This application claims the benefit of Taiwan Patent Application No. 103124245, filed on Jul. 15, 2014, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Technical Field
The present invention relates to a combined microsphere manufacturing apparatus, and in particular, to a combined micro sphere manufacturing apparatus with a micro channel of an inclined inlet structure.
2. Related Art
Currently, a microsphere is manufactured at home and abroad by using a conventional method such as an emulsion method or a sol-gel method. In these methods, manufacturing devices such as a granulator, a centrifuge, and a screening machine need to be purchased; as a result, the total cost is excessively high. However, microcapsules and microspheres manufactured by using these expensive devices have poor dispersibility, the embedding effect of the microspheres is not desirable, and a manufacturing process of the microspheres is also complicated. The microspheres are manufactured by using a mechanical stirring method, and the microspheres are naturally formed in a process of even stirring. Disadvantages of the method are that: a size range of the microspheres is excessively large, microspheres within a fixed size range can only be obtained by screening, and spheres that do not meet the specification are equal to waste; the reaction efficiency is poor; and the manufacturing process is tediously long.
In recent years, a micro channel control technology, namely a microsphere technology with droplet control and a controllable particle diameter, develops rapidly and brings about another new technical platform. The micro channel control technology has the advantages of good controllability, high reaction efficiency, a short process time, a simple operation, batch production, expansion of small factories, and the like.
Taiwan Publication No. 1301422 entitled “METHOD AND APPARATUS FOR MANUFACTURING CARRIER MICROSPHERES OF PRESOLIDIFICATION” and Publication No. 1384999 entitled “MANUFACTURING METHOD OF CARRIER AND DEVICE FOR CARRIER” both relate to a detachable micro channel apparatus characterized by fast assembly.
An objective of the present invention is to provide a hybrid micro channel with an inclined inlet, and is further to provide a microsphere manufacturing apparatus that can adjust a size of a microsphere particle by controlling a flow speed of an injection fluid.
To achieve the foregoing objective, the combined microsphere manufacturing apparatus in the present invention includes a main micro channel layer assembled between a liquid leading-in plate and a microsphere leading-out plate. The main micro channel layer comprises a main micro channel, two secondary micro channels, and a hybrid micro channel. A head segment of the main micro channel is communicated with a first fluid outlet; and the two secondary micro channels are located at two sides of the main micro channel and intersect with the main micro channel at an intersection in a cross-junction structure or a Y-junction structure, head segments of the two secondary micro channels separately correspond to and are communicated with two second fluid outlets, and tail ends of the hybrid micro channel have output ends. A slope is formed in a channel bottom surface of the main micro channel or the two secondary micro channels, and the slope is an ascending slope from a front segment of the slope to a rear segment of the slope, so that a channel of the slope has a depth change.
In an embodiment, the liquid leading-in plate comprises a fluid leading-in layer and an inlet channel layer. The fluid leading-in layer comprises a main injecting channel and a secondary injecting channel, where the main injecting channel has a first fluid injecting inlet and a first fluid outlet, the secondary injecting channel has a second fluid injecting inlet, a pair of sub-channels divided by the second fluid injecting inlet, and two second fluid outlets at tail ends of the sub-channels, and the first fluid injecting inlet and the second fluid injecting inlet are respectively used to inject first fluid and second fluid. The inlet channel layer is located below the fluid leading-in layer and is provided with a first fluid transmission channel and second fluid transmission channels respectively corresponding to the first fluid outlet and the second fluid outlets. Therefore, after being injected into the first fluid injecting inlet, the first fluid is sent out directly from the first fluid outlet, and is carried by the first fluid transmission channel of the inlet channel layer. After being injected into the second fluid injecting inlet, the second fluid is split by a sub-channel to the two second fluid outlets to be sent out, and is separately carried by two second fluid transmission channels of the inlet channel layer.
In an embodiment, the microsphere leading-out plate comprises a microsphere transmission channel, where a head end thereof is a micro sphere inlet, a tail end thereof has a micro sphere outlet, and the micro sphere inlet is communicated with the output end of the hybrid micro channel.
In an embodiment, the fluid leading-in layer comprises no more than three fluid injecting inlets comprising the first fluid injecting inlet and the second fluid injecting inlet.
In an embodiment, a structure for combining the liquid leading-in plate, the main micro channel layer, and the microsphere leading-out plate is fastened by using screws in a centralized and closely pressing manner.
In an embodiment, a path of the microsphere transmission channel is provided with a UV light hole, so as to use UV light to illuminate a cut-off microsphere passing through the micro sphere transmission channel.
In an embodiment, an observation hole is provided at a position, on the micro sphere leading-out plate, corresponding to the microsphere transmission channel or the hybrid micro channel of the main micro channel layer, so as to observe a microsphere generation state.
