This application is based upon and claims the benefit of priority from Japanese Patent Applications No. 2021-062007 filed on Mar. 31, 2021 and No. 2021-062219 filed on Mar. 31, 2021, the contents of which are incorporated herein by reference.
The present invention relates to a combined power system integrally constituted by a rotary electric machine system and an internal combustion engine.
In JP 2005-106029 A, a combined power system is disclosed in which a rotary electric machine and a gas turbine engine, which is one type of internal combustion engine, are combined together and integrated. In this case, a rotating shaft of the rotor constituting the rotary electric machine and an output shaft of the gas turbine engine are connected on the same axial line, and both shafts thereof rotate together integrally. In this instance, as shown in FIG. 1 of JP 2005-106029 A, the rotating shaft is capable of being rotatably supported via a journal (bearing) with respect to a rotary electric machine housing in which a stator is accommodated.
For example, a combined power system is mounted on a flying body such as a multicopter or the like, together with a battery. The battery and gas turbine engine are used as a drive source of a motor constituting a lift generating device such as a prop, a ducted fan, or the like. Meanwhile, a rotary electric machine supplies electric power that is generated by the rotary electric machine to the battery, for example. Consequently, the battery is charged.
Incidentally, in the rotary electric machine, there are provided a rotation parameter detector for detecting rotation parameters such as a rotational speed, an angle of rotation, and an RPM or the like of the rotating shaft. When such a rotation parameter detector is heated excessively, detection accuracy is lowered. Thus, in JP 2016-059133 A, a configuration is proposed to cool the rotation parameter detector (rotation sensor).
For example, when a rotation parameter detector is a resolver, a resolver rotor is externally fitted onto the rotating shaft. In this configuration, if a portion of the rotating shaft where the resolver rotor is externally fitted is placed deep inside of a rotary electric machine housing, when maintenance is to be conducted on the resolver, it is necessary to remove a bearing from the rotary electric machine housing first, and then pull out the rotating shaft from the rotary electric machine housing. That is, in this case, a complicated disassembling operation is needed. Also, such a disassembling operation requires an extra-long time.
Further, in a flying object, a space for mounting equipment or facilities is limited. From such a view point, there is a demand to reduce the size and scale of a combined power system as possible.
A principal object of the present invention is to provide a combined power system that includes a rotary electric machine system which is capable of accurately detecting a rotation parameter of a rotating shaft.
Another object of the present invention is to provide a combined power system the size and scale of which can be reduced.
According to an aspect of the present invention, a combined power system is provided. The combined power system includes:
According to the present invention, the rotating shaft of the rotary electric machine includes the outer side shaft and the inner side shaft. According to this configuration, for example, the rotation parameter detector can be attached to the inner side shaft that projects out from the outer side shaft. In this case, since the rotation parameter detector is provided at a position exposed from the outer side shaft, operations such as removal of a bearing are rendered unnecessary when maintenance is conducted on the rotation parameter detector. If necessary, it is adequate that the inner side shaft is merely removed from the outer side shaft. Accordingly, maintenance can be conducted easily. Also, a time required for operation is reduced.
According to another aspect of the present invention, a combined power system is provided. The combined power system includes:
According to the present invention, the female threaded portion is provided on the rotating shaft of the rotary electric machine system, and the male threaded portion is provided on the output shaft of the gas turbine engine. The male threaded portion is screw-engaged with the female threaded portion. Thus, the diameter of the output shaft including the male threaded portion is smaller than the diameter of the rotating shaft including the female threaded portion. Thus, the output shaft is made small. Moreover, since the male threaded portion is inserted into the female threaded portion, the length of the rotating shaft and the output shaft after being connected to each other is smaller than the total length of both of the rotating shaft and the output shaft. Therefore, the length of the combined power system in its axial direction can be reduced.
Due to the above reasons, the combined power system can be made small in scale. Therefore, even when an object such as a flying object on which the combined power system is mounted has a limitation in its mounting space, the freedom in the arrangement layout of the equipment or facilities can be increased.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings, in which a preferred embodiment of the present invention is shown by way of illustrative example.
A preferred embodiment of a combined power system according to the present invention will be presented and described in detail below with reference to the accompanying drawings. In should be noted that, in the following description, although the terms “left,” “right,” “down,” and “up” designate the leftward, rightward, downward, and upward directions shown in
Stated otherwise, the rotary electric machine system 10 and the gas turbine engine 200 are arranged in parallel on the same axis. The combined power system 300 which is configured in such a manner can be used, for example, as a power source for propulsion in a flying object such as a drone, or in a ship, an automobile, or the like. Alternatively, the combined power system 300 can be used as a power source for an auxiliary power source in an aircraft, a ship, a building, or the like. When mounted on a flying body such as a multicopter or the like, the combined power system 300 functions as a power drive source to rotationally energize a motor constituting a lift generating device such as a prop, a ducted fan, or the like. Further, when mounted on a ship, the combined power system 300 functions as a rotational force generating device for a screw, and when mounted on an automobile, the combined power system 300 functions as a power drive source for rotationally urging a motor that constitutes an engine. In addition, the combined power system 300 can be applied to gas turbine electrical power generating facilities. Moreover, in the present embodiment, as will be described later, the gas turbine engine 200 serves in a dual manner as a gas supply source for supplying compressed air (gas).
