The recirculation of diesel engine exhaust gas has long been used to reduce pollution. In a typical diesel engine, such as may be used in an over-the-road truck, will generate exhaust gases having a temperature of up to about 1150° F. (620° C.). A portion of the exhaust gas is recirculated back into the intake manifold of the engine. The exhaust gas recirculation (EGR) system helps to control temperature of the recirculated exhaust gas to help reduce the formation of NOx gases. A typical diesel truck engine will have an EGR cooler to reduce the temperature of the recirculated exhaust gas and, in some instances, the system may include two EGR coolers.
An EGR cooler must be able to withstand the high temperature exhaust gas and also tolerate certain highly corrosive components of the gas, including sulfuric acid. As a result, many EGR coolers are made of stainless steel.
A turbocharged diesel engine will also have a separate charge air cooler (CAC) to reduce the temperature of the compressed air supplied to the intake manifold of the engine. Compressed air from the turbocharger is not as hot as exhaust gas, but may still attain a temperature of 400° F. (205° C.) or higher. However, conventional charge air coolers using brazed metal joints are typically not capable of handling heated turbocharged air to temperatures in excess of about 425° F. (220° C.). In some applications, charge air may be heated to 600° F. (315° C.) where brazed joints will fail completely.
The exhaust gas, directed for recirculation by the EGR valve 43, may be at a temperature of about 500° F. (260° C.). Adjustment of the EGR valve controls the relative flow of recirculated exhaust and exhaust to the turbocharger where the latter is mixed with combustion air 19. The precooled exhaust gas is then directed to a second EGR cooler 45. A bypass valve 48 in the line downstream from the EGR valve 43 returns the precooled exhaust gas directly to the engine at low (idle) engine speeds. Simultaneously, a parallel flow of charge air from the turbocharger 46 is directed to and through a charge air cooler 47. The exit flows of exhaust gas from the second EGR cooler 45 and the charge air from the charge air cooler 47 are combined and directed to the engine intake 44.
The foregoing system requires an expensive first EGR cooler 42, requiring stainless steel or other high temperature resistant construction. The system also includes a second EGR cooler 45. In accordance with the present invention, both EGR coolers 42 and 45 may be effectively eliminated.
U.S. Pat. No. 7,422,054, which is incorporated by reference herein, describes an all-aluminum heat exchanger assembly that is particularly adapted for use as a charge air cooler. In this heat exchanger, high temperature resistance (e.g. in excess of 600° F. or 315° C.) is provided by utilizing welded joints instead of brazed joints.
In accordance with the present invention, the all-aluminum charge air cooler is modified to also receive the EGR flow, wherein the charge air and EGR flow are cooled together in a single heat exchanger and returned to the engine intake manifold. The all-aluminum construction provides the high temperature resistance that is required and, to protect against the corrosive components of the exhaust gas, the interior portions of the heat exchanger are coated with a corrosion-resistant electroceramic coating that remains effective at high temperatures.
Referring to
In accordance with the invention, a single combined charge air and EGR cooler 10 is used to handle both the charge air and the recirculated exhaust gas. From the engine 11, the exhaust gas is divided and a portion of the flow is directed through a conventional EGR cooler 14 which, as indicated above, may utilize engine coolant as the heat exchange medium. The exhaust gas into the EGR cooler 14 may be at about 1000° F. (540° C.) or higher and is cooled in the EGR cooler 14 to a temperature of about 500° F. (260° C.). The other portion of the exhaust from the engine is used to drive the turbocharger 13 as described with respect to the prior art system of
There are a number of benefits that are derived directly from the use of the combined high temperature CAC and EGR cooler 10. First of all, the high temperature resistant construction of the welded all-aluminum combined cooler 10 provides an improvement over prior art brazed connection heat exchanger constructions. It also eliminates the need for a more expensive stainless steel construction from a temperature resistance standpoint. In addition, the interior passages of the combined cooler 10 are coated with a high temperature resistant coating that provides protection against the corrosive components of exhaust gas, such as sulfuric acid. One presently preferred coating is provided by Henkel Technologies as an electroceramic coating, sold under the trademark ALODINE.
In this embodiment, combined flows of exhaust gas at about 500° F. (260° C.) and charge air from the turbocharger at 400° F. (205° C.) or higher provide a combined flow to the CAC and EGR cooler 10 that is well within the temperature limits of the cooler. The charge air may comprise 60-75% by volume of the flow into the cooler 10, with 30-40% by volume of the flow being precooled exhaust gas.
Another and presently preferred embodiment of the present invention is shown schematically in
An upper tank 33 is welded to a peripheral edge of the upper header plate 31 with a fluid-tight weld or fused connection. The tank and welded connection are also aluminum. An aluminum bottom tank 34 is similarly welded to the lower header plate 31. The bottom tank 34 is provided with an inlet connection 35 into which the combined flow of charged air and recirculated exhaust gas is piped. The upper tank 33 is provided with an outlet connection from which the combined gas flow leaves the cooler 25 and is directed to the engine intake manifold. The combined gas flow is air cooled in its passage through the combined cooler 25 by the cooling air flowing past the fins 28 on the module bodies 27. The extruded aluminum modules 26 at the opposite edges of the cooler assembly are covered by side plates 37. Suitable mounting brackets 38 may be attached to the side plates 37 by welding or with mechanical fasteners.
This application claims priority from U.S. Provisional Application Ser. No. 61/088,761, filed Aug. 14, 2008.
Number | Date | Country | |
---|---|---|---|
61088761 | Aug 2008 | US |