1. Field of the Invention
The disclosure relates generally to sealing systems for use with panels, such as a door or a window, within a frame and, more specifically, to a sealing system for providing an improved seal between a panel and frame.
2. Description of the Related Art
Certain types of panels, such as doors and windows, are positioned within openings of a wall and/or other structures using a frame. These panels may also open and close by pivoting relative to the frame. Alternatively, the one or more panel may slide relative to the frame. An issue associated with these types of panels is the integrity of the seals between the panels and the frame. In many instances, these seals are an insufficient barrier in preventing the transfer of such environmental elements as noise, weather, water, and insects from one side of the panel to the other side of the panel.
Attempts have been made to address these issues by using various types of weather stripping between the panels and frame. For example, the weather stripping may be strip of felt, foam, or a pile of flexible synthetic material. In many instances, however, this weather stripping fails to act as a sufficient seal between the panels and frame. Another issue prevalent associated with the seals between a frame and panel or between adjacent panels is that these seals can become disjoined. Either intentionally or unintentionally, the alignment between the frame and panel or between adjacent panels may be disturbed which can degrade the quality of the seal, since, in many instances, the integrity of the seal relies upon these members having certain positional relationships relative to one another.
Another issue associated with the movement of one or more panels relative to the frame is structural integrity and/or security of the panels relative to the frame. While in certain circumstances, allowing the panel to move relative to the frame is desirable, in other circumstances, not allowing the panel to move relative to the frame is desirable for the purpose of preventing undesired access through the panel. Means for providing these separate functionalities, however, can be incompatible with one another, and the means employed to provide both functions often involve tradeoffs that reduce the effectiveness of both functions.
There is, therefore, also a need for a sealing system that effectively allows both a panel to move relative to the frame and also to selectively prevent movement of the panel relative to the frame. There is also a need for a sealing system that can be employed between a frame and panel that prevents the transfer from one side of the panel to the other side of the panel such environmental effects as noise, weather, water, heat/cold, and insects.
Embodiments of the invention address deficiencies of the art with respect to effectively creating a seal between a panel and a frame. In this regard, a combination sealing system and seal activation system for use with a combination of a panel and a frame includes a plurality of sealing systems and a seal activation system. Each of the sealing systems include an anchor, at least one movable member, and an actuator. The anchor engages one of the panel and the frame, and the anchor movable from a first position to a second position towards the panel. The at least one movable member is positioned in an other of the panel and the frame and moves the anchor between the first position and the second position. The actuator is connected to the at least one movable member and drives the at least one movable member. The seal activation system is connected to each of the actuators of the plurality of sealing systems.
In certain aspects of the combined sealing system and seal activation system, the plurality of sealing systems and the seal activation system are positioned within the frame, and the panel pivots relative to the frame. The plurality of sealing systems include a first sealing system positioned along a first side of the frame; and a second sealing system positioned along a second side of the frame. The first side of the frame is substantially perpendicular to the second side of the frame. A transfer system is positioned between the first sealing system and the second sealing system, and the transfer system transfers motion from the actuator of the first sealing system to the actuator of the second sealing system.
In other aspects of the combined sealing system and seal activation system, the first sealing system is connected to a first anchor, and the second sealing system is connected to a second anchor. One of the first sealing system and the second sealing system includes a corner adaptor, and in an engaged configuration of the seal activation system, the corner adaptor forms a seal between the first anchor and the second anchor. In an engaged configuration of the seal activation system, the anchor of each of the plurality systems respectively extends into one or more slots within the panel to prevent movement of the panel relative to the frame.
In further aspects of the combined sealing system and seal activation system, the seal activation system includes a control member and a pair of opposing slides. Movement of the control member along a first axis moves the opposing slides along a second axis different than the first axis. The opposing slides are respectively attached to the actuator of a first sealing system and the actuator of a second sealing system; and the first and second sealing systems positioned on a same side of the frame.
