1. Field of the Inventions
Embodiments of the present invention generally relate to mooring, riser and offloading systems for offshore hydrocarbon production developments. More specifically, embodiments of the present invention relate to the offloading of hydrocarbon fluids from a floating facility to an export tanker.
2. Description of Related Art
During the past thirty years, the search for oil and gas offshore has moved into progressively deeper waters. Wells are now commonly drilled at depths of several thousand feet below the surface of the ocean. In addition, wells are now being drilled in more remote offshore locations.
The drilling and maintenance of deep and remote offshore wells is expensive. In an effort to reduce drilling and maintenance expenses, remote offshore wells are oftentimes drilled in clusters. This allows a single floating rig or semi-submersible vessel to conduct drilling operations from essentially a single ocean location. Further, this facilitates the gathering of production fluids into a local production manifold after completion. Fluids from the clustered wells are commingled at the manifold, and delivered together through a single flowline. The manifold may be located subsea, or may be positioned on an offshore production platform.
From the manifold, produced fluids are delivered downstream by means of a subsea production flowline. The flowline carries the fluids to a processing facility, typically under pressure emanating from the originating subterranean reservoirs. The gathering facility collects and commingles fluids as produced from multiple wells.
In offshore fields where the metocean conditions are considered benign, the processing facility may be located offshore proximate to the subsea well-site. The coasts of West Africa, Indonesia, Malaysia and Brazil are examples of marine areas considered to have calm weather conditions. In such deepwater areas, a floating vessel may be the processing facility. Such vessels are referred to as “floating production vessels,” or FPV's. Such vessels are also sometimes referred to as “floating production, storage and offloading systems,” or “FPSO's.” For ease of reference, the term “FPV” will be used herein. FPV's may include equipment for treating fluids, such as by separating produced water from the produced hydrocarbons. The facility may further separate gas and liquid phase hydrocarbons before offloading. Produced hydrocarbons may be held at the FPV for future offloading and delivery to market.
It is desirable that an FPV maintain its geographic position offshore. The process of maintaining position offshore is called “stationkeeping.” To provide stationkeeping for the FPV, multiple sets of mooring lines can be used to secure the FPV to the ocean bottom. In areas of calm weather conditions, the mooring lines can be arranged in a “spread-mooring” pattern. For example, two sets of front lines may be provided, and two sets of rear lines may be provided. The lines may have a first end connected to the vessel, and a second point anchored at the ocean mudline. The various lines are typically 1 to 4 km in length, depending on water depth and other factors. Spread-moored systems keep the FPV headed in a single direction, oftentimes in the direction of the prevailing weather conditions. This eliminates the high cost of providing a turret mooring system that lets the FPV weathervane in response to wind, waves, and current.
In order to offload hydrocarbons from the FPV for delivery to market, a transport vessel or tanker is brought adjacent the FPV offshore. The bow of the tanker can be positioned behind the stern of the floating production vessel (tandem offloading). The two vessels may be tied together by a hawser line. A floating offloading hose is then connected from the FPV to the tanker in order to transfer fluids onto the tanker. The offloading conduit commonly ties into a midship manifold on the tanker. The close proximity of the tanker to the production vessel creates a hazard of contact. The potential result is loss of valuable hydrocarbons, damage to one or both vessels, and possibly even harm to the marine environment.
In an effort to mitigate this danger, an independent mooring system, which may include a surface offloading buoy, can be used for securing the position of the tanker relative to the FPV. One example is a catenary anchor leg mooring (CALM). The tanker positioning system can be a separate set of mooring lines, augmented by use of a tug boat or “tender vessel” connected to the tanker with tow lines. Tension is maintained in the towlines so as to maintain the tanker at an assured clear distance from the FPV. In some instances, dynamic positioning may also be employed on the tanker to maintain a safe distance.
