Combined orthodontic movement of teeth with cosmetic restoration

Information

  • Patent Grant
  • 12150831
  • Patent Number
    12,150,831
  • Date Filed
    Wednesday, September 20, 2017
    7 years ago
  • Date Issued
    Tuesday, November 26, 2024
    2 months ago
Abstract
Systems and methods are disclosed for restoring and/or orthodontically moving teeth. The methods can include determining an orthodontic treatment plan to at least partially correct for a malocclusion of at least one tooth. The methods can include determining an amount of cosmetic restoration of the at least one tooth based on a degree of partial correction of the malocclusion. The methods can include preparing the at least one tooth for the cosmetic restoration by orthodontically moving the tooth from a first position to a second position. The methods can include cosmetically restoring the at least one tooth when the at least one tooth is in the second position.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to cosmetic dentistry and orthodontic care. More specifically, this disclosure relates to systems and methods that can electronically simulate treatment strategies involving cosmetic dental restorations with and without preparatory orthodontic treatment.


2. Background of the Art

Cosmetic dentistry and the orthodontic movement of teeth can each be used to improve the smiles of patients. Cosmetic dentistry involves reshaping or sculpting the teeth and orthodontics involves moving the teeth.


Cosmetic dentistry is currently practiced separately from orthodontics such that the two treatments are either implemented alone or are otherwise not coordinated with one another. Patients are also often unaware that they have a choice between the two treatments, being instead guided by whoever they consult with first—the dentist or the orthodontist.


Compared to orthodontics, cosmetic dentistry gives patients the ability to improve their smiles in less time, but often at the high cost of losing valuable tooth structure to accommodate the corresponding cosmetic restoration.


A need therefore currently exists not only to educate patients as to their treatment options, but also to lessening the extent of tooth loss associated with cosmetic dentistry and/or to reducing the amount of time required to effect the orthodontic movement of teeth to achieve smiles that patients are ultimately happy with.


Previous efforts to improve this field have more narrowly focused on improvements to cosmetic dentistry alone or to improvements to the orthodontic movement of teeth alone. The two modalities have not yet been coordinated with one another or otherwise combined. However, combining orthodontic and cosmetic dentistry can be a valuable alternative to either treatment alone.


The present disclosure addresses this need and adds this value by utilizing digitally gathered information to educate patients on their different treatment options, including cosmetic dentistry alone, orthodontics alone, and the option of pretreating the teeth with orthodontic movement prior to cosmetic restoration. The present disclosure also adds value by being able to simulate each option.


A need also currently exists to lessen the amount of tooth loss associated with cosmetic dentistry. The present disclosure addresses this by orthodontically repositioning the teeth into an arrangement that lessens the amount of reshaping or sculpting required for the corresponding cosmetic dentistry restorations.


Comprehensive cosmetic dental treatments should include all alternatives in considering the best options for any given patient, including alternatives which involve the orthodontic movement of teeth. While there are currently programs that can give dentists and patients orthodontic models or cosmetic mock ups with stone models and wax ups, there is currently no digital program that can coordinate the orthodontic movement of teeth in preparation for a cosmetic restoration.


BRIEF SUMMARY OF THE INVENTION

This disclosure relates generally to cosmetic and orthodontic dental treatments.


More specifically, systems and methods are disclosed that can electronically simulate treatment strategies involving cosmetic dental restorations with and without preparatory orthodontic treatment.


Methods of coordinating orthodontic and cosmetic dental treatments are disclosed. For example, a method is disclosed that can include determining an orthodontic treatment plan to at least partially correct for a malocclusion of at least one tooth. The method can include determining an amount of cosmetic restoration of the at least one tooth based on a degree of partial correction of the malocclusion. The method can include preparing the at least one tooth for the cosmetic restoration by orthodontically moving the tooth from a first position to a second position. The method can include cosmetically restoring the at least one tooth when the at least one tooth is in the second position.


Methods of coordinating orthodontic and cosmetic dental treatments are disclosed. For example, a method is disclosed that can include simulating an orthodontic treatment alone. The method can include simulating a cosmetic dental treatment alone. The method can include simulating sequentially pre-treating the teeth with the orthodontic treatment before beginning the cosmetic dental treatment. The method can include automatically or manually selecting a simulated treatment plan. The method can include orthodontically moving teeth from a teeth first position to a teeth second position. The method can include designing a cosmetic restoration based on the teeth second position.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings shown and described are exemplary embodiments and non-limiting. Like reference numerals indicate identical or functionally equivalent features throughout.



FIG. 1 illustrates a schematic of a variation of an electronic dental examination and documentation system.



FIG. 2A illustrates a diagrammatic representation of a variation of an occlusal view of teeth having a crowded dentition.



FIG. 2B illustrates a diagrammatic representation of a variation of a digital impression of the teeth of FIG. 2A.



FIG. 3A illustrates a diagrammatic representation of a variation of an occlusal view of the teeth of FIG. 2A with an orthodontic correction ready for minimally invasive cosmetic dentistry.



FIG. 3B illustrates a diagrammatic representation of a variation of a digital simulation of a final tooth arrangement of the teeth of FIG. 2A after an orthodontic preparatory treatment is applied to the teeth.



FIG. 4 illustrates a diagrammatic representation of a variation of an occlusal view of the digital impression of FIG. 2B with a simulated cosmetic dentistry treatment.



FIG. 5 illustrates a variation of a process undertaken by the system.



FIG. 6 illustrates a variation of various treatment options being simulated by the system.





DETAILED DESCRIPTION

Systems and methods are disclosed that can electronically evaluate the dentition, simulate various cosmetic and/or orthodontic treatment options, and optionally produce orthodontic trays that can affect the orthodontic treatment options selected. The systems and methods disclosed can simulate treatment with cosmetic dentistry alone, with orthodontic treatment alone, and/or with a coordinated combination of treatment in which a preparatory orthodontic treatment is applied before the cosmetic restoration is carried out. The systems and methods disclosed can involve executing a computer algorithm that can model these various treatment options.


System—Overview



FIG. 1 illustrates a schematic of a variation of an electronic dental examination system 100. The system 100 can have a data acquisition device 102 and an examination unit 104. The data acquisition device 102 can be in wired or wireless communication with the examination unit 104. The examination unit 104 can receive data from one or more data acquisition devices 102, for example, separately, sequentially, and/or simultaneously. The data acquisition device 102 can be used to capture or image (e.g., scan, photograph, x-ray) the dentition. FIG. 1 illustrates that the data acquisition device 102 can acquire one or more teeth of a patient 101, for example, by electronically capturing or imaging the dentition. The acquiring is indicated by the dotted line that extends between the patient 101 and the data acquisition device 102. The dotted line also represents wired or wireless data transfer to and/or from the data acquisition device 102 and the examination unit 104.


The data acquisition device 102 can be used to create a digital impression of the dentition, for example, the entire dentition, a subset thereof, a single tooth, one or more portions of multiple teeth, a portion of a single tooth, or any combination thereof. In this way, the data acquisition device 102 can be used to digitally record a person's teeth in preparation for orthodontic and/or cosmetic dental treatment.


The data acquisition device 102 can be a scanner, an x-ray device, a camera, or any combination thereof. For example, the data acquisition device 102 can be a handheld scanner, radiographic imaging device, camera, or any combination thereof, for example, a handheld intraoral scanner.


