The present disclosure relates to the field of hydrocarbon extraction from subterranean formations and, in particular, to a combined perforating and fracking tool for hydrocarbon well completion and stimulation.
The extraction of hydrocarbons from subterranean formations involves drilling a well and undertaking completion operations to transform the drilled well into a producing one. The completion process typically involves casing the wellbore to ensure that the well does not close in upon itself. The casing is typically steel piping that is cemented into place to line the well. In order to achieve production, the casing and cement must be perforated to allow for the flow of hydrocarbons into the wellbore, but still provide a suitable amount of support and protection for the well.
Stimulation techniques have been developed to further improve the efficiency of hydrocarbon extraction. One such technique is hydraulic fracturing (“fracking”) which involves the injection of highly pressurized fracking fluids through the perforated casing and into the formation. Injection of such fluids creates small fractures/fissures that extend substantially perpendicularly outwardly from the well into the formation, through which distantly-located hydrocarbons can thereby flow into, and thus flow therealong and into the wellbore for pumping to surface.
Generally, perforating and fracking a well have involved separate processes in which a well casing is first perforated followed by the injection of high pressure fracking fluid. Processes for perforating the well casing have included, for example, running a perforation gun into the wellbore to discharge high pressure jets of fluid to penetrate the casing at various locations, or to fire “shaped” explosive charges at various intervals along the wellbore into the sides of the casing to create the perforations. Once the perforations are formed, the fracking fluid is pumped into the well to fracture the formation in the region surrounding the wellbore and preferably in outwardly extending fissures which extend perpendicularly outwardly from the wellbore. Disadvantageously, however, apart from the additional time and expense of a two step discrete process of inserting the perforating gun, perforating, and removing such perforating gun before perforating can occur, such prior art methods are further unsatisfactory, since the problem with prior art devices and methods which separately perforate the well bore with perforating “guns” which use explosive charges, withdrawing the guns, and then inserting the fracking tool, is that the fracking tool does not necessarily align with the created perforations. Such prior art methods are thus for this reason as well unsatisfactory.
Specialized tools have been described to improve the efficiency of such methods. U.S. Pat. No. 7,337,844 describes a perforating and fracturing tool that perforates the well using a jetting sub and a plurality of jets which eject high pressure fluid to perforate the well casing. The device comprises a fluid distributor which may be selectively configured to communicate high pressure fluid to supply the perforating operation or to concurrently or simultaneously communicate the high pressure fluid to supply the fracturing operation. By diverting the fluid flow, perforating and fracturing operations can be achieved while keeping the device in the wellbore.
Other tools have been described which involve mechanically perforating the well casing. U.S. Pat. No. 2,638,801 teaches a casing perforator that is attachable to a drill string in driving connection with at least one rotating drill. The casing perforator is lowered into a pipe or well casing to drill ports into the casing, and fluid under high pressure is then passed down through the drill string through the perforator and out through the drill while the drill is within the ports. Fluid is discharged through the hollow interior of the drill to hydraulic passages out into the surrounding formation. In this way, the drilling of the casing and the fracking of the formation are accomplished consecutively while maintaining the perforator in one position.
Similarly, Russian Patent No. 2069741 describes a device for mechanical perforation of wells in which a pair of hydraulically actuated puncturing units are caused to extend radially outwardly from the tool to pierce the casing. Fluid jets built within the puncturing units inject fluid through these puncturing units and into the formation to open channels therein. In this way, the device can mechanically puncture the casing while simultaneously opening channels in the formation while maintaining the device in one position.
International Patent Publication No. WO 2012/098377 describes a perforating tool that utilizes a plurality of pistons that cooperatively operate to outwardly deploy a cutter block along tracks to enable large perforations to be cut into the well casing. Once the perforations are made, the cutter block is inwardly retracted to allow the work string to be lowered in order to position a packer apparatus below the perforated section of the well casing. With the work string in this position, high pressure pumping of hydraulic fracturing fluid can be commenced to conduct a hydraulic fracturing operation.
This background information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
An object of the present invention to provide a tool capable of providing the combined functions of both perforating and fracking of a wellbore, to avoid having to “trip-out” a perforating tool from a well in order to then be able to frack a well.
