 4 for the second fluid 34. Alternatively, valves 20 may be partially closed only with the heating units 4 still turned on. When a demand for the second fluid 34 exists, the fluid mover 6 of the second heating subsystem 30 is closed causing the entire second fluid flow to exit the second heating subsystem 30 via outlet 16. Valves 18 can alternatively be closed or restricted further if enhanced heating of the second fluid 34 is now desired. Alternatively but less desirably, the first fluid 32 may be heated solely with the heating units 4 of the second heating subsystem 30. In one embodiment, at least one of the heat exchangers 8 is a plate-type heat exchanger. In another embodiment, at least one of the heat exchangers 8 is a shell and tube heat exchanger. In order to further illustrate the means by which the first and second heating subsystems 28, 30 can be used cooperatively, the following example is provided. In one example, the first conductor 22 represents a portion of a space heating loop and the second 24 and third 26 conductors represent a portion of a domestic water line. Each of the pumps 6 of the heating units 4 directly connected to heat first heating subsystem 28 is adapted to push large flows, e.g., from about 15 to about 20 Gallons Per Minute (GPM), thus increasing the temperature of outlet 12 from only from about 100 degrees Fahrenheit at inlet 10 to about 125 degrees Fahrenheit.
If enhanced heating of the second fluid 34 is desired, the heating units 4 connected to the heat exchangers 8 may be first turned on with these heating units 4 transferring heat generated in these heating units 4 to the second fluid 34 of the second heating subsystem 30 via heat exchangers 8. If such heating is desired, a flow must be effected through valve/s 18. This is possible only if valve/s 18 is/are at least partially open. In order to force adequate flow through valve/s 18 with valve/s fully open, the fluid mover 6 of the second heating subsystem 30 would have to have a very high capacity or valve/s 20 may be partially or fully restricted to encourage flow through valve/s 18 with a smaller and more reasonably sized fluid mover 6. In one embodiment, the second fluid 34 is heated from about 120 degrees Fahrenheit to about 180 degrees Fahrenheit through the dedicated heating units 4 of the second heating subsystem 30. It shall be noted that it has now been disclosed a combined heating system for domestic water and space heating where heat transfer can be effected from the portion responsible for domestic water heating to the portion responsible for space heating and vice versa, therefore making the combined system capable of bi-directional heating. Further, the combined system is capable of capturing waste heat. For instance, after the first and second heating subsystems have been active simultaneously for an extended period of time and one of the two subsystem is no longer needed (e.g., due to the satisfaction of achieving a setpoint temperature in a space heating scenario), the residual heat contained in one subsystem may be transferred to the other subsystem provided that there exists an appropriate temperature gradient between the two subsystems to encourage appropriate heat transfer.
In one embodiment, a present heating unit is a coil tube heater exchanger. In another embodiment, a present heating unit is an electric coil heat exchanger. In one embodiment, a present fluid mover is a pump.
In one embodiment, the present invention is to provide an efficient combined domestic water and space heating system. In one embodiment, the first fluid is domestic water and the second fluid is glycol. In another embodiment, the first fluid is glycol and the second fluid is domestic water. In yet another embodiment, both the first and second fluids are water.
In one embodiment, the present invention is to provide a combined domestic water and space heating system using shared hardware resources (heat exchangers) such that the total amount of equipment to serve both domestic water and space heating can be minimized. As demonstrated elsewhere herein, the first fluid 32 can be heated not only with dedicated heating units of the first heating units but also shared heating units and/or heating units of the second heating units. By the same token, the second fluid 34 can be heated not only with dedicated heating units of the second heating units but also shared heating units and/or heating units of the first heating units.
The detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present disclosed embodiments may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice aspects of the present invention. Other embodiments may be utilized, and changes may be made without departing from the scope of the disclosed embodiments. The various embodiments can be combined with one or more other embodiments to form new embodiments. The detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, with the full scope of equivalents to which they may be entitled. It will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of embodiments of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive, and that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Combinations of the above embodiments and other embodiments will be apparent to those of skill in the art upon studying the above description. The scope of the present disclosed embodiments includes any other applications in which embodiments of the above structures and fabrication methods are used. The scope of the embodiments should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This divisional application claims the benefit of priority from provisional application U.S. Ser. No. 62/008,536 filed on Jun. 6, 2014 and U.S. Ser. No. 14/732,666 filed on Jun. 5, 2015. Each of said applications is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2519266 | Main | Aug 1950 | A |
3150827 | Mohn | Sep 1964 | A |
3341122 | Whittell, Jr. | Sep 1967 | A |
9746190 | Deivasigamani | Aug 2017 | B2 |
20110135289 | Kayser | Jun 2011 | A1 |
20110219824 | Lee | Sep 2011 | A1 |
20120091214 | Rixen | Apr 2012 | A1 |
20150013961 | Perrin | Jan 2015 | A1 |
20150300661 | Park | Oct 2015 | A1 |
20160116185 | Ryu | Apr 2016 | A1 |
20160341445 | Deivasigamani | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2954519 | Oct 2017 | CA |
0543769 | May 1993 | EP |
2015075256 | Apr 2015 | JP |
WO-2009096256 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20170336080 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62008536 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14732666 | Jun 2015 | US |
Child | 15656076 | US |