The examination unit 104 can process data received and/or retrieved from the data acquisition device 102. The examination unit 104 can be local or remote relative to the data acquisition device 102. For example, the examination unit 104 can be on or be part of a server such as a cloud server, a cluster server, and/or a storage server. The examination unit 104 can analyze data from one or multiple data acquisition devices 102 and can be configured to store raw data (e.g., unprocessed data, unanalyzed data), processed data, data derived from raw and/or processed data, or any combination thereof, for example, on a server or on a local memory medium.



FIG. 1 further illustrates that the examination unit 104 can have one or multiple processing units 106, memory units 108, communication units 110, external databases 112, or any combination thereof. The processing unit 106 can be coupled to the memory and communication units 108, 110 through high-speed buses.


The processing unit 106 can include one or more central processing units (CPUs), graphical processing units (GPUs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or any combination thereof. The processing unit 106 can be programmable processor. The processing unit 106 can execute software stored in the memory unit 108 to execute the methods, instructions, and/or algorithms described herein. The processing unit 106 can be an embedded processor, a processor core, a microprocessor, a logic circuit, a hardware finite state machine (FSM), a digital signal processor (DSP), or any combination thereof. As a more specific example, the processing unit 104 can be a 32-bit or a 64-bit processor.


The memory unit 108 can store software, data, logs, or any combination thereof. The data stored can be raw data, processed data, data derived from raw and/or processed data, or any combination thereof. For example, the memory unit 108 can store data received from the data acquisition device 102, as well as the output from the processing unit 106 after the data acquisition device 102 data has been analyzed and/or modeled. The memory unit 108 can be an internal memory of the examination unit 104 as shown in FIG. 1, or it can be an external memory, such as a memory residing on a storage node, a cloud server, and/or a storage server. The memory unit 108 can be a volatile memory or a non-volatile memory. For example, the memory unit 108 can be a non-volatile storage medium such as non-volatile random access memory (NVRAM), flash memory, disk storage, or a volatile storage such as static random access memory (SRAM). The memory unit 108 can be the main storage unit for the examination unit 104.


The communication unit 110 can include one or more wired or wireless communication interfaces. For example, the communication unit 110 can be a network interface card of the examination unit 104. The communication unit 110 can be a wireless modem or a wired modem, for example, a WiFi modem, a 3G modem, a 4G modem, an LTE modem. Alternatively, or in combination, the communication unit 110 can be a Bluetooth™ component, a radio receiver, an antenna, or any combination thereof. For example, the communication unit 110 can be a server communication unit. The examination unit 104 can transmit and/or receive data packets and/or messages using the communication unit 110. The communication unit 110 can connect to or communicatively couple with one or more wireless signal transceivers and/or networks.


The examination unit 104 can include an external database 112 separate from, alternative to, and/or additional to the memory 108. The memory 108 and/or the database 112 can be internal and/or external to the examination unit 104, and can each be non-volatile and/or volatile memory. Alternatively, or in combination, the database 112 can be integrated or otherwise combined with the memory 108. The external database 112 can be on or be part of a server, for example, a cloud server, and/or a storage server.


The memory 108 and/or the external database 112 can be configured to store patient-specific data and/or non-patient specific data. For example, the memory 108 can store patient-specific data and the external database 112 can store non-patient specific data recorded from one or more patients different from patient 101.



FIG. 1 also illustrates that the system 100 can have one or more displays 114. The display 114 can display data acquisition results and/or the analyses thereof. The display 114 can be integrated with the device or system having the examination unit 104 and/or can be part of a standalone device in wired or wireless communication with the examination unit 104. For example, the display 114 can be part of a computer, a smartphone, a tablet, a laptop, a smartwatch, or any combination thereof. The device having the display 114 can be in communication with the data acquisition device 102, one or more other devices, the cloud, and/or one or more networks.


Alternatively, or in combination, the examination unit 104 can be part of or integrated with the device or system having the display 114, including a personal or portable device, for example, a computer, a smartphone, a tablet, a laptop, a smartwatch, or any combination thereof. Executable code can be installed on memory (e.g., memory 108) of the device having the display 114. When the executable code is executed by the device, the device can perform the instructions, processes, methods, and operations disclosed and contemplated herein, such that the device can analyze data acquisition results and model orthodontic and/or cosmetic dental restoration treatment options. For example, a smartphone application can be downloaded onto a smartphone that has executable code configured to carry out the various functions of the examination unit 104. Alternatively, or in combination, executable code can be located on the cloud, for example, on a server. The device (e.g., a smartphone) can query the server to run the executable code on the server to carry out the instructions, processes, methods, and operations disclosed and contemplated herein.


Alternatively, or in combination, the examination unit 104 can comprise downloadable executable code that utilizes existing processing, memory, and data storage features of a device and/or the cloud.


System—Dentition Evaluation



FIG. 2A illustrates a schematic of a variation of an occlusal view of teeth 200a having a crowded arrangement. A system (e.g., system 100) can be used to create a digital impression of the teeth 200a. For example, FIG. 2B illustrates a schematic variation of a digital impression 200b of the teeth 200a. Although the digital impression 200b is shown in the same occlusal view as the teeth 200a of FIG. 2A, any two-dimensional or three-dimensional view is appreciated. The teeth (e.g., teeth 200a) and the corresponding digital impression (e.g., impression 200b) can include the maxillary and/or mandibular dentition, or a portion thereof. For example, FIGS. 2A and 2B illustrate that the teeth 200a and the corresponding digital impression 200b can be a maxillary dentition.


The system (e.g., system 100) can evaluate a digitally acquired dentition to determine the arrangement of the teeth (e.g., teeth 200a), including the presence and extent of any malocclusions, for example, by determining the bounds and relative positions of the teeth. The system 100 can determine the cosmetic and/or orthodontic needs of a patient, and/or the system 100 can receive input from a user (e.g., dentist, orthodontist) regarding the cosmetic and/or orthodontic needs of a patient. For example, the system 100 can identify one or more candidate teeth for cosmetic dental restoration as well as one or more candidate teeth for orthodontic repositioning. Based on these determinations, the examination unit 104 can make orthodontic and/or cosmetic dental restoration treatment recommendations, as well as design treatment plans (e.g., orthodontic treatment alone, or cosmetic dental treatment with or without one or more preparatory orthodontic treatments). The recommendations can involve repositioning and/or restoring one or more teeth, including, for example the candidate teeth identified for orthodontic repositioning and/or the candidate teeth identified for cosmetic restoration.


The system 100 can determine orthodontic needs alone and/or can determine orthodontic preparation needs when the orthodontic treatment is coordinated with subsequent cosmetic restoration. For example, the system 100 (e.g., the examination unit 104) can identify the teeth in need of or that could benefit from cosmetic restoration and/or orthodontic movement. The system 100 can pretreat the teeth 100a with orthodontic movement to better position them for cosmetic reshaping and sculpting. This can involve moving one or multiple teeth to a better position for the placement of cosmetic dental restorations. Such orthodontic pretreatment prior to the reshaping of the teeth and placement of the cosmetic restorations can desirably reduce the amount of tooth structure destruction that would otherwise be necessary if the teeth were not first pretreated with orthodontic movement. Orthodontic pretreatment is also referred to as orthodontic preparatory treatment, as the orthodontic movement of teeth is done to accommodate the placement of cosmetic restorations. A patient's orthodontic preparation needs can correspond to one or more preparatory orthodontic treatments configured to be applied before the cosmetic restoration is applied. Orthodontic positioning can also be evaluated for cosmetic restorations that do not need any preparation at all, known as prep-less veneers.