The installation of deepwater mooring systems offshore for production vessels and offloading systems is expensive. Mooring systems have been offered as an alternative to a pure spread-mooring system. Examples of mooring systems are described in U.S. Pat. No. 5,639,187 and in U.S. Pat. No. 6,571,723. Another example is the combined riser mooring system, or “CRM.” The CRM system integrates a riser mooring buoy into a spread-mooring system for the FPV. The CRM technology was published at the Deepwater Offshore Technology Conference in Stavanger, Norway in October 1999. Additional information relating to mooring, riser and/or offloading systems can be found in: U.S. Pat. No. 6,685,519; IE 990 872 A2; WO 03/013948; GB1 581 325 A; and Patent Abstracts of Japan, vol. 011, no. 157 (M-590), 21 May 1987 (1987-05-21) & JP 61 287892 A (Mitsubishi Heavy Industries, Ltd.), 18 Dec. 1986 (1986-12-18).
A combined riser, offloading and mooring system is provided for the offloading of hydrocarbons from a floating production vessel (FPV) onto a tanker. The system has utility in a marine environment, such as the ocean. The system is configured to combine separate mooring systems for the FPV and the offloading system, thereby saving installation costs.
The combined riser, offloading and mooring system first includes an offloading buoy system. The offloading buoy system is designed to support a production riser, and also to support a pair of fluid connectors.
The offloading buoy system first includes an offloading buoy. The offloading buoy is tethered to the mudline by at least one mooring line. The at least one mooring line is preferably a single, substantially vertical mooring line that is anchored in the mudline. The at least one mooring line forms a vertical axis with the mudline, with the offloading buoy being disposed substantially in the vertical axis of the mooring line.
The offloading buoy system also includes a riser connector. The riser connector provides mechanical and fluid communication between the production riser and a production jumper. The production jumper delivers fluids to the floating production vessel. In this way, production fluids are carried from subsea wells to the floating production vessel.
The offloading buoy system may include a fluid conduit connector. The connector provides fluid communication between a jumper line from the floating production vessel and an offloading hose to the export vessel. In this way, fluids may be exported from the floating production vessel to the export tanker.
The combined riser, offloading and mooring system may include at least one set of FPV mooring lines. The FPV mooring lines serve to secure the FPV to the offloading buoy system. In one arrangement, the connection is made at the offloading buoy. The FPV mooring lines allow at least one set of lines in the known spread-mooring system to be eliminated.
The combined riser, offloading and mooring system may also include a hawser line for connecting the tanker to the offloading buoy system. In one arrangement herein, the hawser line is connected directly to the offloading buoy. In this manner, the number of mooring lines for the floating production vessel is reduced, and the need for an independent mooring system (such as a single point mooring system with a CALM buoy) for the tanker is removed.
In one arrangement, the offloading buoy system also includes a turntable. The turntable is disposed on the offloading buoy. In one arrangement, the offloading buoy and connected turntable are disposed below the ocean surface with the offloading buoy. In another arrangement, the offloading buoy pierces the ocean surface, allowing the turntable to be visible. The hawser line can be connected to the turntable. In this manner, the position of the tanker is secured. At the same time, the tanker is permitted to weathervane in response to changing weather and ocean conditions without need of a separate single point mooring.
In one arrangement, the offloading buoy system further includes a riser buoy. The riser buoy can be connected to the offloading buoy by an inter-buoy mooring line or tether that connects the buoys. This allows the offloading buoy to be placed at the ocean surface, while the riser buoy remains submerged. The riser connector is placed at the riser buoy.
One or more of the systems described herein addresses combinations of mooring elements in areas where the metocean conditions allow the use of a spread mooring (rather than turret mooring) for the FPV. The above systems reduce risks of offloading operations compared to offloading using tandem or side-by-side offloading.
An offloading buoy system is also provided. In one embodiment, the system includes a substantially vertical offloading mooring line secured to the ocean bottom; an offloading buoy moored by the mooring line, the offloading buoy being disposed substantially in an axis formed by the offloading mooring line; a fluid conduit connector for providing fluid communication between first and second fluid lines, the first fluid line being a jumper line carrying fluids from a floating production vessel, and the second fluid line being a floating offloading hose carrying those fluids to a tanker; a riser connector disposed along the offloading mooring line for supporting a riser and for providing fluid communication between the production riser and a production jumper to the floating production vessel; an FPV mooring line for tethering the FPV to the offloading buoy system; and a hawser line for connecting the tanker to the offloading buoy.