First, a description will be given concerning the rotary electric machine system 10.
The main housing 16 has a substantially cylindrical shape in which a thick side wall extends along a lateral (left-right) direction. A cooling jacket 21 through which a cooling medium flows is formed in the inner portion of the side wall. As a specific example of the cooling medium, there may be cited cooling water, and in this case, the cooling jacket 21 is a water jacket. Further, on an outer surface (an outer side wall) of the side wall of the main housing 16, in the vicinity of a left end thereof, a terminal casing 22 and a measuring device casing 24 are disposed integrally with the main housing 16.
Furthermore, on an outer side wall of the main housing 16, there are provided hollow pipe members 158a to 158c that extend along a longitudinal direction (the left-right direction in
The rotary electric machine 12 includes a rotor 30, and a stator 32 that surrounds an outer circumferential side of the rotor 30.
The rotor 30 includes a rotating shaft 40 configured such that an inner side shaft 34 is capable of being removably inserted into a hollow cylindrical outer side shaft 36. More specifically, the outer side shaft 36 is a hollow body having a substantially cylindrical shape, and both ends of which are open ends. That is, the outer side shaft 36 includes a left opening end 42a (see
On the other hand, the inner side shaft 34 is longer in length than the outer side shaft 36. The inner side shaft 34 includes a cylindrical column portion 44 a diameter of which is minimal, a left end part 46a (see
As shown in detail in
A resolver rotor 56 is mounted on the flange portion 50, together with a small cap nut 58 being screwed-engaged with the first external threaded portion 48. The resolver rotor 56 is positioned and fixed to the flange portion 50 by the right end thereof being held back by the stopper portion 52, together with the left end being pressed by the small cap nut 58. Further, a large cap nut 60 is screwed-engaged with the second external threaded portion 54. A skirt portion 61 of the large cap nut 60 covers the outer circumferential wall of the left opening end 42a of the outer side shaft 36. Consequently, the left end part 46a of the inner side shaft 34 is constrained by the left opening end 42a of the outer side shaft 36. Both the first external threaded portion 48 and the second external threaded portion 54 are so-called reverse threads. Accordingly, the small cap nut 58 and the large cap nut 60 are rotated counterclockwise at a time of being screw-engaged. Further, by portions of the threads of the small cap nut 58 and the large cap nut 60 being deformed, it is possible to prevent the small cap nut 58 and the large cap nut 60 from being loosened any more than at the time of screw-engagement thereof.
As shown in
The second sub-housing 20, which exhibits a substantially disk shape, is connected via non-illustrated bolts to the main housing 16. A center of the second sub-housing 20 forms a thick-walled cylindrical portion, and a large-diameter insertion hole 68 is formed in such a cylindrical portion. A second bearing 94 (described later) is inserted into the insertion hole 68. The second bearing 94 is sandwiched between and is positioned and fixed by an inner stopper 70 and an outer stopper 71.
As shown in
Further, as shown in
As shown in
Further, a diameter (opening diameter) of a through hole 84 on a top portion side is set to be greater than an outer diameter of the outer stopper 71. Therefore, a right end of the outer stopper 71 which has entered into the through hole 84 does not interfere with an inner wall of the through hole 84. Stated otherwise, a gap is formed between an outer circumferential wall of the outer stopper 71 and the inner wall of the through hole 84.
A left end of an output shaft 250 is inserted into the shaft connecting hole 62 that is formed in the inner side shaft 34. The output shaft 250 is coupled to the inner side shaft 34 by means of screw-engagement, as will be described later. Moreover, the output shaft 250 supports a compressor wheel 230 and a turbine wheel 232 that constitute the gas turbine engine 200 (see
As shown in
A left end (first end part) of the rotating shaft 40 is rotatably supported in the first sub-housing 18 via a first bearing 92. Further, a right end (second end part) of the rotating shaft 40 is rotatably supported in the second sub-housing 20 via the second bearing 94. In this instance, as shown in
More specifically, the first sub-housing 18 includes a columnar protrusion 96 that protrudes toward the main housing 16 and exhibits a substantially cylindrical shape, and a first shaft insertion hole 98 is formed in such a columnar protrusion 96. The first bearing 92 is disposed inside the first shaft insertion hole 98.
A leftward opening of the first shaft insertion hole 98 is closed by a disk-shaped member 102 in which a second shaft insertion hole 100 connected to the first shaft insertion hole 98 is formed. Although detailed illustration thereof is omitted, an outer circumferential wall of the left opening end 42a of the outer side shaft 36 and the respective inner circumferential walls of the first shaft insertion hole 98 and the second shaft insertion hole 100 are slightly separated away from each other. Further, the skirt portion 61 of the large cap nut 60 is slightly separated away from the left end surface of the disk-shaped member 102.