The cosmetic dental restorations can include, for example, bonding, veneers (e.g., porcelain veneers, composite veneers, prep-less veneers), crowns, or any combination thereof. The system 100 can determine the restoration thicknesses for one or multiple cosmetic treatments. For example, the system 100 can determine the restoration thicknesses with and/or without pretreating the teeth with orthodontic movement. The restoration thicknesses recommended by the system 100 can depend on the extent of orthodontic pretreatment recommended, as well as on the type of cosmetic restoration used (e.g., veneer and/or cap).


The system 100 can analyze the data associated with the data acquisition of the acquired teeth 200a (e.g., the digital impression 200b) to coordinate the orthodontic repositioning of one or more teeth prior to the placement of one or multiple cosmetic dental restorations.


System—Treatment Simulation


The system 100 can electronically model the different treatment options, including the orthodontic movement of teeth alone, cosmetic restorations alone, and/or the coordinated combined treatment of sequentially first pretreating the teeth with orthodontic movement, subsequently preparing the teeth for cosmetic restoration (e.g., via reshaping, sculpting), and then placing the cosmetic restorations on the teeth (e.g., teeth 200a). The system 100 can simulate each of the treatment options, for example, for each type of cosmetic restoration treatment product (e.g., bonding, veneer, and/or crown).


The different treatment options can be simulated on the digital impression 200b. The orthodontic progression and/or the end tooth positions can be simulated with and/or without the simulation of cosmetic dentistry. The simulated end tooth positions for orthodontic treatments in preparation for cosmetic restoration treatments can be the same as or different from the simulated end tooth positions for orthodontic treatments that do not have subsequent restoration treatments.


For example, FIG. 3A illustrates that the teeth 200a can be orthodontically repositioned into a new arrangement 300a in preparation for restorative cosmetic treatment. The new teeth arrangement 300a can be ready for minimally invasive cosmetic dentistry. FIG. 3B illustrates a schematic variation of a digital mockup 300b of the teeth 200a of FIG. 2A having a new arrangement due to orthodontic preparatory treatment. The digital mockup 300b can be the same or different as the resultant new arrangement 300a. FIG. 3B illustrates that the simulated arrangement 300b can be the same as the resultant new arrangement 300a.


The system 100 can also model the restoration thickness and extent of preparation of the teeth 200a (e.g., orthodontic and/or cosmetic preparation) to obtain a desired cosmetic result, for example, on the digital impression 200b. The system 100 can create digital models of the teeth (also referred to as digital impressions), and an algorithm can then be used to create a cosmetic restoration model for each of the cosmetic restorations determined by the system 100 to be potentially useful. Parameters such as the thickness of the restorative material and the extent of the tooth removal can be modeled so that the possible results can be visualized. For example, FIG. 4 illustrates a schematic of a variation of a simulated cosmetic dentistry treatment 400a on the maxillary digital impression 200b of FIG. 2B in addition to a simulated cosmetic dentistry treatment 400b on the corresponding mandibular digital impression 402, for example, before or without the simulation of the orthodontic treatment 300b simulated in FIG. 3B. The maxillary and mandibular lines 404a, 404b can represent the facial aspect of planned restorative treatment (e.g., veneers), including both the thickness and the amount of tooth structure necessary to remove to give adequate thickness to the restorative treatment (e.g., veneers).


The models/simulations can desirably help patients make decisions on treatment protocols and outcomes. For example, the system 100 can have a computer algorithm configured to simulate the orthodontic movement that will allow for minimally invasive preparations of the teeth 200a as compared to treating with cosmetic restorations without first pre-treating the teeth 200a with orthodontics. Alternatively or additionally, the system 100 can combine the therapeutic orthodontic movement of teeth as well as digital mockup of the cosmetic restorative needs that can be converted to placeable or provisional restorations. The cosmetic restorations can be made of bonded ceramic or direct restorative material.


The models and simulations can be displayed on a display (e.g., display 114).


The models and simulations can give the dentist and patient the ability to evaluate orthodontic treatment alone, cosmetic dentistry alone or the combination of the two. Knowledge of the procedure through visualization will give patients and dentists alike the ability to make more informed decisions on their care. Many patients would like the quick fix of restorative cosmetic dentistry but do not understand the amount of tooth structure destruction that can be necessary for these procedures due to the tooth positions (e.g., relative positions, tooth rotations). The models and simulations can advantageously help patients understand the extent this destruction, both with and without being first pretreated with the orthodontic movement of one or more teeth.


To reiterate, the system 100 can create treatment protocols involving dental restorations alone, orthodontic treatments alone, or both, for example by using statistical analysis and simulating or otherwise modeling one or more treatment options.


This information can be transferred to a three-dimensional printed model or a direct printed tray, which can be used for a mockup of the restorations in the mouth. Alternatively or additionally, orthodontic software can position the teeth for a final result without any cosmetic dentistry for evaluation. A combination of the two can be evaluated as well.


The system 100 can produce digital and/or physical simulations/models.


System—Orthodontic Trays


The system 100 can be configured to design orthodontic trays (also referred to as aligners) for orthodontic preparatory treatment which is a precursor to cosmetic restoration. Additionally or alternatively, the system 100 can design standalone orthodontic trays unaffiliated with cosmetic restoration.


A series of oral trays can be designed to progressively reposition the maxillary and/or mandibular teeth in two or more successive steps, for example, as disclosed in WO 2016/004415, which is herein incorporated by reference in its entirety and for any purpose. Each oral tray in a series can have a tooth surface that has a geometry that corresponds to an intermediate or end tooth arrangement intended for the oral tray in the series. The oral trays can be sufficiently resilient to accommodate or conform to misaligned teeth, but apply sufficient force against the misaligned teeth to reposition the teeth to the intermediate or end arrangement as desired for the particular treatment step. A series of oral trays can have geometries selected to progressively reposition teeth from a first arrangement through one or more successive intermediate arrangements to a final arrangement. The final arrangement can correspond to the final orthodontic pretreatment position for one or more of a patient's teeth (e.g., teeth 200a), for example the entire dentition.


A series of trays can have 1 to 100 trays maxillary trays and 1 to 100 mandibular trays, for example, 1 to 55 maxillary trays and 1 to 55 mandibular trays, 1 to 50 maxillary trays and 1 to 50 mandibular trays, 1 to 45 maxillary trays and 1 to 45 mandibular trays, 1 to 40 maxillary trays and 1 to 40 mandibular trays, less than 40 maxillary trays 12 and less than 40 mandibular trays, or combinations thereof. For example, a series of trays can have 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 maxillary trays and 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 mandibular trays. The number of maxillary trays can be the same or different as the number mandibular trays in a series.


A single oral tray and/or a series of oral trays can be the orthodontic preparatory treatment that the system 100 designs in advance of cosmetic restoration.