In a preferred embodiment, the tool has means, as described below, to allow lowering of the tool within the well when the well has fluid therein, and prevent passage uphole of downhole fluid when the tool is in the wellbore, where such downhole fluid typically contains sand. Such mechanisms of the tool of the present invention avoids and/or reduces the tendency of the tool to become “sanded in” within the wellbore and not able to be withdrawn therefrom after various perforating and fracking operations within the wellbore at various locations therein have been completed.
In one broad aspect of the tool of the present invention, a combined perforating and fracking tool for perforating a hydrocarbon well casing disposed in a formation, and for subsequently fracturing the formation while maintaining the tool in situ, is provided, the tool comprising:
(a) at least one cylinder arranged to be disposed in a well casing and adapted at an uphole end to receive fluid, said cylinder comprising a cooperating piston;
(b) a punch assembly disposed at a downhole end of said cylinder and co-operating piston, the punch assembly comprising a punch comprising a pointed piercing member for perforating the casing, wherein the punch assembly is actuated by the fluid exerting a pressure on the cooperating piston, and the cooperating piston exerting a force which causes outward extension of the pointed piercing member to perforate the casing;
(c) a fluid injection port disposed at an upper end of the tool to allow fluid to be injected into the formation through the perforations created in the well casing by the tool; and
(d) at least one sealing member disposed proximate an upper uphole end of the cylinder, downhole of said fluid injection port, adapted to prevent fracking fluid from travelling, when such tool is in a well casing, outside the cylinder in a direction downhole;
wherein fluid may be provided in a bore defined along the longitudinal axis of the cylinder; and
whereby a force is generated by fluid under pressure travelling in said bore and acting on the cooperating piston which then actuates the punch assembly to actuate, in a radially-outwardly protruding manner, said pointed piercing member to perforate the casing.
In a further refinement, the tool may comprise a plurality of sequential cylinders adapted to be disposed in a well casing and adapted at an uphole end to receive fluid, each of said cylinders comprising a cooperating piston, wherein each piston defines a bore along its longitudinal axis and an associated port for conducting fluid flow from the bore into each cylinder.
Accordingly, in a further preferred embodiment, the invention comprises a combined perforating and fracking tool for perforating a well casing disposed in an underground formation and for subsequently fracturing the formation while maintaining the tool in situ, the tool comprising:
(a) at least a pair of cylinders arranged to be disposed in a well casing and adapted at an uphole end to receive fluid, each of said cylinders comprising a cooperating piston, wherein each piston defines a bore along its longitudinal axis and an associated port for conducting fluid flow from the bore into each cylinder;
(b) a punch assembly disposed at a downhole end of the cylinders, the punch assembly comprising a punch for perforating the casing, wherein the punch assembly is actuated by a piston which outwardly extends a punch to perforate the casing;
(c) a fluid injection port disposed at the uphole end of the tool, and a valve member, to allow fluid to be diverted from the cylinders and injected into the formation through the perforations created in the well casing; and
(d) at least a pair of sealing members respectively disposed respectively at an upper and lower end of the tool, forming a seal between the casing and the tool such that fluid can be diverted through the fluid injection port for fracturing the formation;
wherein the cylinders remain isolated from the injected fluid flowing between the tool and well casing during fracturing; and
wherein during a perforation step fluid flowing through a bore defined along the longitudinal axis of tool sequentially fills each of the cylinders whereby a magnification of hydraulic force is generated by the cooperating pistons to actuate the punch.
In accordance with another aspect of the present invention, there is described a combined perforating and fracking tool for perforating a hydrocarbon well casing disposed in a formation, and for subsequently fracturing the formation while maintaining the tool in situ, the tool comprising:
(a) a series of connected cylinders arranged to be disposed in a well casing and adapted at an uphole end to receive fluid, the series of connected cylinders comprising:
(b) a punch assembly disposed at a downhole end of the series of connected cylinders, the punch assembly comprising a pointed punch member for perforating the casing, wherein the punch assembly is actuated by the first and second pistons to outwardly extend the punch member to perforate the casing;
(c) a fluid injection port disposed at the uphole end of the series of connected cylinders to allow fluid to be diverted from the series of connected cylinders and injected into the formation through the perforations created in the well casing; and
(d) at least one sealing member disposed at each end of the series of connected cylinders, each sealing member forming a seal between the casing and the tool such that fluid can be diverted through the fluid injection port for fracturing the formation, and wherein the series of cylinders remains isolated from the injected fluid flowing between the tool and well casing;
wherein fluid flowing through the second cylinder results in a force supplied by the associated piston to actuate indirectly or directly the punch assembly.
