This application claims priority to Italian Patent Application No. 102020000012145, filed May 25, 2020, the entire contents of which are fully incorporated herein by reference.
The present invention relates to bearings, and more particularly to grounding devices for preventing electric current or charge from passing through a bearing.
Bearings used in electrical machinery, such as motors, generators and similar devices, may be damaged if electric current or charge passes through the bearing, which is particularly harmful to the bearing raceways. Devices such as grounding brushes have been developed to provide an alternative path for current and thereby prevent such current from passing through the bearing. These devices often include a plurality of conductive fibers spaced circumferentially about the entire outer surface of the shaft to form a relatively solid ring of fibers, such that current passes through the fibers between the shaft and the housing. Other devices or mechanisms are provided to electrically insulate the bearing in order to prevent current from passing through the bearing and may include insulative coatings or coverings.
In one aspect, the present invention is a combination electrical insulator and conductor assembly for a bearing disposable between a shaft and a housing, the bearing having an inner ring, an outer ring having an outer circumferential surface and opposing first and second axial ends, and a plurality of rolling elements between the rings, the housing having an inner circumferential surface. The assembly comprises an annular insulator disposeable about the outer ring and configured to prevent electric current flow between the outer ring and the housing. An electrical conductor has at least one retainer releasably engaged with the insulator so as to couple the conductor with the bearing, an outer radial end and an inner radial end. The conductor outer radial end or/and a portion of the conductor between the outer and inner ends is conductively engageable with the housing and the conductor inner radial end is conductively engageable with the shaft so as to provide an electrically conductive path between the shaft and the housing.
Preferably, the conductor includes an electrically conductive disk coupled with the insulator so as to be axially adjacent to the bearing. The disk has a centerline, an outer radial end engageable with the housing inner surface, an inner radial end defining a central opening for receiving a portion of the shaft and at least one and preferably a plurality of arcuate clips providing the at least one retainer. Each clip is engaged with an annular groove of the insulator to releasably couple the disk with the bearing. An annular conductive brush subassembly is coupled with the conductive disk and includes a centerline and a plurality of electrically conductive fibers, the conductive fibers being spaced circumferentially about the centerline and extending radially inwardly from the inner end of the conductive disk. Each conductive fiber has an inner end contactable with the shaft outer surface so as to provide a conductive path between the shaft and the disk.
The foregoing summary, as well as the detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, which are diagrammatic, embodiments that are presently preferred. It should be understood, however, that the present invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “inner”, “inwardly” and “outer”, “outwardly” refer to directions toward and away from, respectively, a designated centerline or a geometric center of an element being described, the particular meaning being readily apparent from the context of the description. Further, as used herein, the words “connected” and “coupled” are each intended to include direct connections between two members without any other members interposed therebetween and indirect connections between members in which one or more other members are interposed therebetween. The terminology includes the words specifically mentioned above, derivatives thereof, and words of similar import.
Referring now to the drawings in detail, wherein like numbers are used to indicate like elements throughout, there is shown in
Specifically, the insulator 12 is generally tubular or cylindrical, has a centerline 13 and preferably an annular groove 18 extending circumferentially about the centerline 13, and is configured to prevent electric current flow between the bearing outer ring 5 and the housing 3 and between the ring 5 and the conductor 14, and thus through the bearing 1. That is, the insulator 12 is either formed of an electrically insulative material or has one or more electrically insulative layers, as discussed below. The conductor 14 has a centerline 15 (coaxial with the insulator centerline 13), an outer radial end 14a and an inner radial end 14b, the at least one retainer 16 preferably being disposed at and providing the conductor outer radial end 14a. Preferably, the conductor 14 has a plurality of the retainers 16 each disposed at the outer radial end 14a and spaced circumferentially about the centerline 15, with each retainer 16 being conductively engageable with the housing inner surface 3a to provide a separate conductive path between the remainder of the conductor 14 and the housing 3.