A distal end of the left end part of the rotating shaft 40 is passed through an inner hole of the first bearing 92, is passed through the first shaft insertion hole 98 and the second shaft insertion hole 100, and is exposed in a protruding manner to the exterior of the first sub-housing 18. Hereinafter, a portion of the rotating shaft 40 that protrudes from the left end of the first bearing 92 is referred to as a protruding distal end, and is designated by the reference numeral 104. On the protruding distal end 104, within the left end part 46a of the inner side shaft 34, there are included the first external threaded portion 48, the flange portion 50, the stopper portion 52, and the second external threaded portion 54 (see
As shown in
In the present embodiment, the first bearing 92 and the second bearing 94 are so-called jet lubrication type bearings, which are lubricated and cooled by the lubricating oil that is supplied in the form of a jet flow. The type of the bearings is not particularly limited to this feature, and the bearings may be of a circulation lubrication type, or a spray lubrication type in which an oil mist is sprayed thereon. Lubricated bearings of this type are well known, and accordingly, detailed illustration and description thereof will be omitted.
The stator 32 that constitutes the rotary electric machine 12 together with the above-described rotor 30 includes an electromagnetic coil 116, and a plurality of insulating base members 118 around which the electromagnetic coil 116 is wound. Among these elements, the electromagnetic coil 116 includes three types, namely, a U-phase coil, a V-phase coil, and a W-phase coil. More specifically, in the case that the rotary electric machine 12 is used as a generator, the rotary electric machine 12 is a so-called three-phase power supply. Moreover, the plurality of insulating base members 118 are arranged in an annular shape, whereby an inner hole is formed in the stator 32.
The stator 32 is accommodated in the accommodation chamber 114 that is formed in the main housing 16. In this instance, the second sub-housing 20 fulfills a role as a stator holder. More specifically, the insulating base members 118 that constitute the stator 32 are engaged with an annular recessed portion 122 formed in the second sub-housing 20. Due to such engagement, the stator 32 is positioned and fixed in place. Furthermore, the columnar protrusion 96 enters into the inner hole of the stator 32 from the leftward opening thereof.
Although detailed illustration thereof is omitted, inner walls of the accommodation chamber 114 and the electromagnetic coil 116 are slightly separated away from each other. Due to such separation, the main housing 16 and the electromagnetic coil 116 are electrically isolated from each other.
Moreover, by slightly separating both members away from each other, clearances are formed between the outer circumferential wall of the columnar protrusion 96 and the insulating base members 118, and between the outer walls of the permanent magnets 88 and the inner wall of the electromagnetic coil 116. As will be discussed later, these clearances become a portion of the flow passage through which the curtain air, which is a gas, flows.
As shown in
The resolver holder 26 which retains a resolver stator 130 is provided on the annular convex portion 124. The resolver holder 26 includes a flange-shaped stopper 132 that protrudes outwardly in a diametrical direction. The flange-shaped stopper 132 is set to have a greater diameter than the inner diameter of the annular convex portion 124, and accordingly, the resolver holder 26 is positioned by the flange-shaped stopper 132 coming into abutment against the annular convex portion 124. In this state, the resolver holder 26 is connected to the first sub-housing 18, for example, via a mounting bolt or the like (not shown).
On the resolver holder 26, at a boundary with the flange-shaped stopper 132, there are provided a leftward facing small cylindrical portion 134, and a rightward facing large cylindrical portion 136 having a larger diameter in comparison with the small cylindrical portion 134. A retaining hole 138 is formed in the resolver holder 26, and the resolver stator 130 is retained by a right end thereof being fitted into the retaining hole 138. When the large cylindrical portion 136 enters into the hollow recessed portion 126 together with the flange shaped stopper 132 abutting against the annular convex portion 124, the resolver rotor 56, which is retained by the flange portion 50 of the left end part 46a of the inner side shaft 34, is positioned in the inner hole of the resolver stator 130. These elements including the resolver stator 130 and the resolver rotor 56 constitute the resolver 140 which serves as a rotation parameter detector. According to the present embodiment, a case is exemplified in which an angle of rotation is detected by the resolver 140.
A signal receiver connector 144 is fitted into a fitting hole 142 formed in the flange-shaped stopper 132. The resolver stator 130 and the signal receiver connector 144 are electrically connected to each other via a signal line 146. A receiver-side connector of a signal receiver (not shown), which receives signals emitted by the resolver 140, is inserted onto the signal receiver connector 144. The resolver 140 and a signal receiver are electrically connected via the signal receiver connector 144 and the receiver-side connector.
A plurality of tab portions 148 (which are omitted from illustration in
As noted previously, the terminal casing 22 and the measuring device casing 24 are integrally provided on a side wall in close proximity to the left end of the main housing 16. Among these elements, a thermistor 152, which is a temperature measuring device, is accommodated in the measuring device casing 24. Although not illustrated in particular, measurement terminals of the thermistor 152 are drawn out from the measuring device casing 24 and are connected to the electromagnetic coil 116. From the measuring device casing 24, a harness 154 which is connected to the thermistor 152 is drawn out to the exterior.