The trays can orthodontically move the teeth into one or more correct physiological positions. The trays can orthodontically move the teeth into one or more positions that physiologically allows for less destructive cosmetic dental treatment, for example, into positions that allow for less reshaping and sculpting prior to placement of a cosmetic dental restoration. The first tray and/or any tray between the first and last trays can be configured to partially correct a malocclusion of at least one tooth by repositioning the at least one tooth into an intermediate position. The intermediate tooth arrangement that the first tray and/or any tray between the first and last trays are configured to reposition the teeth into can be a partial correction of a malocclusion of at least one tooth. The first tray and/or any tray between the first and last trays can each partially correct a malocclusion of at least one tooth by progressively moving the at least one tooth toward intermediate positions that are progressively more conducive to dental restoration, for example, because less of the at least one tooth will be destroyed, lost, sculpted, or reshaped in the intermediate positions relative to its previous position(s). The last tray can be configured to partially correct a malocclusion of at least one tooth by repositioning the at least one tooth into a restoration position (e.g., an end position). The restoration position can be an optimum position for the at least one tooth for dental restoration for a given treatment period (e.g., from about 1 month to about 12 or more months, including every 1 month increment within this range), for example, because less of the at least one tooth will be destroyed, lost, sculpted, or reshaped in the restoration position relative to its previous position(s). The restoration position can be a partial or complete correction of a malocclusion of the at least one tooth. The end tooth arrangement of the last tray can be a partial correction of a malocclusion of at least one tooth. The end tooth arrangement of the last tray can be a complete correction of a malocclusion of at least one tooth. The amount of cosmetic restoration of the at least one tooth can be based on the degree of partial correction of the malocclusion. The degree of partial correction can correspond to a percentage correction, for example, from about 1% correction to about 99% correction, including every 1% increment within this range, for example, 20%, 40%, 50%, 70%, and where 100% can correspond to complete correction of the malocclusion. A higher percentage correction can correspond to the same percentage decrease or a proportionate percentage decrease (e.g., 1:1, 1:2, 1:3, 1:4, 1:5) of the amount of reshaping or sculpting (e.g., destruction) of the at least one tooth that is required prior to placement of a dental restoration.


The intermediate and end tooth positions of the trays can be selected or otherwise coordinated with the sculpting and reshaping needs of cosmetic dental restoration. The intermediate and end tooth position of the “restoration” trays disclosed herein can be different than the intermediate and end tooth positions of orthodontic trays that are not configured to move teeth in preparation for dental restorations. The restoration trays disclosed herein can be designed to translate and/or rotate teeth along different paths, arcs, and/or angles relative to regular orthodontic aligner trays that are not moving teeth in preparation for a dental restoration. The system can simulate the progressive orthodontic movement teeth for the “restoration” tray series and/or for the “normal” orthodontic tray series. These simulations can be shown in a side-by-side comparison or they can be shown separately. The restoration tray simulation can be accompanied with a dental restoration simulation (e.g., at the same time as or subsequent to the restoration tray series simulation). Such comparisons can desirably allow doctors and patients to be better informed when deciding which treatment path to take. The different timing and/or costs of these different treatment options can also be simulated (e.g., visually displayed), which can further help doctors and patients decide which treatment path to take.


Method of Use



FIG. 5 illustrates a variation of a process 500 that is implementable using and/or performable by the system 100. The method 500 can involve acquiring (e.g., detecting and/or observing, for example, scanning, x-raying, photographing) the maxillary and/or mandibular dentition with one or more data acquisition devices 102 in operation 502.


The method 500 can further involve creating a digital impression of the dentition in operation 504 from the data acquired in operation 502.


The method 500 can further involve designing treatment plans in operation 506 (e.g., orthodontic treatment alone, or cosmetic dental treatment with or without one or more preparatory orthodontic treatments). The treatment plans designed can depend on, for example, the presence and extent of any malocclusions and/or the bounds and relative positions of the teeth.


The method 500 can further involve simulating the different treatment options in operation 508, for example, simulating orthodontic movement of teeth alone, simulating cosmetic restorations alone, and/or simulating the coordinated combined treatment of sequentially first pretreating the teeth with orthodontic movement, subsequently preparing the teeth for cosmetic restoration (e.g., via reshaping, sculpting), and then placing the cosmetic restorations on the teeth (e.g., teeth 200a).


The method 500 can further involve the user (e.g., dentist, orthodontist, patient) selecting a treatment option, and/or the system (e.g., system 100) making a treatment recommendation in operation 510. The treatment recommendation can be one of the options designed in operation 506 and/or simulated in operation 508.


The method 500 can further involve executing the selected or recommended treatment option in operation 512, for example with orthodontic preparatory treatment affected by an orthodontic tray, and the subsequent application of cosmetic restorations to the teeth. Once the decision on which treatment option/protocol is to be used, then the system 100 can design and execute on the orthodontic and cosmetic restoration appliances associated with the selected or recommended treatment.



FIG. 6 illustrates a variation of various treatment options 600 being simulated by the system. A portion of a digital impression (e.g., 3 teeth) is shown in block 602. Blocks 604a-604d are schematic variations of simulations of no coordinated orthodontic treatment before cosmetic restoration, three months of coordinated orthodontic treatment beforehand, 6 months of coordinated orthodontic treatment beforehand, and 9 months of coordinated orthodontic treatment beforehand, respectively, with the middle tooth progressively moving closer to a more vertical position as the amount of treatment time increases. The orthodontic treatment time can range from zero to about 2 years, including every 1 month increment within this range, for example, 0 months, 3 months, 6 months, 9 months, or 12 months. The number of orthodontic trays used in each of the blocks 604b, 604c, and 604d can vary as described above, with the total number being dependent on the needs of each patient. Blocks 606a-606d are schematic variations of simulations showing the extent of tooth removal (e.g., via reshaping, via sculpting) subsequent to the coordinated orthodontic treatment in blocks 604a-604d, respectively, with amount of tooth removal for the cosmetic restoration progressively becoming less as the amount of orthodontic treatment time increases from 0 months to 12 months (the amount removed is indicated by the shaded regions).


A number of variations have been described. Nevertheless, it will be understood by one of ordinary skill in the art that various modifications may be made without departing from the spirit and scope of the variations. In addition, the flowcharts, logic flows, and algorithms depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results, and are exemplary only. In addition, other steps or operations may be provided, or steps or operations may be eliminated, from the described flows and algorithms, and other components and/or features may be added to, or removed from, the described and contemplated systems. Accordingly, other variations are within the scope of the following claims.


It will be understood by one of ordinary skill in the art that the various methods and processes disclosed herein may be embodied in a non-transitory readable medium, machine-readable medium, and/or a machine accessible medium comprising instructions compatible, readable, and/or executable by a processor or processing unit of a machine, device, or computing device. The structures and modules in the figures may be shown as distinct and communicating with only a few specific structures and not others. The structures may be merged with each other, may perform overlapping functions, and may communicate with other structures not shown to be connected in the figures. Accordingly, the specification and/or drawings may be regarded in an illustrative rather than a restrictive sense.


The claims are not limited to the exemplary variations shown in the figures, but instead may claim any feature disclosed or contemplated in the disclosure as a whole. Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. Some elements may be absent from individual figures for reasons of illustrative clarity. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the disclosure, and variations of aspects of the disclosure can be combined and modified with each other in any combination. All devices, apparatuses, systems, methods, and algorithms described herein can be used for medical (e.g., diagnostic, therapeutic or rehabilitative) or non-medical purposes.