In a particular embodiment of the above aspect the valve assembly (and in particular the first cylinder thereof) comprises a slidable sleeve having a fluid passageway, and further preferentially a “J” type sleeve to allow a plurality of up and down movements of the tool prior to actuating the slidable sleeve in the manner set out below, said slidable sleeve being slidable along a mandrel on the tool at a location on the tool having radial aperture therein, said slidable sleeve on its exterior having a friction member to consistently frictionally engage the casing, wherein when the tool is lowered to a desired position downhole, upward movement of the tool thereafter and resultant frictional engagement of said friction member with said casing causes relative movement of said slidable sleeve relative to said mandrel and thus repositioning of said passageway therein so as to then become in fluid communication with said radial aperture so as to cause such valve assembly to be in an open position and allow supply of fluid to downstream pistons to thereby allow actuation of said punch.
In such above embodiment the sealing members disposed at each of the tool (but at the upper end of the tool the associated sealing member being disposed below the fluid injection port) also, on either end of the tool, advantageously prevent fluid (and any sand entrapped therein) being introduced in the wellbore area between the tool and the casing which could otherwise cause the tool to become “sanded in”. Specifically, such sealing members, preferably cup seals, are positioned and arranged on the tool so as to allow the upper seal to cause fracking fluid to flow into the formation via the created perforations in the casing during fracking and prevent such injected fluid from flowing past the tool downhole, and the lowermost cup seal prevents downhole fluids from flowing uphole past the tool during fracking and perforation operations to thereby avoid possibly entraining sand in the region of the wellbore between the tool and the wellbore, and thus the “sanding in” of the tool within the wellbore.
A selectively-operable bypass means is provided on the tool, however, to allow fluid in the wellbore which may come from perforations and fracking of the wellbore to bypass the downhole seal member so that such fluid may be displaced uphole during lowering of the tool into the wellbore. Such bypass means allows lowering of the tool in the wellbore where such lowering would otherwise be prevented by existing presence of fluid in the wellbore.
In accordance with a further aspect of the present invention, there is described a method for perforating a well casing disposed in a formation and for subsequently fracturing the formation while maintaining the tool in situ using a tool of any of the configurations described above. In accordance with such further aspect/method, such method comprises the steps of:
(a) supplying fluid to the combined perforating and fracking tool in any of the embodiments described above when such tool is disposed within a well casing, activating a valve therein so as to provide fluid flow through the series of connected cylinders and associated pistons whereby a combined force is generated by such pistons to actuate the punch assembly to form created perforations in the well casing;
(b) lowering the combined perforating and fracking tool to position the fluid injection port thereon adjacent to the created perforations in the well casing and to position the at least one sealing member downhole of the created perforations in the well casing; and
(c) pumping fluid through the fluid injection port and created perforations to fracture the formation.
These and other features of the invention will become more apparent in the following detailed description in which reference is made to the appended drawings.
a is a side exterior view of a first embodiment of the combined perforating and fracking tool of the present invention;
b is a longitudinal cross-sectional view of the combined perforating and fracking tool along the plane of the arrows shown in
a is a close-up view of the fluid injection assembly (region “O”) of the combined perforating and fracking tool shown in
b is a longitudinal cross-sectional view of the fluid injection assembly shown in
a is an enlarged view of the activation assembly (region “C”) of the combined perforating and fracking tool shown in
b is an enlarged view of the lower end of the activation assembly (region “D”) shown in
a is an enlarged view of the upper end (region “E”) of the magnifying assembly of the combined perforating and fracking tool shown in
b is an enlarged view of the lower end (region “F”) of the magnifying assembly shown in
a is an enlarged view of one embodiment of the punching assembly (region “G”) of the combined perforating and fracking tool shown in
b is an enlarged exterior view of the punch assembly shown in
a is an enlarged view of region “X” of
b is a similar enlarged view of region “X” of
a is an enlarged perspective view of one component of the punch assembly shown in
b is an enlarged perspective sectional view of another component of the punch assembly shown in
c is an enlarged perspective sectional view of another component of the punch assembly shown in
d is an exploded perspective view of the base member of
a is an enlarged cross sectional view of a portion of the combined perforating and fracking tool shown in
b is an enlarged cross sectional view of a portion of the combined perforating and fracking tool shown in
a is a cross sectional view of a portion “S” of the combined perforating and fracking tool shown in
b is a cross sectional view of a portion “S” of the combined perforating and fracking tool shown in
a is an enlarged view of region “T” of
b is an enlarged view of region “U of
a is an enlarged view of region “B” of
b is an enlarged view of region “R” of
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
As used herein, the term “hydrocarbon formation”, “subterranean formation”, or “formation”, may be used interchangeably to refer to subterranean formations that are explored and exploited for hydrocarbon resources through drilling and extraction techniques.