In the terminal casing 22 which is adjacent to the measuring device casing 24, there are accommodated a U-phase terminal 156a, a V-phase terminal 156b, and a W-phase terminal 156c that are electrically connected to ends of a U-phase coil, a V-phase coil, and a W-phase coil. Stated otherwise, the terminal casing 22 is a connector for connecting an external device to which there is connected a battery 170 (refer to
As shown in
In this instance, right ends of the hollow pipe members 158a to 158c individually overlap with the three downstream side communication holes 80a to 80c (see
The curtain air flows on an upstream side through the collection flow path 74, and flows on a downstream side through the measuring device casing 24 and the terminal casing 22. In this manner, the hollow pipe members 158a to 158c are portions of the compressed air flow passages through which the curtain air flows. Moreover, the curtain air is a portion of the compressed air that is supplied from the gas turbine engine 200.
As shown in
As shown in
The conversion circuit 174 is constituted to include a power module 182, which has a function of converting an alternating current generated in the electromagnetic coil 116 into a direct current. Further, the capacitor 176 temporarily stores as an electric charge the direct current converted by the conversion circuit 174. Moreover, the conversion circuit 174 also has a function of converting the direct current delivered thereto from the battery 170 into an alternating current. In this case, the capacitor 176 temporarily stores as an electric charge the direct current delivered from the battery 170 toward the electromagnetic coil 116. The control circuit 178 controls a current density of the direct current from the capacitor 176 to the battery 170, or the direct current from the battery 170 to the capacitor 176. The direct current from the battery 170 is supplied to the motor, for example, via an AC-DC converter (neither of which is shown).
As shown in
Next, the gas turbine engine 200 will be described. As shown in
As shown in
Right ends of the leg members 212 are connected to both the second annular portion 210 and the cylindrical cover member 214. In accordance with this feature, support rigidity (support material strength) is imparted to the leg members 212. In addition, inlet openings of air bleed passages 216 are formed at locations where the leg members 212 are connected with the cylindrical cover member 214. Further, as shown in
As shown in
The shroud case 218 is a hollow body having a shape that is substantially similar to that of the rectifying member 82, and is larger in comparison with the rectifying member 82. A small diameter left end thereof faces toward the rectifying member 82, and a large diameter right end thereof is inserted into the inner housing 202. A left end of the shroud case 218 is exposed to an air intake space 240 that is formed between the leg members 212 of the inner housing 202. The top portion which is on the right end of the rectifying member 82 is inserted into the interior of the left end of the shroud case 218. Moreover, although the shroud case 218 is gradually reduced in diameter from the right end toward the left end thereof, a distal end of the left end is curved in a manner so as to expand outward in the diametrical direction.
The compressor wheel 230 is accommodated inside the shroud case 218. Stated otherwise, the shroud case 218 is disposed in surrounding relation to the compressor wheel 230. However, the compressor wheel 230 and the shroud case 218 are separated away from each other.
The compressor wheel 230 and the turbine wheel 232 are capable of rotating together integrally with the rotating shaft 40. More specifically, as shown in detail in
At a diametrical center of the compressor wheel 230, a shaft hole 244 is formed that extends in the left-right direction. In such a shaft hole 244, a second outer circumferential side spline 246 (outer circumferential side tooth portion), which is made up from a plurality of teeth that extend in a diametrical inward direction and are provided annularly, is engraved on an inner wall in close proximity to the left end. Further, a hole diameter at a location where the shaft hole 244 is connected to the hollow interior part of the small diameter cylindrical portion 242 is set to be slightly smaller in comparison with other locations thereof. Therefore, an inner flange portion 248 is provided in the vicinity of an opening on the side of the small diameter cylindrical portion 242 of the shaft hole 244 of the compressor wheel 230. The hole diameter (diameter) of the shaft hole 244 is minimal at the site where the inner flange portion 248 is provided.
The output shaft 250 that is provided in the turbine wheel 232 is inserted into the shaft hole 244. The left distal end of the output shaft 250 extends to substantially the same position as the left distal end of the small diameter cylindrical portion 242 of the compressor wheel 230. As noted previously, the outer circumferential wall of the right opening end 42b of the outer side shaft 36 is inserted into the hollow interior part of the small diameter cylindrical portion 242. Therefore, the left end of the output shaft 250 that projects out from the shaft hole 244 enters into the shaft connecting hole 62 of the rotating shaft 40. A male threaded portion 252 is engraved on the left end of the output shaft 250, and the male threaded portion 252 is screw-engaged with the female threaded portion 64 formed on the inner wall of the shaft connecting hole 62. Due to such screw-engagement, the rotating shaft 40 and the output shaft 250 are connected.
A second inner circumferential side spline 254, which is an inner circumferential side tooth portion, is formed in the vicinity of the left end of the output shaft 250. The second inner circumferential side spline 254 enmeshes with the second outer circumferential side spline 246 that is formed on the inner circumferential wall of the shaft hole 244 of the compressor wheel 230. Further, a left end part of the output shaft 250 is inserted through the inner flange portion 248 by way of press fitting.
As shown in
An annular protrusion 268 projects from a right end surface of the compressor wheel 230 that faces toward the turbine wheel 232. When a left end surface of the ring member 256 is seated on the right end surface of the compressor wheel 230, the annular protrusion 268 is fitted into the fitting hole 258. On the other hand, the output shaft 250 extends from a left end surface of the turbine wheel 232 that faces toward the compressor wheel 230. Further, on the left end surface, a fitting protrusion 270 that encircles the output shaft 250 in a surrounding manner is formed to project from the turbine wheel 232. When a right end surface of the ring member 256 is seated on the left end surface of the turbine wheel 232, a top surface of the fitting protrusion 270 is fitted into the fitting hole 258. In accordance with the foregoing, each of respective parts of the compressor wheel 230 and the turbine wheel 232 are fitted into the fitting hole 258. In such a state, the ring member 256 is sandwiched between both of the wheels 230 and 232.