In yet other aspects of the combined sealing system and seal activation system, at least two of the plurality of sealing systems share a common anchor. In an engaged configuration of the seal activation system, the anchor of each of the plurality of sealing systems engages one of the panel and frame to form a seal between the panel and the frame. One of the control member and the pair of opposing slides includes a pair of slots not parallel to the first or second axis and the other of the control member, and the pair of opposing slides includes a pair of pin respectively extending through the pair of slots. A drive systems moves the control member.
In another embodiment of the combined sealing system and seal activation system, the combination sealing system and seal activation system includes first, second, and third sealing systems; a transfer device, and a seal activation system. The first and second sealing systems are positioned in a first side of the frame. The third sealing system is positioned in a second side of the frame. The transfer device is positioned between and connected to the second sealing system and the third sealing system. The seal activation system is positioned between and connected to the first and second sealing systems. Each of the first, second, and third sealing systems include an anchor, at least one movable member, and an actuator. The anchor engages the panel, and the anchor is movable from a first position to a second position towards the panel. The at least one movable member is positioned in the frame and moves the anchor between the first position and the second position. The actuator is connected to the at least one movable member and drives the at least one movable member. The seal activation system is directly connected to the actuators of the first and second sealing systems. The transfer system transfers motion from the actuator of the second sealing system to the actuator of the third sealing system. The first and second sealing systems share a common anchor.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
The frame 120 may include a header 130, jambs 140, and a sill 150. A header 130 is a structural member that spans an upper portion of the window/door opening. Jambs 140 are the outermost vertical side members of the frame 120. A sill 150 is a threshold or structural member that spans a lower-most portion of the window/door opening. As recognized by those skilled in the art, different terms may also be associated with the above-structure identified as the header 130, jambs 140, and sill 150.
The panel 110 may include a sash 160 that surrounds a pane 170. The pane 170 is not limited as to a particular material. For example, the pane 170 may be translucent, such as glass or plastic, opaque, such as with wood or metal, or any combination thereof. The sash may include a header rail 175, jamb or stile rails 180, and a sill rail 185. As recognized by those skilled in the art, different terms may also be associated with the structure identified as the header rail 175, the jamb or stile rail 180, and sill rail 185.
The sealing system 200 (see
Additionally, although the present door/window system 100 is described herein with particular types of sealing systems 200 being positioned in particular locations, the door/window system 100 is not limited as to a particular type of sealing system 200 or a particular location of the sealing system 200. For example, a sealing system 200 may be positioned within the frame 120 and/or the sash 160. However, in certain aspects of the door/window system 100, the sealing systems 200 are positioned within the frame 120.
To prevent the forced opening of the panel 110, the sealing systems 200 are not limited as to a percentage of coverage between particular members of the frame 120 and/or panel 110. For example, the sealing systems 200 may only cover a fractional number (e.g., 10%, 50%, 85%) of the length between particular members of the frame 120 and/or panel 110. However, in certain aspects, the sealing systems 200 provide substantially complete coverage between the sash 160 of a panel 110 and the frame 120. In so doing, the combined sealing systems 200 can provide a seal substantially, completely around the panel 110.
Referring to
Although not limited in this manner, for those sides of the frame 120 that include multiple sealing system modules 200, the multiple sealing systems 200 may be each connected to a single anchor 210, which is used in forming the seal between the panel 110 and frame 120. The anchor 210 may be connected to movable members 225 of (see
The multiple sealing system modules 200 may also be interconnected such that upon one of the sealing system modules 200 being engaged, additional sealing system modules 200 engage. A transfer system 270 (described with regard to
As noted above, each of the sealing system modules 200 may be substantially identical. In so doing, a single type of module can be used on multiple or all sides of the door/window system 100. This may allow for ease of manufacturing since multiple types of modules increase the complexity of the manufacturing process. Moreover, the use of a single type of module may allow for easier and/or less-expensive repair of the door/window system since it may be easier and/or less-expensive to replace a single sealing system module 200 as compared to a sealing system that spans a greater portion of the door/window system 100.