Claims
  • 1. A method of coordinating orthodontic and cosmetic dental treatments, the method comprising: recommending, via a processor, a tooth for restoration;determining a first amount of partial tooth destruction of the tooth when the tooth is modeled in a first position;determining an amount of cosmetic restoration of the tooth based on the first amount of partial tooth destruction;determining a second amount of partial tooth destruction of the tooth when the tooth is modeled in a second position, wherein the first amount of partial tooth destruction is greater than the second amount of partial tooth destruction;selecting the first position of the tooth for restoration of the tooth;determining and recommending, via the processor before starting treatment, a first orthodontic treatment plan that moves the tooth to the first position along a path specifically tailored to accommodate the amount of cosmetic restoration;determining and recommending, via the processor before starting treatment, a second orthodontic treatment plan that moves the tooth to the first position along a different path, arc, and/or angle than the path specifically tailored to accommodate the amount of cosmetic restoration;simulating, before starting treatment, the first orthodontic treatment plan and the second orthodontic treatment plan;comparing, before starting treatment, the first orthodontic treatment plan with the second orthodontic treatment plan;selecting, before starting treatment, the first orthodontic treatment plan;preparing the tooth for the amount of cosmetic restoration by orthodontically moving the tooth to the first position along the path specifically tailored to accommodate the amount of cosmetic restoration;preparing the tooth for the amount of cosmetic restoration by performing the first amount of partial tooth destruction when the tooth is in the first position; andcosmetically restoring the tooth by performing the amount of cosmetic restoration, wherein the higher the degree of partial correction, the lower the amount of destruction of the tooth that is required prior to placement of a dental restoration.
  • 2. A method of coordinating orthodontic and cosmetic dental treatments, the method comprising: identifying, via a processor, a candidate tooth for orthodontic repositioning and for cosmetic dental restoration;designing, via the processor based on the candidate tooth identified, a first orthodontic treatment plan for the candidate tooth and a second orthodontic treatment plan for the candidate tooth;designing, via the processor based on the candidate tooth identified, a first cosmetic dental treatment plan for the candidate tooth, wherein the first cosmetic dental treatment plan is associated with the first orthodontic treatment plan;designing, via the processor based on the candidate tooth identified, a second cosmetic dental treatment plan for the candidate tooth, wherein the second cosmetic dental treatment plan is associated with the second orthodontic treatment plan;simulating the first orthodontic treatment plan, the first cosmetic dental treatment plan, the second orthodontic treatment plan, and the second cosmetic dental treatment plan on an electronic display, wherein simulating the first orthodontic treatment plan and the first cosmetic dental treatment plan comprises simulating a first orthodontic path for the candidate tooth identified and a first type of cosmetic restoration treatment product, wherein simulating the second orthodontic treatment plan and the second cosmetic dental treatment plan comprises simulating a second orthodontic path for the candidate tooth identified and a second type of cosmetic restoration treatment product different from the first type of cosmetic restoration treatment product, wherein the first orthodontic path for the candidate tooth identified is different than the second orthodontic path for the candidate tooth identified, and wherein a final tooth position of the candidate tooth identified is the same at the end of the first orthodontic path and at the end of the second orthodontic path;determining and comparing a first amount of destruction of the candidate tooth with a second amount of destruction of the candidate tooth, wherein the first amount of destruction is associated with the first type of cosmetic restoration treatment product, wherein the second amount of destruction is associated with the second type of cosmetic restoration treatment product, wherein the first amount of destruction is greater than the second amount of destruction;recommending, via the processor, the first orthodontic treatment plan and the first cosmetic dental restoration treatment plan or the second orthodontic treatment plan and the second cosmetic dental restoration treatment plan for the candidate tooth, wherein the recommendation is selectable by the user;executing the orthodontic treatment plan recommended by the processor, wherein executing the orthodontic treatment plan recommended by the processor comprises preparing the candidate tooth for the first amount of destruction or the second amount of destruction by orthodontically moving the candidate tooth according to the orthodontic treatment plan recommended by the processor;after executing the orthodontic treatment plan recommended by the processor, performing the first amount of destruction in preparation for the first cosmetic dental restoration treatment plan or performing the second amount of destruction in preparation for the second cosmetic dental restoration treatment plan recommended by the processor; andafter performing the first amount of destruction in preparation for the first cosmetic dental restoration treatment plan or performing the second amount of destruction in preparation for the second cosmetic dental restoration treatment plan recommended by the processor, executing the first cosmetic dental restoration treatment plan or the second cosmetic dental restoration treatment plan recommended by the processor.
  • 3. The method of claim 2, wherein preparing the candidate tooth for the second amount of destruction by orthodontically moving the candidate tooth takes longer than preparing the candidate tooth for the first amount of destruction by orthodontically moving the candidate tooth.
  • 4. The method of claim 1, further comprising simulating the first orthodontic treatment plan side-by-side with the second orthodontic treatment plan.
  • 5. The method of claim 1, further comprising simulating the cost of the first orthodontic treatment plan and the cost of the second orthodontic treatment plan.
  • 6. The method of claim 1, wherein a portable device comprises the processor.
  • 7. The method of claim 6, wherein the portable device comprises a smartphone.
  • 8. The method of claim 2, wherein the first type of cosmetic restoration treatment product comprises a bonding, and wherein the second type of cosmetic restoration treatment product comprises a veneer or a crown.
  • 9. The method of claim 2, wherein the first type of cosmetic restoration treatment product comprises a veneer, and wherein the second type of cosmetic restoration treatment product comprises a bonding or a crown.
  • 10. The method of claim 2, wherein the user comprises a patient.
  • 11. The method of claim 2, wherein the user comprises a dentist, an orthodontist, or a patient.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/397,783 filed Sep. 21, 2016, which is herein incorporated by reference in its entirety for all purposes.