On the other hand, in the hollow interior of the outer housing 204 (see
As shown in
In this instance, relay holes 276 are formed in the combustor 236 for allowing the combustion air flow passage 273 to communicate with the interior of the combustor 236. Further, non-illustrated fine pores for forming an air curtain to cool the interior of the combustor 236 are formed in the combustor 236. As will be discussed later, the combustion air that is compressed by the compressor wheel 230 reaches the interior of the combustor 236 via the diffuser 234, the combustion air flow passage 273, and the relay holes 276. Furthermore, a non-illustrated delivery hole, which supplies to the turbine wheel 232 a fuel (hereinafter also referred to as a “combusted fuel,” wherein the term “combusted fuel” has the same meaning as the “combustion gas” or the “exhaust gas after combustion”) that is combusted together with the combustion air, is formed in the nozzle 238 at a site surrounding the largest diameter portion of the turbine wheel 232.
Further, a discharge port 280 provided with a non-illustrated discharge pipe for discharging the combusted fuel opens on a right end of the outer housing 204 and the nozzle 238. The combusted fuel passes through the delivery hole and progresses into the nozzle 238, and thereafter, the combusted fuel is expelled out of the outer housing 204 via the discharge port 280 under the action of the rotating turbine wheel 232.
The combined power system 300 according to the present embodiment is constructed basically as described above. Next, a description will be given concerning operations and advantageous effects thereof.
In the present embodiment, the rotary electric machine system 10 constitutes the combined power system 300 together with the gas turbine engine 200. Therefore, as shown in
In this manner, since one end of the output shaft 250 is inserted into the shaft connecting hole 62 that is formed at one end of the rotating shaft 40, the length of the rotating shaft 40 and the output shaft 250 after being connected to each other is smaller than the total length of both of the shafts 40 and 250. Further, from the fact that the output shaft 250 is inserted into the shaft connecting hole 62 of the rotating shaft 40, the diameter of the output shaft 250 is set to be smaller than the diameter of the shaft connecting hole 62. Accordingly, the output shaft 250 is small and lightweight. Due to the above reasons, the combined power system 300 can be made both small in scale and lightweight.
In addition, connection terminals of the battery 170 (see
In this instance, as shown in
More specifically, when the rotating shaft 40 begins to rotate, the output shaft 250 also begins rotating integrally with the rotating shaft 40. Accompanying such rotation, the compressor wheel 230 and the turbine wheel 232, which are supported by the output shaft 250, rotate together integrally with the output shaft 250. As discussed previously, by providing the first inner circumferential side spline 66 which serves as the inner circumferential side engaging portion, the first outer circumferential side spline 85 which serves as the outer circumferential side engaging portion, the second inner circumferential side spline 254 which serves as the inner circumferential side tooth portion, and the second outer circumferential side spline 246 which serves as the outer circumferential side tooth portion, and by the first inner circumferential side spline 66 and the first outer circumferential side spline 85, as well as the second inner circumferential side spline 254 and the second outer circumferential side spline 246 being mutually enmeshed (placed in engagement) with each other, the rotational torque of the rotating shaft 40 can be sufficiently transmitted to the output shaft 250.
In addition, the right end part of the rotating shaft 40 is press-fitted into the hollow interior part of the small diameter cylindrical portion 242 of the compressor wheel 230, and the left end part of the output shaft 250 is press-fitted into the inner flange portion 248 of the compressor wheel 230. Therefore, the axis of the rotating shaft 40 and the axis of the output shaft 250 accurately coincide with each other. Consequently, the output shaft 250 is sufficiently prevented from rotating in eccentric manner or while being subjected to vibrations.
In addition, as shown in
Furthermore, frictional forces are generated, respectively, between the right end surface of the compressor wheel 230 and the left end surface of the ring member 256, and between the right end surface of the ring member 256 and the left end surface of the turbine wheel 232. Owing to such frictional forces, the compressor wheel 230, the ring member 256, and the turbine wheel 232 are in close contact with each other. Accordingly, it is possible to prevent both of the wheels 230 and 232 from rotating.
Further still, when the combined power system 300 is assembled, the compressor wheel 230 and the turbine wheel 232 are aligned (centered) by the above-described fittings with respect to the output shaft 250. As can be understood from this feature, by the ring member 256 being disposed between both of the wheels 230 and 232, and the portions of both of the wheels 230 and 232 being individually fitted into the fitting hole 258 of the ring member 256, it becomes easy to center the compressor wheel 230 and the turbine wheel 232 with respect to the output shaft 250.
In addition, due to the aforementioned rotation, as shown in
The atmosphere air that is drawn into the shroud case 218 flows through between the compressor wheel 230 and the shroud case 218. Since the space between the compressor wheel 230 and the shroud case 218 is sufficiently narrow in comparison with the leftward opening of the shroud case 218, the atmospheric air is compressed when flowing therethrough. Stated otherwise, compressed air is generated.