Although each of the sealing system modules 200 may be substantially identical, depending upon the location of a particular sealing system module 200 within the door/window system 100, modifications to the particular sealing system 200 can be contemplated. For example, a corner member 295 (see
Additionally, the transfer system 270 may be removably attached to an end of a particular sealing system module 200. For example, the transfer system 270 may be attached to pairs of adjacent sealing system modules 200 in which motion of one member in one of the sealing system modules 200 to another member in a different one of the sealing system modules 200. This occurs, for example, at the corners of the door/window system 100. These additional features that can be added to a particular sealing system module 200 add flexibility to the combined system of sealing system modules 200.
Referring to
Referring to
The sealing system 200 is not limited as to the particular portion of the sash 160 with which the anchor 210 engages to form the seal 230. However, in certain aspects of the sealing system 200, the anchor 210 engages a portion of a channel 240 within members (e.g., header rail 175, stile rail 180, and sill rail 185) of the sash 160.
By having the anchor 210 being positioned within the channel 240, movement of the panel 110 relative to the frame 120 in a direction not parallel to the direction of the movement of the anchor 210 can be prevented. Moreover, in certain aspects, movement of the panel 110 relative to the frame 120 in a direction substantially perpendicular to the direction of movement of the anchor 210 can be prevented. In so doing, movement of the panel 110 relative to the frame 120 (via, for example, a forced entry) creates a force, against the anchor 210, having a minimal vector in the direction in which the anchor 210 moves. Thus, this forced movement of the panel 110 relative to the frame 120 has a reduced likelihood in forcing the anchor 210 to move, thereby increasing the security of the door/window system 100.
The anchor 210 may directly engage a portion of the channel 240. Alternatively, the anchor 210 may include a sealing member (not shown) that engages a portion of the channel 240 and/or engage a sealing member 235 within the channel 240. The sealing member retards the movement of air, water, etc. and/or noise across the seal, and any sealing member so capable is acceptable for use in the sealing system 200. However, in certain aspects of the sealing system 200, the sealing members 235 are formed from a compressible material, such as foam.
Many types of devices are known as being capable of moving the anchor 210 to engage the panel 110, and the sealing system 200 is not limited as to a type of device so capable. However, in certain aspects of the sealing system 200, the anchor 210 is attached to one or more movable members 225. The movable member 225 moves between a first position and a second position relative to the frame 120, and movement of the movable member 225 from the first position to the second position causes the anchor 210 to move from a disengaged/unlocked position (e.g.,
The sealing system 200 is not limited in the manner in which the movable member 225 is driven from the first position to the second position and back again. Many types of devices are known that are capable of transferring movement from one member to another member and the sealing system 200 is not limited in a device so capable. However, in certain aspects of the sealing system 200, the movement of the movable member 225 is driven by the back and forth motion of an actuator 240 that extends along a length of the sealing system 200.
A transfer device 250 transfers the back and forth motion of the actuator 240 to the movable member 225 thereby moving the anchor from the disengaged/unlocked position to the engaged/locked position and back again. Many types of devices are capable of transferring motion along one direction to another direction, and the transfer device 250 is not limited to any type of device so capable.
The sealing system 200 may also include supports 260 that are connected to the anchor 210. The supports 260 may be attached to an underside of the anchor 210 and positioned within the body of the sealing system 200. The supports 260 span the inner width of the body of the sealing system 200 and provide lateral stability to the anchor 210. The supports 260 may also act to limit the movement of the anchor 210 in one or multiple directions.
Referring to
In certain aspects of the seal activation system 205, the seal activation system 205 transfers motion along a first axis D1 to motion along a second axis D2. Although not limited in this manner, the first axis D1 is substantially perpendicular to the second axis D2. Many types of devices are known that are capable of transferring motion from one member to another member and the door/window system 100 is not limited in a device so capable. However, in certain aspects of the seal activation system 205, the seal activation system includes a control member 280 that moves along the first axis D1, which is connected to a pair of opposing slides 285A, 285B that move along the second axis D2.
The control member 280 includes pins 295 that extend through slots 290A, 290B, respectively in each of the opposing slides 285A, 285B. The slots 290A, 290B are not parallel relative to the first and second axis D1, D2 such the distance between from one slot 290A to the other slot 290B varies along the length of the slots 290A, 290B. The pins 295 are at a fixed distance relative to one another such that movement of the control member 280 changes the distance between the opposing slides 285A, 285B. In the manner, movement of the control member 280 along the first axis D1 is translated into movement of the opposing slides 285A, 285B along the second axis D2.