The present invention has at least the following characteristics that: an inclined inlet is designed before a main micro channel and/or two secondary micro channels intersects in a hybrid channel, to form a micro channel that is from being deep to being shallow, thereby (1) having a pressure reducing effect and (2) reducing a contact area. In addition, for the foregoing design of the inclined inlet, a flow speed of injected fluid can be used and controlled to adjust a size of a microsphere particle obtained by cutting, thereby having the technical potentials of desirable controllability, high reaction efficiency, a short process time, a simple operation, a low cost, batch production, and expansion of small factories. In the present invention, a technology of high-strength and detachable micro channel packaging can be developed to improve the congestion problem of current glue packaged micro channels in the market. By using the foregoing technology in the present invention, a microsphere manufacturing apparatus can be developed, and a particle diameter of a manufactured smallest solid microsphere can be controlled under Φ 10 μm. In an embodiment, in the present invention, five liquid inlets used in the prior art are changed into three liquid inlets, and a three-way valve sold in the market to be used to diverge micro fluid is omitted, so as to control micro fluid more accurately. In the present invention, a UV light hole is added to a microsphere leading-out plate and a UV light source is embedded to directly perform UV light illumination, so that a micro sphere is solidified (hardening), so that, when surfaces of the microspheres are not completely hardened, the possibility that the unhardened microspheres generated in a flow process are mixed can be reduced. In the present invention, an observation hole for observing a micro channel is added to the microsphere leading-out plate, so that a microsphere generation state for micro fluid is easily observed.
Embodiments of the present invention are described below with reference to the accompanying drawings.
First refer to
Still refer to
The first fluid A is injected through the first fluid injecting inlet 3111, and the second fluid B is injected through the second fluid injecting inlet 3121. To conveniently control a flow speed, a programmable control pump (not shown in the figure) may be used to separately control flow speeds of the first fluid A and the second fluid B.
Still refer to
Still refer to
Therefore, as shown in
Still refer to
It should be noted that the fluid leading-in layer 31 in the present invention includes no more than three fluid injecting inlets including the first fluid injecting inlet 3111 and the second fluid injecting inlet 3121, so as to avoid that a three-way valve sold in the market is used to diverge micro fluid.
In addition, in an embodiment, sizes of the secondary micro channels in the cross-junction (or the Y-junction) structure have a length of 50 to 2000 μm, a width above 5 μm, and roughness below Ra0.3 μm, where 0.5 μm is added or subtracted for accuracy of the sizes.
Refer to
It should be noted that the liquid leading-in plate, the main micro channel layer, and the microsphere leading-out plate in the present invention are all manufactured by using materials with reactionlessness, for example:
In an embodiment, the fluid leading-in layer is manufactured by using an acrylic material.
In an embodiment, the inlet channel layer is manufactured by using a glass material or a quartz glass material.
In an embodiment, the main micro channel layer is manufactured by using a glass material, a quartz glass material, a stainless steel material, or an aluminum oxide material.
In an embodiment, the microsphere leading-out plate is manufactured by using an aluminum material or a stainless steel material.
In conclusion, the present invention at least has the following advantages that: an inclined inlet is designed before a main micro channel and/or two secondary micro channels intersects in a hybrid channel, to form a micro channel that is from being deep to being shallow, thereby (1) having a pressure reducing effect and (2) reducing a contact area. In addition, for the foregoing design of the inclined inlet, a flow speed of injected fluid can be used and controlled to adjust a size of a microsphere particle obtained by cutting, thereby having the technical potentials of desirable controllability, high reaction efficiency, a short process time, a simple operation, a low cost, batch production, and expansion of small factories. In the present invention, a technology of high-strength and detachable micro channel packaging can be developed to improve the congestion problem of current glue packaged micro channels in the market. By using the foregoing technology in the present invention, a microsphere manufacturing apparatus can be developed, and a particle diameter of a manufactured smallest solid microsphere can be controlled under Φ 10 μm. In an embodiment, in the present invention, five liquid inlets used in the prior art are changed into three liquid inlets, and a three-way valve sold in the market to be used to diverge micro fluid is omitted, so as to control micro fluid more accurately. In the present invention, a UV light hole is added to a microsphere leading-out plate and a UV light source is embedded to directly perform UV light illumination, so that a micro sphere is solidified (hardening), so that the possibility that microspheres that are not hardened and are generated in a flow process are mixed when surfaces of the microspheres are not completely hardened is reduced. In the present invention, an observation hole for observing a micro channel is added to the microsphere leading-out plate, so that a microsphere generation state for micro fluid is easily observed.
The foregoing implementation manners or embodiments of technical means used in the present invention are not intended to limit the implementation scope of the patent of the present invention. Equivalent changes and modifications made in consistent with meanings of the claims of the present invention or according to the patent scope of the present invention shall fall within the patent scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
103124245 | Jul 2014 | TW | national |