As used herein, the term “about” refers to an approximately +/−10% variation from a given value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically referred to.
Completing a hydrocarbon well for production typically involves perforating the well casing to enable hydraulic fracturing techniques (“fracking”) to be used to facilitate the production the hydrocarbons flowing into the wellbore. Typically, perforating the well casing and fracking the formation are separately carried out using a variety of known techniques often requiring multiple tools and processes to be used. Thus, well completion can become inefficient and cumbersome to achieve.
The embodiments of the present disclosure provide in a single tool both perforating and fracking operability. By combining both functionalities in a single tool, hydrocarbon well completion can be achieved in a more efficient, reliable, and repeatable manner.
Reference is to be had to
The combined perforating and fracking tool 10 of the present invention combines a fracking assembly 160, activation assembly 165, force-magnifying assembly 170, and punch assembly/mechanism 175 comprising mechanical piercing means 130 for piercing/perforating a casing of a well, all of which synergistically operate together to allow the single tool 10 to perforate and thereafter frack a well to thereby achieve well completion.
Referring to
At the uphole end 5 of the tool 10, the activation assembly 165 is comprised of a valve assembly 69 that operates to control activation of the perforating function of the tool 10. In one embodiment of valve assembly 69 shown in
The biasing mechanism 90 in the preferred embodiment comprises a plurality of circular washers 90 supported by a spring mandrel 100 (
As shown in
Total Hydraulic force=P*A1
where A1 refers to the area of the piston 110 within the magnifying assembly 170, and P refers to the pressure supplied to such piston 110 of area A1.
Additional pistons add to the force ultimately be applied to actuate the punch assembly. For example, additional third piston 120 will have not only the force exerted by the pressure on A2 (see
Specifically, it is contemplated that in certain embodiments additional magnifying piston assemblies may be added to the tool by inserting additional cylinders comprising such assemblies. In this way, the total force may be further increased which is applied to the perforating members. Where an additional (third) piston 120 of cross-sectional area A2 is added, in such instance the total hydraulic magnification of force F will increase as follows:
F=P*A1+P*A2
Using such above principle further successive pistons and cylinders may be added to further increase the force which is acting on pointed member end 130, if required.
Other means of increasing the force exerted by the pointed member end 150 of third piston 120 to cause extension of pointed members 130 and thereby perforation of the well casing will now occur to those of skill in the art of hydraulics.
For example, hydraulic arrangements where successive pairs of coupled pistons 1-2 and 3-4, each piston of each pair being of alternating larger and smaller respective associated cross-sectional areas A1, A2, A3, A4, where for example A1>A2, A3>A2, and A3>A4, could alternatively be used to obtain further successive increases of hydraulic pressures, where P1<P2<P3, and where P2=P1×A1/A2 and P3=P2×A3/A4. Resulting magnified pressure P3 which results from such arrangement of coupled pistons and respective cross-sectional areas produces the following magnified total force on last piston of area A5 (ie on last member 120):
F=P3×A5
or stated otherwise:
F=[P1×A1/A2×A3/A4]×A5
Referring to
In preferred embodiments, the pair of pointed perforating members 130 are connected by a biasing assembly, which in one embodiment comprises a coupling member 135 and base member 140 to inwardly retract the pair of perforating punch members 130 once the casing has been perforated, the hydraulic pressure reduced, and the punch members 130 thereafter desired to be retracted to allow the tool to be repositioned to allow perforation of the casing at another desired location.
Alternatively, instead of using a coupling member 135 and a base member 140 to bias the perforating member 130 within the tool 10 as best shown in
For example, a pair of resiliently-biased helical springs (not shown) could alternatively be used to bias the perforating members 130 inwardly when not in the actuated position, to thereby allow displacement of the tool 10 uphole or downhole to a new fracking or perforating location after the perforations have been created in the casing.