The air bleed ports 220 are formed in the vicinity of the right end (base portion) of the shroud case 218. On the other hand, proximal ends of the leg members 212 of the inner housing 202 are positioned on the outer circumferential side of a substantially intermediate portion in the lateral (left-right) direction of the shroud case 218. The inlet openings of the air bleed passages 216 are formed in the proximal ends. Therefore, a portion of the compressed air is diverted from the air bleed ports 220 as the curtain air, and proceeds to the second sub-housing 20 through the air bleed passages 216 that are formed in the leg members 212. As shown in
The hollow pipe members 158a to 158c are positioned on the outer circumferential side of the cooling jacket 21.
Accordingly, in the process of the curtain air flowing along the hollow pipe members 158a to 158c, the heat of the curtain air is sufficiently conducted to the cooling medium that was supplied beforehand to the cooling jacket 21. Consequently, the temperature of the curtain air becomes comparatively low. More specifically, according to the present embodiment, the temperature of the curtain air can be lowered by the cooling jacket 21 which serves in order to cool the rotary electric machine 12 and the electrical current converter 172. Therefore, in the gas turbine engine 200 or the rotary electric machine system 10, there is no need to separately provide cooling equipment in order to cool the curtain air. Consequently, by such an amount, it is possible to reduce the size and scale of the combined power system 300.
The curtain air flowing through the hollow pipe member 158a flows into the internal space of the measuring device casing 24, as shown in
As shown in
Thereafter, a portion of the curtain air flows toward a first shaft insertion hole 98 side. Further, the remaining portion of the curtain air flows through the clearances between the outer walls of the permanent magnets 88 and the inner wall of the electromagnetic coil 116, or in other words, toward the accommodation chamber 114, and toward an insertion hole 68 side. In this manner, the curtain air branches into a portion that flows toward the first shaft insertion hole 98 at the left end (the first end part), and a portion that flows toward the insertion hole 68 at the right end (the second end part). Moreover, as can be understood from the above description, concerning the flow passage for the curtain air, the internal spaces of the terminal casing 22 and the measuring device casing 24 define an upstream side thereof, and the accommodation chamber 114 of the main housing 16 defines a downstream side thereof.
The curtain air that has flowed to the first shaft insertion hole 98 side passes through the first bearing 92 disposed inside the first shaft insertion hole 98. On the other hand, the curtain air that has flowed to the insertion hole 68 side passes through the second bearing 94 disposed inside the insertion hole 68. Thereafter, for example, both of such curtain airs in which the lubricating oil is contained pass through a lubricating discharge path, and are discharged into an oil tank (neither of which is shown), and the curtain airs are separated into the lubricating oil and the air. The lubricating oil is supplied again to the first bearing 92 and the second bearing 94. On the other hand, the air is discharged, for example, into the atmosphere.
The compressed air that has passed between the shroud case 218 and the compressor wheel 230 without entering into the air bleed ports 220 becomes the combustion air, and as shown in
The combustor 236 is in a preheated state, and further, the fuel is supplied from the fuel supply nozzle 274 into the hollow interior (the combustion chamber) thereof. The fuel is combusted together with the combustion air and becomes a high temperature combusted fuel. By the combusted fuel that is supplied into the nozzle 238 from the delivery hole undergoing expansion in the nozzle 238, the turbine wheel 232 begins to rotate at a high speed. From the fact that the output shaft 250 is provided on the turbine wheel 232 together with the compressor wheel 230 being externally fitted onto the output shaft 250, accompanying the high speed rotation of the turbine wheel 232, the output shaft 250 and the compressor wheel 230 rotate integrally therewith at a high speed. Moreover, the combusted fuel is discharged to the exterior of the outer housing 204 through a non-illustrated discharge pipe provided in the discharge port 280.
The ring member 256 is interposed between the compressor wheel 230 and the turbine wheel 232, and also fulfills a role as a sealing member for sealing a space between both of the wheels 230 and 232. In addition, as shown in
As shown in
In addition, accompanying the rotation of the rotating shaft 40 along with the permanent magnets 88, an alternating current is generated in the surrounding electromagnetic coil 116. The alternating current is transmitted to the electrical current converter 172 shown in
In this process, within the electrical current converter 172, in particular, the conversion circuit 174 and the capacitor 176 become heated. However, according to the present embodiment, the equipment case 180 is positioned and fixed to the outer circumferential wall of the main housing 16, and further, the conversion circuit 174 and the capacitor 176 inside the equipment case 180 are placed in close proximity to the cooling jacket 21. Therefore, the heat of the conversion circuit 174 and the capacitor 176 is rapidly conducted to the cooling medium inside the cooling jacket 21. Consequently, a situation is avoided in which the conversion circuit 174 and the capacitor 176 become excessively high in heat.