A description of certain embodiments of the inventions is presented below. To aid in this description, drawings are provided, as follows:
The following provides a description of specific embodiments of the present invention:
A combined riser, offloading and mooring system for the offloading of hydrocarbons from a floating production vessel to a tanker is provided, in various embodiments. The floating production vessel receives the hydrocarbons from a production riser and production jumper line. The floating production vessel then processes the fluids, and delivers them through an offloading jumper line to an offloading buoy system. From the offloading buoy system the processed fluids are conveyed by a floating offloading hose to a tanker. In one aspect, the system includes an offloading buoy system for supporting the production riser and production jumper line; at least one set of FPV mooring lines for securing the floating production vessel to the offloading buoy system; and a hawser line for connecting the tanker to the offloading buoy system.
The offloading buoy system includes at least one offloading buoy mooring line forming a mooring line axis from an earth mudline; an offloading buoy connected to the at least one offloading buoy mooring line, the offloading buoy being disposed substantially in the mooring line axis; a fluid conduit connector for providing fluid communication between a jumper line from the floating production vessel and a floating offloading hose to the export tanker; and a riser connector for providing fluid communication between the production riser and a production jumper to the floating production vessel.
The at least one offloading buoy mooring line preferably is a substantially vertical offloading mooring line secured to the ocean bottom.
The offloading buoy system may further comprise a turntable for receiving the hawser line, with the turntable being configured to permit the tanker to pivot. The offloading buoy and connected turntable may be at the ocean surface or may be submerged.
The offloading buoy system may further comprise a riser buoy. The riser buoy may be is submerged beneath the offloading buoy, may also be moored by the offloading buoy mooring line, may be disposed substantially in the vertical axis formed by the at least one offloading buoy mooring line, and may be connected to the offloading buoy by an inter-buoy mooring line.
In one aspect, the fluid conduit connector defines a gooseneck supported below the ocean surface by the offloading buoy mooring line. The production riser connects to a first end of the gooseneck, and a production jumper connects to a second end of the gooseneck, and delivers production fluids from the gooseneck to the FPV. The production riser is preferably a catenary riser for delivering production fluids to the riser connector.
The at least one set of mooring lines may be connected to the offloading buoy system. Connection may be at, for example, the offloading buoy or another point along the at least one mooring line.
A method for mooring a floating production vessel and intermittently mooring an export tanker for the offloading of fluids in a marine environment is also provided. In one embodiment, the method comprises the steps of positioning an offloading buoy system at a selected location in a marine environment; positioning the floating production vessel in proximity to the offloading buoy system; and mooring the floating production vessel by connecting the floating production vessel to the offloading buoy system by means of mooring lines. Then, during operations, the method further includes the steps of positioning the tanker in proximity to the offloading buoy system; and mooring the tanker to the offloading buoy system by connecting the tanker to the offloading buoy system by means of a hawser line.
The offloading buoy system includes at least one offloading buoy mooring line forming a vertical axis; an offloading buoy moored by the at least one offloading buoy mooring line, the offloading buoy being disposed substantially in a vertical axis formed by the at least one offloading buoy mooring line; a riser connector disposed along the vertical mooring line axis for supporting a production riser and providing fluid communication between the riser and a production jumper to the floating production vessel; a fluid conduit connector for providing fluid communication between an offloading jumper line carrying fluids from the floating production vessel and a floating offloading hose carrying those fluids to a tanker; an FPV mooring line for tethering the floating production vessel to the offloading buoy system; and a hawser line for connecting the tanker to the offloading buoy.
In one aspect, the method further includes the steps of operatively connecting a first fluid line to the offloading buoy, the first fluid line being the jumper line carrying fluids from the floating production vessel to the offloading buoy; and operatively connecting a second fluid line to the offloading buoy, the second fluid line being the floating offloading hose carrying fluids from the first fluid jumper line to the tanker.
One embodiment of the invention includes using any of the above-described combined riser, offloading and mooring systems to produce petroleum hydrocarbons.
One embodiment of the invention includes a method of producing petroleum hydrocarbon fluids. The method includes mooring a floating production vessel in a marine environment by connecting the floating production vessel to an offloading buoy system using mooring lines, mooring a tanker to the offloading buoy system by connecting the tanker to the offloading buoy system using a hawser line, unloading a fluid from the floating production vessel to the tanker through a fluid conduit connector, a first fluid line and a second fluid line, and transporting the fluid to a second location.