When the perforation operation has been completed at one location along the wellbore, in one embodiment of the method of the present invention the tool 10 is simply lowered further downhole in the well. Slidable member 205 (see
Referring to
The fracking assembly 160 located at the uphole end 5 of the tool 10, is spaced apart from the punch assembly and punch port 30 located at the downhole end 15 of the tool 10, at a fixed and known distance. Accordingly, when the perforation operation has been completed, the tool 10 can simply be lowered into the well by the fixed distance to position the fracking assembly, and more specifically the fracking fluid injection ports 20, at the perforations made in the casing. In this way, the perforated sections of the casing can be located easily without the need for additional equipment such as cameras or sensors, ensuring accuracy and repeatability of the operation. The length of the tool 10, according to certain embodiments, can be adjusted to the desired operation. In one embodiment, the tool has a length of between about 2,500 to about 3,000 mm. In a further embodiment, the tool has a length of between about 2,600 to about 2,900 mm. In another embodiment, the tool has a length of between about 2,700 to about 2,800 mm.
In preferred embodiments, the tool 10 comprises at least one sealing member 40 disposed proximate an upper region of the tool 10, and a further sealing member 50 at an opposite downhole end of the tool 10 (
As shown, one sealing member 40 is located at the uphole end 5 of the tool 10, downhole of the fluid injection port 20, with the flared end oriented uphole (ref.
In certain embodiments, an additional third sealing member 45 (ref.
In one embodiment of the method of using a combined fracking and perforating tool 10 of the present invention, the process of fracking and perforating may commence from the top of the wellbore, and the tool 10 is lowered downhole an incremental desired distance, the punch members, namely the pointed perforating members 130 actuated to perforate the casing, and then tool 10 is lowered further downhole a known distance, namely the distance on the tool 10 between the perforating members and the frack fluid injection port 20, so as to position the frack port 20 over the created perforation in the well casing. Such process is successively repeated until the tool perforates and fracks along the entire length of the wellbore until the tool reaches the bottom of the wellbore, wherein the tool is then withdrawn from the well.
In the above method when the tool 10 reaches the bottom of the wellbore the perforations and fracks in the wellbore are all above the tool 10 with direct access to the formation. Ingress of fluid into the wellbore above the tool 10 may contain sand, and with the result with the possible ingress of sand tool 10 could become “sanded in”, and thus be not able to be removed from the well.
Accordingly, in an alternative embodiment of the method of using the combined fracking and perforating tool 10 of the present invention, the process of fracking and perforating may instead commence close to the bottom of the wellbore. In such method, the tool 10 is first lowered to the bottom of the wellbore, a slight distance from the bottom of the wellbore. The perforating members 130 are actuated to perforate the casing in such location. Thereafter, tool 10 is lowered further downhole a short known distance, namely the distance on the tool 10 between the perforating members 130 and the frack port 20, so as to position the frack port 20 over the created perforation in the well casing, and frack fluid supplied to frack port 20 to frack the formation at such location along the wellbore via the created perforations. Thereafter, the tool 10 is raised uphole to a desired further location for perforating and fracking, and the perforating members 130 again actuated to perforate in such location. Tool 10 again lowered the same short known distance to position the frack ports 20 over the newly-created additional perforations in the well casing, and frack fluid supplied to frack port 20 to frack the formation at such new location. The tool 10 is then further moved uphole an incremental distance, and the process repeated until the entirety of wellbore has been perforated and fracked, at which point the tool 10, now proximate the top of the wellbore, is then removed from the wellbore. In such manner, all communication between the wellbore and the formation is then below the tool 10, with the result that any potential “sanding in” problems may be avoided.
As discussed above,
Notably, however, other types of valve assemblies 69 for selectively, when desired, allowing pressurized fluid into bore 60 to actuate downhole pistons such as 110, and 120 to actuate punch mechanism 175, are possible.
Below described are three (3) further types of valve assemblies 69.
Specifically, one such other embodiment of valve assembly 69 which may be incorporated in the tool 10 of the present invention is best shown in
Another embodiment of valve assembly 69 which may be incorporated in the tool 10 of the present invention is best shown in
Second ball valve 69″ in effect acts as a redundancy, to ensure any leakage from ball valve 69′ does not inadvertently actuate punch assembly 175.