Moreover, as shown in
In this instance, the lubricating oil is supplied in the form of a jet flow to the first bearing 92 and the second bearing 94 that rotatably support the rotating shaft 40 on the rotary electric machine housing 14. Owing to this feature, since the first bearing 92 and the second bearing 94 are cooled by the lubricating oil, seizure can be prevented from occurring in the first bearing 92 and the second bearing 94. Moreover, as noted previously, in the rotary electric machine system 10, the flow passages are formed in which the internal spaces of the terminal casing 22 and the measuring device casing 24 are provided on the upstream side, and the first bearing 92 and the second bearing 94 are provided on the downstream side. Further, a labyrinth sealing structure is provided in the flow passage, and the curtain air flows through such a labyrinth sealing structure. Therefore, it is unlikely for the lubricating oil to enter into the internal spaces of the terminal casing 22 and the measuring device casing 24.
Moreover, an air curtain made of curtain air is formed in the internal spaces of the terminal casing 22 and the measuring device casing 24. Accordingly, even if the lubricating oil enters into the internal spaces of the terminal casing 22 and the measuring device casing 24, adhering of the lubricating oil to the U-phase terminal 156a, the V-phase terminal 156b, the W-phase terminal 156c, the thermistor 152, and the like is suppressed. For the aforementioned reasons, it is possible to effectively avoid a situation in which the electric terminal portions to which the battery 170 is electrically connected, the measuring device (the thermistor 152), and the like are contaminated with lubricating oil.
In addition, in the rotary electric machine system 10, the curtain air that has passed through the first bearing 92 and the second bearing 94 flows therethrough in a manner so as to be discharged to the exterior of the rotary electric machine housing 14. Therefore, even if the lubricating oil leaks out from the first bearing 92 and the second bearing 94, the lubricating oil is accompanied by the curtain air and is discharged to the exterior of the rotary electric machine housing 14. Accordingly, it is possible to avoid a situation in which lubricating oil that has leaked out proceeds toward a rotor 30 side or remains inside the rotor 30.
Accompanying the rotation of the rotating shaft 40, the plurality of the permanent magnets 88 retained on the large diameter portion of the outer side shaft 36 rotate. Consequently, an electrical current is induced in the electromagnetic coil 116 (the U-phase coil, the V-phase coil, and the W-phase coil) that face toward the permanent magnets 88. The electrical current is taken out via the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c as electrical power for energizing an external device.
The electromagnetic coil 116 generates heat as the electrical current flows therethrough. In this instance, the left end of the stator 32 is in contact with the curtain air prior to the curtain air branching off. Further, the curtain air, which flows along the longitudinal direction and passes through the accommodation chamber 114 toward the insertion hole 68, comes into contact with the outer wall and the inner wall of the stator 32. More specifically, a sufficient amount of the curtain air comes into contact with respect to the left end of the stator 32, and the curtain air after branching off comes into contact with the entirety of the outer wall and the inner wall.
In addition, the cooling medium flows through the cooling jacket 21 provided in the main housing 16. Due to the cooling medium, the stator 32 including the electromagnetic coil 116 is rapidly, and hence the rotary electric machine 12 is rapidly cooled by the curtain air and the cooling medium.
Further, the rotary electric machine housing 14 (the main housing 16) in which the rotary electric machine 12 is accommodated, and the terminal casing 22 in which the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c are accommodated are separately provided. Therefore, it is unlikely for the influence of heat that is generated in the stator 32 inside the main housing 16 to be imparted to the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c inside the terminal casing 22. Moreover, from the fact that the terminals of the battery 170 (see
In the foregoing manner, the curtain air also serves in a dual manner to cool the heat generating locations in the rotary electric machine system 10. In addition, from the fact that the electric terminal portions (the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c), the electromagnetic coil 116, and the permanent magnets 88 and the like are cooled, it is possible to avoid the influence of heat on an output control or the like of the rotary electric machine system 10, and to avoid a situation in which excitation of the electromagnetic coil 116 and the permanent magnets 88 decreases due to heat. As a result, the reliability of the rotary electric machine system 10 is improved.
Further, from the fact that the main housing 16 in which the rotary electric machine 12 is accommodated, and the terminal casing 22 in which the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c are accommodated are separately provided, the rotary electric machine 12 and the electric terminal portions are separated away from each other. Therefore, the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c are not easily affected by vibrations generated accompanying rotation of the rotor 30. Stated otherwise, the U-phase terminal 156a, the V-phase terminal 156b, and the W-phase terminal 156c are protected from such vibrations. Further, as discussed previously, in the first bearing 92 and the second bearing 94, the occurrence of seizure is suppressed by the curtain air. Accordingly, the rotary electric machine system 10 is superior in terms of durability.
While the rotating shaft 40 is rotating, the angle of rotation (a rotation parameter) of the rotating shaft 40 is detected by the resolver 140. More specifically, the resolver rotor 56 which is externally fitted on the left end part 46a of the inner side shaft 34 rotates together integrally with the rotating shaft 40. Consequently, electric signals generated in the resolver stator 130 are transmitted to the signal receiver that is electrically connected to the signal receiver connector 144. The signal receiver that has read the electric signals calculates the angle of rotation of the rotating shaft 40 based on the electric signals, and transmits the result thereof to a non-illustrated control device or the like. The control device or the like obtains the RPM by way of a calculation based on the angle of rotation.