Although the pins 295 are shown positioned within the control member 280 and the slots 290A, 290B are within the slides 285A, 285B, the seal activation system 205 is not limited in this manner. For example, the pins 295 can be located respectively in each of the slides 285A, 285B, and the slots 290A, 290B may be positioned within the control member 280.
The slides 285A, 285B, are connected to at least one actuator 240. However, in certain aspects of the seal activation system 205, the slides are each respectively connected to an actuator 240. The motion of the slides 285A, 285B along the second axis D2 is thus transferred to the actuators 240, and as previously discussed, the motion of the actuators 240 drive the movement of the anchors 210.
Referring to
How the drive system 300 moves the seal activation system 205 from the deactivated/unlocked configuration to the activated/locked configuration (and back again) is not limited as to a particular manner and/or device. As can be readily envisioned, the configuration and operation of the drive system 300 may be determined by the configuration and operation of the seal activation system 205. A present example of the sealing system 300 employs the use of a handle 310 that pulls/pushes on a connecting member 320 that is attached to the control member 280 of the seal activation system 205. This pulling/pushing motion creates the back and forth movement along axis D1 of the control member 280. Although the illustrated drive system 300 is shown as being driven with a manual device, other devices capable of driving a sealing system 200 are commonly known, such as a magnetic, mechanical, and electro-mechanical devices.
Although not limited to this configuration, by positioning the sealing systems 200, seal activation system 200, and the drive system 300 all within the frame 120 of the door/window system 100, no moving parts need be positioned within the panel 100.
Referring to
Many types of transfer systems 270 are capable of transferring motion from one actuator 240A to another actuator 240B, and the door/window system 100 is not limited as to transfer system 290 so capable. For example, the transfer system 270 may include a set of inter-engaging gears respectively attached to the actuators 240A, 240B to transfer linear motion from one actuator 240A to the other actuator 240B. In certain aspects, however, the motion is transferred using a flexible strap (not shown) that is curved by a corner guide (not shown) within the transfer system 270 and respectively attached to both of the actuators 240A, 240B.
This application is a Continuation of U.S. Application No. 11/756,948, filed on Jun. 1, 2007, issued as U.S. Pat. No. 8,074,400, which is a Continuation-In-Part of U.S. Application ser. No. 11/425,386, filed on Jun. 20, 2006, issued as U.S. Pat. No. 7,627,987, incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
19217 | Tinney | Jan 1858 | A |
724139 | Smith | Mar 1903 | A |
946305 | Twyman | Jan 1910 | A |
982828 | Kelly | Jan 1911 | A |
1009978 | Knappe | Nov 1911 | A |
1021862 | Culver | Apr 1912 | A |
1170101 | Pullets | Feb 1916 | A |
1178775 | Albright | Apr 1916 | A |
1345967 | Smelser | Jul 1920 | A |