Upon supply of fluid in the direction of the “arrow” shown in
Thereafter, continued supply of pressurized fluid to second ball valve 69″, as shown in
A third embodiment 69′″ of the valve assembly 69 for the tool 10 of the present invention is shown in
A plurality of flexible curvilinear spring elements 436 are fixed about an exterior of the valve assembly 69″, which spring elements 436 serve, when the tool is inserted in the wellbore, to frictionally engage the interior of the casing of the wellbore. Milled within the interior of sliding sleeve 400 is a slot 412, which like sliding sleeve 400, is thus laterally moveable along exterior surface of mandrel 438 and thence positionable over radial ports 404 and 406 to allow fluid communication therebetween.
In operation, due to frictional engagement of spring elements 436 with exterior of the wellbore casing, upon lowering of the tool 10 downhole within the wellbore, sliding sleeve 400 of valve assembly 69′″ will be moved so that slot 412 in sliding sleeve 400 is positioned over radial ports 404, 406, thus allowing fluid communication therebetween, and in particular pressurize fluid coming from uphole to be provided to bore 60. When tool 10 is positioned in the wellbore at a desired location for perforating the casing therein, high pressure fluid may then be supplied to the tool 10 and due to fluid communication permitted between ports 404 and 406 such high pressure fluid is subsequently then supplied to pistons 110, 120 via bore 60″ as shown in
Thereafter, flow of high pressure fluid to the tool 10 is stopped, and the tool 10 further lowered so that the injection ports 20 thereon are positioned a known short distance below the created perforations. Thereafter, tool 10 is raised the known distance to align the injection ports 20 with the created perforations, and in so raising tool 10 within the wellbore frictional engagement of the spring members 436 thereof with the interior of the wellbore casing causes a slidable repositioning of sliding sleeve 400, wherein slot 412 no longer is positioned over radial ports 404, 406 and fluid communication between them is halted, as shown in
The tool 10 may then be moved uphole to proximate a new (uphole) location for perforating the casing, and then lowered a slight distance to again reposition the sliding sleeve 400 and slot 412 therein over ports 404, 406 to re-establish fluid communication between ports 404 and 406, and the process as above repeated to conduct further perforation and fracking operations until an entire length of formation is fracked, wherein the tool 10 can then be removed from the wellbore.
a shows one embodiment of the upper seal member comprising a pair of cup seals 40, 45, which are positioned with the cup portion of each seal member 40, 45 thereof facing uphole, so as to permit biased thereof into sealing contact with the casing when pressurized fluid attempts to enter between the tool 10 and well casing in a region between the upper and lower ends of the tool 10 between the sealing members 40, 45 and 50.
b shows another embodiment of the upper seal member comprising simply a single cup seal 40, but which again is positioned with the cup portion of seal member 40 thereof facing uphole so as to permit biased thereof into sealing contact with the casing when pressurized fluid attempts to enter between the tool 10 and well casing in a region between the upper and lower ends of the tool 10 between the sealing members 40 and 50.
Such bypass assembly on tool 10 provides for a sliding cylinder 205, positioned on mandrel 275, further having arcuate flexible spring members 436 thereon which frictionally engage the interior of the wellbore. A cup seal 50 is provided, with the cup positioned downhole to thereby permit the cup seal 50 to be biased into sealing contact with the casing when pressurized fluid attempts to enter a region between the tool 10 and well casing in a region between the upper and lower ends of the tool 10 between the sealing members 40 and 50.
In operation, when tool 10 is lowered downhole in the wellbore, sliding cylinder 205, positioned on mandrel 275, due to frictional engagement of arcuate flexible spring members 436 thereon which frictionally engage the interior of the wellbore, is caused to move uphole relative to mandrel 275, thereby opening port 251 and allowing downhole fluid which is being displaced by the lowering of the tool 10, to bypass cup seal 50 via bore 500 and pass uphole in the region intermediate the tool 10 and the wellbore, as shown in
Raising of the tool 10 in the wellbore, due to due to frictional engagement of arcuate flexible spring members 436 thereon which frictionally engage the interior of the wellbore, causes slidable cylinder 205 to be slidably repositioned on tool 10, wherein cylinder 205 then covers, and thereby closes port 251, as shown in
The above disclosure represents embodiments of the invention recited in the claims. In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the embodiments of the invention. However, it will be apparent that these and other specific details are not required to be specified herein in order for a person of skill in the art to practice the invention.
The scope of the claims should not be limited by the preferred embodiments set forth in the foregoing examples, but should be given the broadest interpretation consistent with the description as a whole, and the claims are not to be limited to the preferred or exemplified embodiments of the invention.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows: