This disclosure relates generally to combined refrigerator/freezer appliances, and, more particularly, to combined refrigerator/freezer appliances with dampers having ice prevention treatments.
Combined refrigerator/freezer appliances typically have two or more compartments that are refrigerated to differing temperatures, one being chilled to a temperature well below the freezing temperature of water, such as around 0° F. and the other being chilled to a below ambient temperature, which is above freezing, such as around 40° F. To chill the two different compartments to these temperatures, a refrigeration system is typically employed which includes one or two evaporator components.
In a single evaporator systems, such as those disclosed in U.S. Pat. No. 5,490,395, the evaporator is located in, or in close communication with the freezer compartment, and the evaporator is chilled to below the desired temperature for the freezer compartment. Air is circulated over the evaporator to chill the freezer compartment. To cool the refrigerator or fresh food compartment, air is ducted out of the freezer compartment and is circulated through the fresh food compartment, and then returned to the freezer compartment. A separate fan may be provided for the fresh food compartment air circulation system along with a damper for permitting or preventing the flow of sub-freezing air into the fresh food compartment.
Combined refrigerator/freezer appliances with dampers having ice prevention treatments are disclosed. An example combined refrigerator/freezer appliance includes a cabinet having a first compartment and a second separate compartment, a refrigeration system including a compressor, a single evaporator and a condenser, the single evaporator being associated with the first compartment to lower temperatures of the first and second compartments, and a damper having a first position in which air is prevented from flowing from the first compartment to the second compartment, and a second position in which air is permitted to flow from the first compartment to the second compartment, wherein at least a portion of the damper is treated to prevent ice buildup from forming on the at least portion of the damper when the damper is in the first position
An example damper for use in a combined refrigerator/freezer appliance, the damper includes a housing, and a door having a first position in which air is prevented from flowing from a first compartment of the refrigeration appliance to a second compartment of the refrigeration appliance, and a second position in which air is permitted to flow from the first compartment to the second compartment, wherein at least a portion of the door is treated to prevent ice buildup from forming on the at least portion of the door.
Referring to
The refrigerator/freezer 10 includes a cabinet 14 housing a conventional liner 16 therein, with suitable insulation provided between the liner 16 and the cabinet 14. The liner 16 includes a plurality of wall portions, as is well known, and may be of one piece construction or of multiple piece construction, as necessary or desired. The refrigerator/freezer 10 includes an insulated separator or divider wall 18 which may utilize the liner wall portions. The cabinet 14, liner 16 and divider wall 18 together define a below-freezing, or freezer compartment 20, and a fresh food, or above-freezing compartment 22. Suitable doors (not shown) are provided for selective access to the freezer compartment 20 and the fresh food compartments 22.
The freezer and fresh food compartments 20 and 22 are cooled by circulating cooled air therethrough which has been cooled as a result of being passed in heat exchange relation with an evaporator 24. An evaporator fan 26 draws air across the evaporator 24 with the cooled air passing through a duct 28 behind a rear wall 30 of the freezer compartment 20 and further through a freezer compartment air inlet 32. The duct 28 is also in communication with a scoop, or passage 34 in the separator 18. The passage 34 is in communication with an air duct 36 in the upper rear section of the fresh food compartment 22, which duct 36 includes a fresh food compartment air inlet opening 37. The selectively positionable air damper 12 overlies the passage 34 and is operated to control the passage of cooled air into the fresh food compartment 22. The passage 34, the air damper 12, the duct 36 and the opening 37 collectively define an air inlet passageway.
Although the air damper 12 is illustrated as overlying the passage 34, it could be disposed at various positions within the passage 34 and/or the duct 36, as is obvious to those skilled in the art.
The air damper 12 has a door 205 (
Cooled air that passes through the passage 34 and the air damper 12 is discharged through the opening 37 to circulate within the fresh food compartment 22 and subsequently return to the freezer duct 28 through a return air outlet duct, or passage 38 located in the separator 18 at the bottom rear of the fresh food compartment 22.
The cooled air in the freezer compartment 20 returns to the duct 28 at a freezer compartment air inlet 40 and mixes with the air returned from the fresh food compartment 22. The mixed air is drawn by the evaporator fan 26 across the evaporator 24 during a cooling unit on cycle to remove heat therefrom and recirculate the air in the compartments 20 and 22.
In addition to the evaporator 24 and the evaporator fan 26, the refrigeration apparatus 10 includes connected components such as a compressor (not shown) and a condenser fan (not shown), a condenser (not shown) and a defrost heater (not shown).
Referring to
When the air damper 12 is in the first position (as shown in
Example ice prevention treatments include, but are not limited to, a melting point depressant, a microtextured plastic surface and/or an icephobic coating. Example icephobic coatings include a silicone, a nanocomposite, and/or a silicon oil infused polydimethylsiloxane (PDMS) coating. In particular, the silicon oil infused PDMS coating has a low surface energy leading to the formation of a loose ice layer. In addition, the oil infused coating reduces the contact area of ice with solid substrate since any ice that forms will contract, which can significantly reduce ice adhesion strength. In some examples, the icephobic coating can be microtextured using soft lithography. If a microtextured plastic surface is used, care has to be taken that the closing force of the door 205 is low enough to not result in surface damage. To reduce such effects, the portion 240 of the housing 220 against which the door 205 closes can be treated with, for example, an elastomer.
While an example damper 12 is shown in
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims of this patent.
Number | Name | Date | Kind |
---|---|---|---|
6125641 | Kim et al. | Oct 2000 | A |
6336339 | Joung et al. | Jan 2002 | B1 |
6769263 | Armour et al. | Aug 2004 | B1 |
6910340 | Nowak et al. | Jun 2005 | B2 |
7131284 | Cushman et al. | Nov 2006 | B2 |
7152419 | Armour et al. | Dec 2006 | B1 |
7174729 | Cushman et al. | Feb 2007 | B2 |
20030235696 | Byrd | Dec 2003 | A1 |
20100316806 | He et al. | Dec 2010 | A1 |
20120045954 | Bleecher et al. | Feb 2012 | A1 |
20140113144 | Loth et al. | Apr 2014 | A1 |
20140147627 | Aizenberg et al. | May 2014 | A1 |
20140272301 | Gross et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
100259923 | Jun 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20150052932 A1 | Feb 2015 | US |