1468958 | Champion | Sep 1923 | A |
1489018 | Shultz | Apr 1924 | A |
1675230 | Snyder | Jun 1928 | A |
1715188 | Bullock | May 1929 | A |
1797839 | Ramsay | Mar 1931 | A |
1974269 | Gonder | Sep 1934 | A |
1977726 | Jacobson | Oct 1934 | A |
1995939 | Osten | Mar 1935 | A |
2207065 | McCormick | Jul 1940 | A |
2248719 | Owen | Jul 1941 | A |
2268114 | Foster | Dec 1941 | A |
2541421 | Hunter | Feb 1951 | A |
2552369 | Currie | May 1951 | A |
2593093 | Bjork | Apr 1952 | A |
2628678 | Webster | Feb 1953 | A |
2719342 | Hunt | Oct 1955 | A |
2753020 | Ware | Jul 1956 | A |
2766860 | Travis | Oct 1956 | A |
2805451 | Evans | Sep 1957 | A |
2837151 | Stroup | Jun 1958 | A |
2862256 | Stroup | Dec 1958 | A |
2862262 | Shea | Dec 1958 | A |
2928144 | Persson | Mar 1960 | A |
3004309 | Karodi | Oct 1961 | A |
3054152 | Trammell | Sep 1962 | A |
3059287 | Baruch | Oct 1962 | A |
3070856 | Minick | Jan 1963 | A |
3077644 | Kesling | Feb 1963 | A |
3098519 | Myers | Jul 1963 | A |
3111727 | Gerecke | Nov 1963 | A |
3126051 | Sussin | Mar 1964 | A |
3163891 | Seliger | Jan 1965 | A |
3184806 | Bragman | May 1965 | A |
3252255 | Marpe | May 1966 | A |
3289377 | Hetman | Dec 1966 | A |
3295257 | Douglass | Jan 1967 | A |
3335524 | Carson | Aug 1967 | A |
3374821 | White | Mar 1968 | A |
3383801 | Dallaire | May 1968 | A |
3466801 | Bohn | Sep 1969 | A |
3512303 | Wright | May 1970 | A |
3590530 | Duguay | Jul 1971 | A |
3590531 | Childs | Jul 1971 | A |
3660936 | Bryson | May 1972 | A |
3660940 | Tavano | May 1972 | A |
3816966 | Sause, Jr. | Jun 1974 | A |
3818636 | Calais et al. | Jun 1974 | A |
3821884 | Walsh | Jul 1974 | A |
3848908 | Rich | Nov 1974 | A |
3857199 | Frach et al. | Dec 1974 | A |
3910155 | Wilson | Oct 1975 | A |
3959927 | Good | Jun 1976 | A |
4018022 | Fink | Apr 1977 | A |
4027431 | Rackard | Jun 1977 | A |
4064651 | Homs | Dec 1977 | A |
4128967 | Kirsch | Dec 1978 | A |
4170846 | Dumenil et al. | Oct 1979 | A |
4307542 | Lense | Dec 1981 | A |
4317312 | Heideman | Mar 1982 | A |
4322914 | McGaughey | Apr 1982 | A |
4392329 | Suzuki | Jul 1983 | A |
4413446 | Dittrich | Nov 1983 | A |
4453346 | Powell et al. | Jun 1984 | A |
4479330 | Muller | Oct 1984 | A |
4496942 | Matsuoka | Jan 1985 | A |
4535563 | Mesnel | Aug 1985 | A |
4614060 | Dumenil et al. | Sep 1986 | A |
4656779 | Fedeli | Apr 1987 | A |
4656799 | Maryon | Apr 1987 | A |
4716693 | Webster | Jan 1988 | A |
4765105 | Tissington et al. | Aug 1988 | A |
4768316 | Haas | Sep 1988 | A |
4831509 | Jones et al. | May 1989 | A |
4837560 | Newberry | Jun 1989 | A |
4870909 | Richter | Oct 1989 | A |
4936049 | Hansen | Jun 1990 | A |
5007202 | Guillon | Apr 1991 | A |
5020292 | Strom et al. | Jun 1991 | A |
5029911 | Daniels | Jul 1991 | A |
5030488 | Sobolev | Jul 1991 | A |
5187867 | Rawlings | Feb 1993 | A |
5293726 | Schick | Mar 1994 | A |
5327684 | Herbst | Jul 1994 | A |
5339881 | Owens | Aug 1994 | A |
5349782 | Yulkowski | Sep 1994 | A |
5379518 | Hopper | Jan 1995 | A |
5446997 | Simonton | Sep 1995 | A |
5467559 | Owens | Nov 1995 | A |
5479151 | Lavelle et al. | Dec 1995 | A |
5511833 | Tashman et al. | Apr 1996 | A |
5521585 | Hamilton | May 1996 | A |