US Referenced Citations (558)
Number Name Date Kind
3521355 Pearlman Jul 1970 A
4068379 Miller et al. Jan 1978 A
4889485 Iida Dec 1989 A
4983334 Adell Jan 1991 A
5055039 Abbatte et al. Oct 1991 A
5186623 Breads et al. Feb 1993 A
5259762 Farrell Nov 1993 A
5506607 Sanders et al. Apr 1996 A
5691905 Dehoff et al. Nov 1997 A
5863198 Doyle Jan 1999 A
5975893 Chishti et al. Nov 1999 A
6183248 Chishti et al. Feb 2001 B1
6210162 Chishti et al. Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6227851 Chishti et al. May 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6293790 Hilliard Sep 2001 B1
6299440 Phan et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6386878 Pavlovskaia et al. May 2002 B1
6390812 Chishti et al. May 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Chishti et al. Jun 2002 B1
6454565 Phan et al. Sep 2002 B2
6463344 Pavloskaia Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6485298 Chishti et al. Nov 2002 B2
6488499 Miller Dec 2002 B1
6524101 Phan et al. Feb 2003 B1
6554611 Chishti et al. Apr 2003 B2
6572372 Phan et al. Jun 2003 B1
6582227 Phan et al. Jun 2003 B2
6602070 Miller et al. Aug 2003 B2
6607382 Kuo et al. Aug 2003 B1
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6682346 Chishti et al. Jan 2004 B2
6688885 Sachdeva Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705861 Chishti et al. Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6729876 Chishti et al. May 2004 B2
6761560 Miller Jul 2004 B2
6783360 Chishti Aug 2004 B2
6786721 Chishti et al. Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6830450 Knopp et al. Dec 2004 B2
6846179 Chapouland et al. Jan 2005 B2
6857429 Eubank Feb 2005 B2
6886566 Eubank May 2005 B2
6964564 Phan et al. Nov 2005 B2
7011517 Nicozisis Mar 2006 B2
7029275 Rubbert et al. Apr 2006 B2
7037108 Chishti et al. May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7056115 Phan et al. Jun 2006 B2
7059850 Phan et al. Jun 2006 B1
7063533 Phan et al. Jun 2006 B2
7074038 Miller Jul 2006 B1
7077647 Choi et al. Jul 2006 B2
7092784 Simkins Aug 2006 B1
7104790 Cronauer Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7192275 Miller Mar 2007 B2
7220122 Chishti May 2007 B2
7320592 Chishti et al. Jan 2008 B2
7326051 Miller Feb 2008 B2
7331783 Chishti et al. Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7416407 Cronauer Aug 2008 B2
7434582 Eubank Oct 2008 B2
7435083 Chishti et al. Oct 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7476100 Kuo Jan 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7559328 Eubank Jul 2009 B2
7578673 Wen et al. Aug 2009 B2
7590462 Rubbert et al. Sep 2009 B2
7637262 Bailey Dec 2009 B2
7641828 Desimone et al. Jan 2010 B2
7658610 Knopp Feb 2010 B2
7689398 Cheng et al. Mar 2010 B2
7717708 Sachdeva et al. May 2010 B2
7771195 Knopp et al. Aug 2010 B2
7802987 Phan et al. Sep 2010 B1
7824180 Abolfathi et al. Nov 2010 B2
7826646 Pavlovskaia et al. Nov 2010 B2
7840247 Liew et al. Nov 2010 B2
7841858 Knopp et al. Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7878801 Abolfathi et al. Feb 2011 B2
7878804 Korytov et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7883334 Li et al. Feb 2011 B2
7901207 Knopp et al. Mar 2011 B2
7905724 Kuo et al. Mar 2011 B2
7914283 Kuo Mar 2011 B2
7942672 Kuo May 2011 B2
7943079 Desimone et al. May 2011 B2
7957824 Boronvinskih et al. Jun 2011 B2
7987099 Kuo et al. Jul 2011 B2
8001972 Eubank Aug 2011 B2
8002543 Kang et al. Aug 2011 B2
8021147 Sporbert et al. Sep 2011 B2
8033282 Eubank Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8070487 Chishti et al. Dec 2011 B2
8075306 Kitching et al. Dec 2011 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8105080 Chishti et al. Jan 2012 B2
8123519 Schultz Feb 2012 B2
8152518 Kuo Apr 2012 B2
8152523 Sporbert et al. Apr 2012 B2
8177551 Sachdeva et al. May 2012 B2
8235713 Phan et al. Aug 2012 B2
8272866 Chun et al. Sep 2012 B2
8275180 Kuo et al. Sep 2012 B2
8292617 Brandt et al. Oct 2012 B2
8303302 Teasdale Nov 2012 B2
8348665 Kuo Jan 2013 B2
8356993 Marston Jan 2013 B1
8401686 Moss et al. Mar 2013 B2
8401826 Cheng et al. Mar 2013 B2
8439672 Matov et al. May 2013 B2
8439673 Korytov et al. May 2013 B2
8444412 Baughman et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8469705 Sachdeva et al. Jun 2013 B2
8469706 Kuo Jun 2013 B2
8496474 Chishti et al. Jul 2013 B2
8512037 Andreiko Aug 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8535580 Puttler et al. Sep 2013 B2
8562337 Kuo et al. Oct 2013 B2
8562338 Kitching et al. Oct 2013 B2
8562340 Chishti et al. Oct 2013 B2
8636509 Miller Jan 2014 B2
8636510 Kitching et al. Jan 2014 B2
8690568 Chapoulaud et al. Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8734149 Phan et al. May 2014 B2
8734150 Chishti et al. May 2014 B2
8738165 Cinader, Jr. et al. May 2014 B2
8765031 Li et al. Jul 2014 B2
8777611 Cios Jul 2014 B2
8780106 Chishti et al. Jul 2014 B2
8807999 Kuo et al. Aug 2014 B2
8858226 Phan et al. Oct 2014 B2
8864493 Leslie-Martin et al. Oct 2014 B2
8899976 Chen et al. Dec 2014 B2
8899978 Kitching et al. Dec 2014 B2
8930219 Trosien et al. Jan 2015 B2
8936464 Kopelman Jan 2015 B2
8998608 Trosien et al. Jan 2015 B2
8944812 Kuo Feb 2015 B2
8961173 Miller Feb 2015 B2
8986003 Valoir Mar 2015 B2
8992215 Chapoulaud et al. Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
9026238 Kraemer et al. May 2015 B2
9060829 Sterental et al. Jun 2015 B2
9107722 Matov et al. Aug 2015 B2
9119691 Namiranian et al. Sep 2015 B2
9119696 Giordano et al. Sep 2015 B2
9161823 Morton et al. Oct 2015 B2
9161824 Chishti et al. Oct 2015 B2
9204942 Phan et al. Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9301814 Kaza et al. Apr 2016 B2
9320575 Chishti et al. Apr 2016 B2
9326830 Kitching et al. May 2016 B2
9326831 Cheang May 2016 B2
9333052 Miller May 2016 B2
9345557 Anderson et al. May 2016 B2
9351809 Phan et al. May 2016 B2
9364297 Kitching et al. Jun 2016 B2
9375300 Matov et al. Jun 2016 B2
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9492245 Sherwood et al. Nov 2016 B2
9820829 Kuo Nov 2017 B2
9844420 Cheang Dec 2017 B2
9917868 Ahmed Mar 2018 B2
9922170 Trosien et al. Mar 2018 B2
10011050 Kitching et al. Jul 2018 B2
10022204 Cheang Jul 2018 B2
10335250 Wen Jul 2019 B2
10357336 Wen Jul 2019 B2
10357342 Wen Jul 2019 B2
10548690 Wen Feb 2020 B2
10588723 Falkel Mar 2020 B2
10631953 Wen Apr 2020 B2
10642717 Wen Apr 2020 B2
10881486 Wen Jan 2021 B2
10925698 Falkel Feb 2021 B2
10952821 Falkel Mar 2021 B2
11051913 Wen Jul 2021 B2
11096763 Akopov et al. Aug 2021 B2
11207161 Brant Dec 2021 B2
11348257 Lang May 2022 B2
11364098 Falkel Jun 2022 B2
11553989 Wen et al. Jan 2023 B2
11583365 Wen Feb 2023 B2