Alternatively or additionally, a portion of the conductor 14 between the outer and inner radial ends 14a, 14b, respectively, is conductively engageable with the housing 3, such as through contact with a radial shoulder 3b (
When the combined insulator/conductor assembly 10 is mounted on a bearing 1, which is subsequently installed between a shaft 2 and a housing 3, the outer radial end 14a of the conductor 14 is preferably conductively engaged with the housing 3, preferably the inner surface 3a and most preferably through engagement of the plurality of retainers 16 as discussed above, and/or an intermediate portion of the conductor 14 is so engaged as discussed above. The inner radial end 14b of the conductor 14 is conductively engaged with the shaft outer surface 2a, preferably through a preferred plurality of conductive fibers 26 as described in further detail below. As such, the conductor 14 provides an electrically conductive path between the shaft 2 and the housing 3 and functions to shunt current or charge on the shaft 2 away from the bearing 1. Thus, the combination insulator and conductor assembly 10 serves the purpose of protecting the bearing 1 both by preventing direct current flow through the bearing 1 (i.e., due to the insulator 12) and by providing an alternative path for current adjacent to the bearing 1 by means of the conductor 14. Having described the basic structure and functions above, these and other components of the assembly are discussed in detail below.
Still referring now to
Referring now to
Still referring to
Further, the tubular body 32 has a radial flange 40 extending inwardly from the body second axial end 30b and disposeable against the outer ring second axial end 5b. The body 32 is sized such that the first axial end 32a is spaced axially outwardly from the outer ring first axial end 5a when installed on the outer ring 5, such that a portion 33a of the inner surface 33 extends beyond the outer ring first end 5a. An annular groove 42 extends radially outwardly from the inner surface 33 and is located adjacent to the outer ring first axial end 5a. When the insulator 12 is installed about the bearing outer ring 5, the portion 33a of the tubular body inner surface 33 is disposed about the first outer surface section 36 of the ring 30, the tubular body first axial end 32a is disposed against the ring radial stop surface 37 and the plurality of ring projections 39 are disposed within the tubular body annular groove 42.
Referring to
Referring again to
More specifically, the conductive disk 50 is generally circular and is preferably formed of a conductive metallic material, most preferably aluminum but may be formed of any other appropriate material (e.g., low carbon steel). The retainers 16 are preferably provided by a plurality of integral arcuate portions (not indicated) of the conductive disk 50 extending outwardly from the disk outer end 50a and generally axially from the second axial end 50d. The arcuate portions are each bended to form one clip 20 having the first and second leg portions 22, 24 joined by a central hinge portion 25, the second leg portion 24 being deflectable generally radially outwardly about the hinge portion 25 when installing the conductor 14 on the insulator 12, as described below. Preferably, the disk 50 has a circular flange 55 extending axially from the disk inner radial end 50b and away from the second axial end 50d, and thus toward the bearing 1. Further, the conductive disk 50 also preferably includes a plurality of mounting tabs 58 spaced circumferentially about the centerline 51, each mounting tab 58 being engaged with the brush subassembly 52 to couple the subassembly 52 with the disk 50.
Preferably, the conductive disk 50 is formed of a stamped metallic material, preferably aluminum as discussed above, which has first been die cut to form the central opening 54 defining the inner end 50b, the plurality of retainer portions spaced about the outer end 50a, and a plurality of rectangular tabs 58 and adjacent clearance holes 59. The clearance holes 59 provide passages for fluids (e.g., lubricants, air, etc.) to flow through the conductive disk 50 so as to pass to and from the bearing 1. Then, in a subsequent forming operation, the outer arcuate portions are bended to fabricate the clips 20 and the tabs 58 are bended about a retainer 60 (described below) of the brush subassembly 52, such that each engaged mounting tab 58 is generally C-shaped.
Referring to
Referring now to
Further, the brush subassembly 52 preferably includes a circular hoop 68 disposed within the retainer groove 62 and each one of the plurality of conductive fibers 26 is bended about the hoop 68. As such, each conductive fiber 26 is preferably generally U-shaped or V-shaped and has two inner ends 18a contactable with the shaft outer surface 2a. However, each one of the conductive fibers 26 may be arranged to extend as a generally straight strand (not shown) from the outer radial end 18b to the inner radial end 18a.