5522180 | Adler et al. | Jun 1996 | A |
5522195 | Bargen | Jun 1996 | A |
5569878 | Zielinski | Oct 1996 | A |
5584142 | Spiess | Dec 1996 | A |
5605013 | Hogston | Feb 1997 | A |
5638639 | Goodman et al. | Jun 1997 | A |
5784834 | Stutzman | Jul 1998 | A |
5786547 | Zielinski | Jul 1998 | A |
5870859 | Kitada | Feb 1999 | A |
5870869 | Schrader | Feb 1999 | A |
5964060 | Furlong | Oct 1999 | A |
6041552 | Lindahl | Mar 2000 | A |
6057658 | Kovach et al. | May 2000 | A |
6082047 | Comaglio et al. | Jul 2000 | A |
6105313 | Holloway et al. | Aug 2000 | A |
6112466 | Smith et al. | Sep 2000 | A |
6112467 | Bark et al. | Sep 2000 | A |
6112496 | Hugus et al. | Sep 2000 | A |
6170195 | Lim | Jan 2001 | B1 |
6173533 | Cittadini et al. | Jan 2001 | B1 |
6181089 | Kovach et al. | Jan 2001 | B1 |
6202353 | Giacomelli | Mar 2001 | B1 |
6218939 | Peper | Apr 2001 | B1 |
6243999 | Silverman | Jun 2001 | B1 |
6289643 | Bonar | Sep 2001 | B1 |
6318037 | Hansen | Nov 2001 | B1 |
6442899 | Gledhill | Sep 2002 | B1 |
6490832 | Fischbach et al. | Dec 2002 | B1 |
D470252 | Castrey | Feb 2003 | S |
6546682 | DeBlock et al. | Apr 2003 | B1 |
6553735 | Wang Chen | Apr 2003 | B1 |
6568131 | Milano, Jr. | May 2003 | B1 |
6619005 | Chen | Sep 2003 | B1 |
6644884 | Gledhill | Nov 2003 | B2 |
6651389 | Minter et al. | Nov 2003 | B2 |
6772818 | Whitley et al. | Aug 2004 | B2 |
6786005 | Williams | Sep 2004 | B1 |
6871902 | Carson et al. | Mar 2005 | B2 |
6973753 | Liebscher | Dec 2005 | B2 |
7010888 | Tumlin et al. | Mar 2006 | B2 |
7124538 | Kline | Oct 2006 | B1 |
7145436 | Ichikawa et al. | Dec 2006 | B2 |
7185468 | Clark et al. | Mar 2007 | B2 |
7487616 | Deaver | Feb 2009 | B2 |
7566035 | Bonshor | Jul 2009 | B2 |
7624539 | Speyer et al. | Dec 2009 | B2 |
7627987 | Thielmann et al. | Dec 2009 | B2 |
7665245 | Speyer et al. | Feb 2010 | B2 |
7685774 | Thielmann | Mar 2010 | B2 |
7685775 | Speyer et al. | Mar 2010 | B2 |
7685776 | Speyer et al. | Mar 2010 | B2 |
7707773 | Thielmann et al. | May 2010 | B2 |
7719213 | Herman et al. | May 2010 | B2 |
8074400 | Speyer et al. | Dec 2011 | B2 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20040068935 | Ichikawa et al. | Apr 2004 | A1 |
20050097842 | Arcamonte et al. | May 2005 | A1 |
20050102908 | Martin | May 2005 | A1 |
20060207199 | Darnell | Sep 2006 | A1 |
20070289221 | Speyer et al. | Dec 2007 | A1 |
20090151259 | Speyer et al. | Jun 2009 | A1 |
20090165415 | Salerno | Jul 2009 | A1 |
20090165423 | Salerno | Jul 2009 | A1 |
20100077665 | Speyer et al. | Apr 2010 | A1 |
Entry |
---|
Dictionary.com, “Active,” retrieved online at: http://dictionary.reference.com/browse/active (2010). |
Patio Life—Operation, retrieved online at: http://www.rotohardware.com/Products/Patio%20Life/PL-Operation.htm (2006). |
International Search Report for Application No. PCT/US2010/029383, dated May 25, 2010. |
International Search Report for Application No. PCT/US2010/029206, dated Jun. 2, 2010. |
Number | Date | Country | |
---|---|---|---|
20120047812 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11756948 | Jun 2007 | US |
Child | 13288354 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11425386 | Jun 2006 | US |
Child | 11756948 | US |