11638628 Wen May 2023 B2
11663383 Cao May 2023 B2
11707180 Falkel Jul 2023 B2
11771524 Wen Oct 2023 B2
11833006 Wen Dec 2023 B2
12064315 Schueller et al. Aug 2024 B2
20010002310 Chishti May 2001 A1
20020009686 Loc et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020042038 Miller et al. Apr 2002 A1
20020051951 Chishti et al. May 2002 A1
20020072027 Chisti Jun 2002 A1
20020094503 Chishti et al. Jul 2002 A1
20020110776 Abels et al. Aug 2002 A1
20020150859 Imgrund et al. Nov 2002 A1
20020177108 Pavlovskaia et al. Nov 2002 A1
20030003416 Chishti et al. Jan 2003 A1
20030008259 Kuo et al. Jan 2003 A1
20030039940 Miller Feb 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030190576 Phan et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20040023188 Pavlovskaia et al. Feb 2004 A1
20040029068 Sachdeva et al. Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040134599 Wang et al. Jul 2004 A1
20040142299 Miller Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040166456 Chishti et al. Aug 2004 A1
20040166462 Phan et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040202983 Tricca et al. Oct 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20040229183 Knopp et al. Nov 2004 A1
20040242987 Liew et al. Dec 2004 A1
20040253562 Knopp Dec 2004 A1
20050010450 Hultgren et al. Jan 2005 A1
20050019721 Chishti Jan 2005 A1
20050048432 Choi et al. Mar 2005 A1
20050095552 Sporbert et al. May 2005 A1
20050095562 Sporbert et al. May 2005 A1
20050118555 Sporbert et al. Jun 2005 A1
20050153255 Sporbert Jul 2005 A1
20050192835 Kuo et al. Sep 2005 A1
20050194022 Schwartz Sep 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050241646 Sotos et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244782 Chishti et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060003283 Miller et al. Jan 2006 A1
20060035197 Hishimoto Feb 2006 A1
20060068353 Abolfathi et al. Mar 2006 A1
20060078840 Robson Apr 2006 A1
20060078841 Desimone et al. Apr 2006 A1
20060084030 Phan et al. Apr 2006 A1
20060093982 Wen May 2006 A1
20060099546 Bergersen May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060177789 O'Bryan Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060199142 Liu et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen Dec 2006 A1
20070003907 Chishti et al. Jan 2007 A1
20070238065 Sherwood Oct 2007 A1
20070264606 Muha et al. Nov 2007 A1
20070283967 Bailey Dec 2007 A1
20080032248 Kuo Feb 2008 A1
20080044786 Kalili Feb 2008 A1
20080050692 Hilliard Feb 2008 A1
20080051650 Massie et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057462 Kitching et al. Mar 2008 A1
20080076086 Kitching et al. Mar 2008 A1
20080085487 Kuo et al. Apr 2008 A1
20080113314 Pierson et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080182220 Chishti et al. Jul 2008 A1
20080206702 Hedge et al. Aug 2008 A1
20080215176 Borovinskih et al. Sep 2008 A1
20080233528 Kim et al. Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080248438 Desimone et al. Oct 2008 A1
20080248443 Chisti et al. Oct 2008 A1
20080261165 Steingart et al. Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080280247 Sachdeva et al. Nov 2008 A1
20080305451 Kitching et al. Dec 2008 A1
20080305453 Kitching et al. Dec 2008 A1
20090081604 Fisher Mar 2009 A1
20090098502 Andreiko Apr 2009 A1
20090117510 Minium May 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090269714 Knopp Oct 2009 A1
20090280450 Kuo Nov 2009 A1
20090291407 Kuo Nov 2009 A1
20090291408 Stone-Collonge Nov 2009 A1
20100036682 Trosien et al. Feb 2010 A1
20100055635 Kakavand Mar 2010 A1
20100086890 Kuo Apr 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100167225 Kuo Jul 2010 A1
20100173266 Lu et al. Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100239992 Brandt et al. Sep 2010 A1
20100280798 Pattijn et al. Nov 2010 A1
20110005527 Andrew et al. Jan 2011 A1
20110015591 Hanson et al. Jan 2011 A1
20110020761 Kalili Jan 2011 A1
20110039223 Li Feb 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110114100 Alvarez et al. May 2011 A1
20110123944 Knopp et al. May 2011 A1
20110129786 Chun et al. Jun 2011 A1
20110159451 Kuo et al. Jun 2011 A1
20110165533 Li et al. Jul 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110269097 Sporbert et al. Nov 2011 A1
20110270588 Kuo et al. Nov 2011 A1
20110281229 Abolfathi Nov 2011 A1
20120028221 Williams Feb 2012 A1
20120035901 Kitching et al. Feb 2012 A1
20120123577 Chapoulaud et al. May 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120186589 Singh Jul 2012 A1
20120199136 Urbano Aug 2012 A1
20120214121 Greenberg Aug 2012 A1
20120225399 Teasdale Sep 2012 A1
20120225400 Chishti et al. Sep 2012 A1
20120225401 Kitching et al. Sep 2012 A1
20120227750 Tucker Sep 2012 A1
20120244488 Chishti et al. Sep 2012 A1
20120270173 Pumphrey et al. Oct 2012 A1
20120288818 Vendittelli Nov 2012 A1
20130004634 McCaskey et al. Jan 2013 A1
20130022255 Chen et al. Jan 2013 A1
20130052625 Wagner Feb 2013 A1
20130078593 Andreiko Mar 2013 A1
20130081271 Farzin-Nia et al. Apr 2013 A1
20130085018 Jensen et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130122445 Marston May 2013 A1
20130122448 Kitching May 2013 A1
20130157213 Arruda Jun 2013 A1
20130201450 Bailey et al. Aug 2013 A1
20130204583 Matov et al. Aug 2013 A1
20130230819 Arruda Sep 2013 A1
20130231899 Khardekar et al. Sep 2013 A1
20130236848 Arruda Sep 2013 A1
20130266906 Soo Oct 2013 A1
20130302742 Li et al. Nov 2013 A1
20130308846 Chen et al. Nov 2013 A1
20130317800 Wu et al. Nov 2013 A1
20130323665 Dinh et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20140023980 Kitching et al. Jan 2014 A1
20140072926 Valoir Mar 2014 A1
20140073212 Lee Mar 2014 A1
20140076332 Luco Mar 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140124968 Kim May 2014 A1
20140167300 Lee Jun 2014 A1
20140172375 Grove Jun 2014 A1
20140178830 Widu Jun 2014 A1
20140193765 Kitching et al. Jul 2014 A1
20140193767 Li et al. Jul 2014 A1
20140229878 Wen Aug 2014 A1
20140242532 Arruda Aug 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140272757 Chishti Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20140288894 Chishti et al. Sep 2014 A1
20140315153 Kitching Oct 2014 A1
20140315154 Jung et al. Oct 2014 A1
20140067335 Andreiko Nov 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140349242 Phan et al. Nov 2014 A1
20140358497 Kuo Dec 2014 A1
20140363779 Kopelman Dec 2014 A1
20140370452 Tseng Dec 2014 A1
20150004553 Li et al. Jan 2015 A1
20150004554 Cao et al. Jan 2015 A1
20150018956 Steinmann et al. Jan 2015 A1
20150025907 Trosien et al. Jan 2015 A1
20150044623 Rundlett Feb 2015 A1
20150044627 German Feb 2015 A1
20150057983 See et al. Feb 2015 A1