The resolver 140 is disposed on the protruding distal end 104 of the rotating shaft 40 that is exposed from the rotary electric machine housing 14. Accordingly, it is unlikely for the influence of heat generated in the electromagnetic coil 116 of the stator 32 inside the rotary electric machine housing 14, and the influence of vibrations generated accompanying rotation of the rotor 30 to be imparted to the resolver 140. In addition, the first bearing 92 and the second bearing 94 that support the rotating shaft 40 are provided inside the rotary electric machine housing 14. Accordingly, vibrations of the first bearing 92 and the second bearing 94 are suppressed by the rotary electric machine housing 14. This feature as well also makes it unlikely for the influence of vibrations to reach the resolver 140.
In the foregoing manner, by suppressing the transfer of heat and vibrations, the detection result of the rotation angle by the resolver 140 becomes accurate. Further, the useful lifetime of the resolver 140 is also lengthened.
For example, in the case that the resolver 140 is replaced with one having a larger inner diameter and outer diameter, the inner side shaft 34 may be replaced with one having a larger diameter on the left end part 46a thereof. Moreover, in the case that a single solid rotating shaft is adopted as the rotating shaft 40, in the case that such a solid rotating shaft is replaced with a large diameter one in order to correspond to the replacement of the resolver 140 with one having a large inner diameter and outer diameter, it may be difficult for such a solid rotating shaft to pass through the first bearing 92 or the second bearing 94. As can be understood from this situation, the rotating shaft 40 of the present invention is constituted by the outer side shaft 36 and the inner side shaft 34, together with the outer side shaft 36 being passed through the first bearing 92 and the second bearing 94. Further, the resolver rotor 56 is disposed on the portion of the inner side shaft 34 that is exposed from the outer side shaft 36. Thus, by replacing the inner side shaft 34, it becomes possible to cope with resolvers 140 having various inner diameters and outer diameters.
The present invention is not particularly limited to the above-described embodiment, and various modifications can be adopted therein without departing from the essence and gist of the present invention.
For example, according to the present embodiment, the resolver 140 is adopted as the rotation parameter detector, however, it is also possible for a detector including a Hall element to be adopted.
Further, after the curtain air has been made to flow through the internal space of the measuring device casing 24, the curtain air may be allowed to flow through the internal space of the terminal casing 22. Alternatively, the curtain air may be supplied separately to the measuring device casing 24 and the terminal casing 22, and the curtain air that has flowed through the internal spaces of the casings 22 and 24 may be distributed in a separate manner to the accommodation chamber 114.
Furthermore, in the gas turbine engine 200, the compressor wheel 230 and the turbine wheel 232 may be arranged in a reverse direction to that shown in
Further still, as shown in
The electrical current converter may include a circuit for lowering or raising the voltage of an alternating current or a direct current.
Further, instead of the gas turbine engine 200 shown in
Further still, although in the above-described embodiment, an embodiment is illustrated in which the gas turbine engine 200 is used as a gas supply source by partially diverting the compressed air generated by the gas turbine engine 200, as shown in
In addition, the configuration for transmitting torque between the rotating shaft 40 and the output shaft 250 is not particularly limited to the meshing of splines. For example, one or more convex portions may be provided on an outer circumferential wall of the rotating shaft 40 so as to project outwardly in a diametrical direction, whereas one or more recessed portions may be formed on the output shaft 250, and the convex portions and the recessed portions may be engaged with each other. Alternatively, the rotating shaft 40 may have a polygonal shape, whereas a polygonal hole may be formed in the output shaft 250, and the rotating shaft 40 may be engaged with such a polygonal hole. In the latter of such elements, the outer circumferential wall of the rotating shaft 40 becomes the inner circumferential side engaging portion, and the inner circumferential wall of the polygonal hole becomes the annular outer circumferential side engaging portion.
Number | Date | Country | Kind |
---|---|---|---|
2021-062007 | Mar 2021 | JP | national |
2021-062219 | Mar 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030217548 | Sekihara et al. | Nov 2003 | A1 |
20050096141 | Ishii | May 2005 | A1 |
20110221290 | Vedy | Sep 2011 | A1 |
20130106217 | Drye | May 2013 | A1 |
20140064839 | Miyazaki | Mar 2014 | A1 |
20160072369 | Oowatari | Mar 2016 | A1 |
20190170062 | Milosavljevic | Jun 2019 | A1 |
20190190360 | Nakahara | Jun 2019 | A1 |
20220316403 | Alecu | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
3118605 | Jan 2017 | EP |
61-155696 | Sep 1986 | JP |
62-121803 | Jun 1987 | JP |
03-246305 | Nov 1991 | JP |
2003-343204 | Dec 2003 | JP |
2005-106029 | Apr 2005 | JP |
2008011661 | Jan 2008 | JP |
2016-059133 | Apr 2016 | JP |
2019-100344 | Jun 2019 | JP |
Entry |
---|
Translation of JP2008011661 (Year: 2008). |
Translation of EP 3118605 (Year: 2016). |
Japanese Office Action for Japanese Patent Application No. 2021-062219 dated Mar. 19, 2024. |
Number | Date | Country | |
---|---|---|---|
20220316394 A1 | Oct 2022 | US |