Furthermore, the plurality of conductive fibers 26 of the brush subassembly 52 are either arranged in a generally continuous ring of fibers (not shown) or preferably as a plurality of circumferentially spaced discrete sets 28 of fibers 26. In the latter preferred case, the sets 28 of fibers 26 are preferably formed by die-cutting a brush subassembly 52 including a continuous ring of fibers 26 such that the fiber sets 28 contactable with the shaft 2 are spaced apart by sets 29 of shorter length fibers 26. Also, each conductive fiber 26 is preferably sized having a diameter within the range of five micrometers or microns (5 μm) to one hundred microns (100 μm). Although each conductive fiber 26 is preferably formed of carbon as discussed above, the fibers 26 may alternatively be fabricated of any appropriate electrically conductive material, such as a metallic material, a conductive polymer, etc.
Although the conductor 14 preferably includes the conductive disk 50 and the brush subassembly 52 as described above and depicted in the drawing figures, the conductor 14 may alternatively be formed in any other appropriate manner that is both coupleable with the insulator 12 and capable of providing one or more conductive paths between the shaft 2 and the housing 3. For example, the conductor 14 may include, instead of the brush subassembly 52, a solid ring of a conductive material (not shown) attached to the conductive disk 50 and conductively engageable with the shaft 2, the ring having either a continuous inner circumferential contact surface or a plurality of arcuate contact surface sections provided by radially-inwardly extending projections. As a further alternative, the conductive disk 50 may be formed having an inner end 50b contactable with the shaft outer surface 2a to provide a direct conductive path between the shaft 2 and the disk 14. The scope of the present invention encompasses these and all other appropriate constructions of the conductor 14 capable of functioning generally as described herein.
The present insulator/conductor assembly 10 is more effective at protecting a bearing 1 from damage caused by electric current than previously known devices. The insulator 12 effectively prevents a voltage difference from being established between the shaft 2 and the housing 3 through the bearing 1, such that electric current is prevented from flowing through the inner and outer rings 4, 5 and the rolling elements 6. To further ensure that electric current will not pass through the bearing 1, the conductive disk 50 and the brush subassembly 52 provide an alternative path for any charge or current on the shaft 2 to pass through the conductive fibers 26 to the retainer 60, through the retainer 60 and into the conductive disk 50, then passing through the retainer clips 20 and into the housing 3.
Additional or alternative conductive paths into the housing 3 may be provided by axial contact between a portion of the housing 3 (e.g., a radial shoulder) or a component 7 of the machine disposed within the housing 3, such as a spring, a pin, etc., and either a surface of the conductive disk 50, as shown in
Representative, non-limiting examples of the present invention were described above in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention.
Moreover, combinations of features and steps disclosed in the above detailed description may not be necessary to practice the invention in the broadest sense and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. The invention is not restricted to the above-described embodiments and may be varied within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102020000012145 | May 2020 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
4801270 | Scarlata | Jan 1989 | A |
5735615 | Pontzer | Apr 1998 | A |
7528513 | Oh | May 2009 | B2 |
9581203 | White et al. | Feb 2017 | B2 |
10050490 | Hubert et al. | Aug 2018 | B1 |
10253818 | Ince et al. | Apr 2019 | B1 |
10422384 | Hubert et al. | Sep 2019 | B2 |
10931179 | Hubert et al. | Feb 2021 | B2 |
10941809 | Colton et al. | Mar 2021 | B2 |
11204066 | Feliciano et al. | Dec 2021 | B2 |
20030086630 | Bramel | May 2003 | A1 |
20050265643 | Alsina et al. | Dec 2005 | A1 |
20140131512 | Gyuricsko | May 2014 | A1 |
20160312834 | White | Oct 2016 | A1 |
20190226526 | Hubert et al. | Jul 2019 | A1 |
20190296617 | Hubert et al. | Sep 2019 | A1 |
20200224719 | Colton et al. | Jul 2020 | A1 |
20210310517 | Berruet et al. | Oct 2021 | A1 |
20210310518 | Berruet et al. | Oct 2021 | A1 |
20210310520 | Arnault et al. | Oct 2021 | A1 |
20210364041 | Berruet et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
202014105015 | Oct 2014 | DE |
102017106695 | Apr 2018 | DE |
102019200397 | Jul 2019 | DE |
1325720 | May 1963 | FR |
2015095440 | May 2015 | JP |
2016171929 | Oct 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20210364040 A1 | Nov 2021 | US |