20150064641 Gardner Mar 2015 A1
20150093713 Chen et al. Apr 2015 A1
20150093714 Kopelman Apr 2015 A1
20150125802 Tal May 2015 A1
20150128421 Mason et al. May 2015 A1
20150157421 Martz et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150182321 Karazivan et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216627 Kopelman Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238282 Kuo et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150238284 Wu et al. Aug 2015 A1
20150245887 Izugami et al. Sep 2015 A1
20150254410 Sterental et al. Sep 2015 A1
20150265376 Kopelman Sep 2015 A1
20150289949 Moss et al. Oct 2015 A1
20150289950 Khan Oct 2015 A1
20150305830 Howard et al. Oct 2015 A1
20150305831 Cosse Oct 2015 A1
20150305919 Stubbs et al. Oct 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150320518 Namiranian et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150335399 Caraballo Nov 2015 A1
20150335404 Webber et al. Nov 2015 A1
20150336299 Tanugula et al. Nov 2015 A1
20150342464 Wundrak et al. Dec 2015 A1
20150351870 Mah Dec 2015 A1
20150351871 Chishti et al. Dec 2015 A1
20150359609 Khan Dec 2015 A1
20150366637 Kopelman et al. Dec 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20160000527 Arruda Jan 2016 A1
20160008095 Matov et al. Jan 2016 A1
20160008097 Chen et al. Jan 2016 A1
20160051341 Webber Feb 2016 A1
20160051342 Phan et al. Feb 2016 A1
20160051348 Boerjes et al. Feb 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160067014 Kottemann et al. Mar 2016 A1
20160074137 Kuo et al. Mar 2016 A1
20160074138 Kitching et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106521 Tanugula et al. Apr 2016 A1
20160120617 Lee May 2016 A1
20160120621 Li et al. May 2016 A1
20160128803 Webber et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160135926 Djamchidi May 2016 A1
20160135927 Boltunov et al. May 2016 A1
20160157961 Lee Jun 2016 A1
20160166363 Varsano Jun 2016 A1
20160175068 Cai et al. Jun 2016 A1
20160175069 Korytov et al. Jun 2016 A1
20160184129 Liptak et al. Jun 2016 A1
20160193014 Morton et al. Jul 2016 A1
20160199216 Cam et al. Jul 2016 A1
20160203604 Gupta et al. Jul 2016 A1
20160206402 Kitching et al. Jul 2016 A1
20160220200 Sanholm et al. Aug 2016 A1
20160228213 Tod Aug 2016 A1
20160256240 Shivapuja et al. Sep 2016 A1
20160310235 Derakhshan Oct 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007359 Kopelman et al. Jan 2017 A1
20170065373 Martz et al. Mar 2017 A1
20170079748 Andreiko Mar 2017 A1
20170100207 Wen Apr 2017 A1
20170100208 Wen Apr 2017 A1
20170100209 Wen Apr 2017 A1
20170100210 Wen Apr 2017 A1
20170100211 Wen Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170231721 Akeel et al. Aug 2017 A1
20170325911 Marshall Nov 2017 A1
20180014912 Radmand Jan 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180042708 Caron et al. Feb 2018 A1
20180055611 Sun et al. Mar 2018 A1
20180078343 Falkel Mar 2018 A1
20180078344 Falkel Mar 2018 A1
20180078347 Falkel Mar 2018 A1
20180092714 Kitching et al. Apr 2018 A1
20180092715 Kitching et al. Apr 2018 A1
20180125610 Carrier, Jr. et al. May 2018 A1
20180158544 Trosien et al. Jun 2018 A1
20180161126 Marshall et al. Jun 2018 A1
20180168781 Kopelman et al. Jun 2018 A1
20180174367 Marom et al. Jun 2018 A1
20180333226 Tsai et al. Nov 2018 A1
20180344431 Kuo et al. Dec 2018 A1
20190008612 Kitching et al. Jan 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190090987 Hung Mar 2019 A1
20190155789 Dorman May 2019 A1
20190231478 Kopelman Aug 2019 A1
20190321135 Wen Oct 2019 A1
20190343602 Wen Nov 2019 A1
20190350680 Chekh et al. Nov 2019 A1
20190358002 Falkel Nov 2019 A1
20190388189 Shivapuja et al. Dec 2019 A1
20200000552 Mednikov et al. Jan 2020 A1
20200047868 Young et al. Feb 2020 A1
20200081413 Georg et al. Mar 2020 A1
20200105028 Gao et al. Apr 2020 A1
20200146775 Wen May 2020 A1
20200170762 Falkel Jun 2020 A1
20200205936 Wen Jul 2020 A1
20200214598 Li et al. Jul 2020 A1
20200214801 Wang et al. Jul 2020 A1
20200253693 Wen Aug 2020 A1
20200316856 Mojdeh et al. Oct 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200357186 Pokotilov et al. Nov 2020 A1
20200360120 Inoue et al. Nov 2020 A1
20200390523 Sato et al. Dec 2020 A1
20210106404 Wen Apr 2021 A1
20210153981 Falkel May 2021 A1
20210186668 Falkel Jun 2021 A1
20210244518 Ryu et al. Aug 2021 A1
20210282899 Wen Sep 2021 A1
20210369417 Wen et al. Dec 2021 A1
20210393376 Wu et al. Dec 2021 A1
20210393385 Parkar et al. Dec 2021 A1
20220054232 Wen et al. Feb 2022 A1
20220265395 Falkel Aug 2022 A1
20220266577 Sharma et al. Aug 2022 A1
20220323182 Lee Oct 2022 A1
20220409338 Cao et al. Dec 2022 A1
20230005593 Raslambekov Jan 2023 A1
20230053766 Cao et al. Feb 2023 A1
20230058890 Kenworthy Feb 2023 A1
20230233288 Wen Jul 2023 A1
20230240808 Schueller et al. Aug 2023 A1
20230320565 Falkel Oct 2023 A1
20230380936 Wen Nov 2023 A1
20230380938 Sharma et al. Nov 2023 A1
20230380939 Lai et al. Nov 2023 A1
20230414324 Wen Dec 2023 A1
20240299134 Wen Sep 2024 A1
Foreign Referenced Citations (53)
Number Date Country
2557573 Jul 2012 CA
1575782 Feb 2005 CN
1997324 Jul 2007 CN
101427256 May 2009 CN
101636122 Jan 2010 CN
102438545 May 2012 CN
105748163 Jul 2016 CN
106580509 Apr 2017 CN
1474062 Apr 2011 EP
2056734 Sep 2015 EP
2957252 Dec 2015 EP
40004866 Aug 2022 HK
2010-528748 Aug 2010 JP
2013-081785 May 2013 JP
2019-013463 Jan 2019 JP
2019-529042 Oct 2019 JP
2019-537033 Dec 2019 JP
2004-46323 Oct 2009 KR
WO 2001082192 Nov 2001 WO
WO 2002047571 Jun 2002 WO
WO 2003063721 Aug 2003 WO
WO 2004028391 Apr 2004 WO
WO 2005086058 Sep 2005 WO
WO 2004098379 Nov 2005 WO
WO 2006050452 May 2006 WO
WO 2006096558 Sep 2006 WO
WO 2008026064 Mar 2008 WO
WO 2008102132 Aug 2008 WO
WO 2008118546 Oct 2008 WO
WO 2008149222 Dec 2008 WO
WO 2009057937 May 2009 WO
WO 2009068892 Jun 2009 WO
WO 2016100577 Jun 2016 WO
WO 2016004415 Jul 2016 WO
WO 2017062207 Apr 2017 WO
WO 2017062208 Apr 2017 WO
WO 2017062209 Apr 2017 WO
WO 2017062210 Apr 2017 WO
WO 2018057622 Mar 2018 WO
WO 2018112273 Jun 2018 WO
WO 2018118200 Jun 2018 WO
WO 2020222905 Nov 2020 WO
WO 2020223384 Nov 2020 WO
WO 2020239429 Dec 2020 WO
WO 2020257724 Dec 2020 WO
WO 2021105878 Jun 2021 WO
WO 2021247145 Dec 2021 WO
WO 2021247950 Dec 2021 WO
WO 2022040671 Feb 2022 WO
WO 2022178514 Aug 2022 WO
WO 2023023417 Feb 2023 WO
WO 2023023418 Feb 2023 WO
WO 2023230460 Nov 2023 WO
Non-Patent Literature Citations (1)
Entry
Kovach, I. V. et al., “Clinic, diagnosis, treatment, prevention, prosthetics various dentofacial anomalies and deformities,” DMA, 2018.
Related Publications (1)
Number Date Country
20180078335 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
62397783 Sep 2016 US