The offloading buoy system may include at least one offloading buoy mooring line forming a vertical axis with a mudline in the marine environment, an offloading buoy moored by the at least one offloading buoy mooring line, the offloading buoy being disposed substantially in a vertical axis formed by the at least one offloading buoy mooring line, a fluid conduit connector for providing fluid communication between first and second fluid lines, the first fluid line being a jumper line carrying fluids from a floating production vessel, and the second fluid line being a floating offloading hose carrying those fluids to a tanker, a riser connector disposed along the vertical mooring line for supporting a riser, an FPV mooring line for tethering the floating production vessel to the offloading buoy system, and a hawser line for connecting a tanker to the offloading buoy.
Described herein are various combined riser, offloading and mooring systems. Explicit references to the drawings are included.
In
The combined riser, offloading, and mooring system 100 stabilizes the relative location of the FPV 110 and the tanker 120. The floating vessel 110 may be a floating platform. Alternatively, the vessel 110 may be a ship-shaped vessel. A ship-shaped vessel may or may not be self-propelled. A ship-shaped vessel may be oriented in the direction of the prevailing weather patterns, i.e., wind and waves. In the arrangement of
In one arrangement, one or more small tender vessels or tugs are optionally moved into position behind the tanker 120. A single tender vessel 126 is shown in
The combined riser, offloading and mooring system 100 first includes an offloading buoy system 150. The offloading buoy system 150 first includes an offloading buoy 140. With the aid of the offloading buoy, the offloading buoy system 150 is designed to support a production riser 142, and to also support a riser connector 146 and a fluid connector 166. The offloading buoy 140, the riser connector 146 and the fluid connector 166 are more clearly seen in the enlarged perspective view of
Returning to
As mentioned, the offloading buoy system 150 also includes a riser connector 146. In one arrangement, the riser connector 146 defines a gooseneck having first and second ends. At one end, the gooseneck 146 ties into a production riser 142. A single catenary production riser 142 is shown in
Next, and as also mentioned above, the offloading buoy system 150 includes a fluid conduit connector 166 (shown in
The combined riser, offloading, and mooring system 100 next includes at least one set of FPV mooring lines 105′. The FPV mooring lines 105′ serve to secure the floating production vessel 110 to the offloading buoy system 150. In one arrangement, the connection is made at the offloading buoy 140. However, the connection may be made through a separate connector (not shown) along the offloading buoy mooring line 145, or on a separate buoy placed within the general vertical axis of the offloading buoy mooring line 145, or even to the riser connector 146. The FPV mooring lines 105′ allow at least one set of lines in a common spread-mooring system to be eliminated. In this respect, spread-mooring systems typically provide two or more sets of mooring lines at one end of a vessel, and two or more sets of mooring lines at an opposite end of the vessel. For the FPV 110 in
The combined riser, offloading, and mooring system 100 also includes one or more hawser lines 165. The hawser lines 165 connect the transport vessel 120 to the offloading buoy system 150.
In one arrangement, the offloading buoy system 150 includes a turntable 160. The turntable 160 is shown in the plan view of
In the arrangement of
The offloading buoy 140 may be positioned either at the ocean surface 14, or may be submerged. In the arrangement of
As with system 100, the combined riser, offloading, and mooring system 200 is set up to deliver production fluids to an export tanker 220. The tanker 220 is tethered to a turntable 260 by hawser 265. The turntable 260, in turn, is disposed on a top surface of the offloading buoy 240. However, unlike system 100 in which the offloading buoy 240 and turntable 260 are at the ocean surface 14, in the system 200 the riser buoy 240 and turntable 260 are maintained below the ocean surface 14. Preferably, the turntable 260 is submerged below the depth where wave-induced forces are significant.
The offloading buoy 340 is positioned immediately above the riser buoy 340′. By using a split buoy approach, an accident causing flooding of the surface-piercing buoy 340 should not result in excess motion of the steel catenary risers 342 suspended from the system, and also would maintain buoyant support of the risers 342 from the riser buoy 340′.
Certain functions performed by embodiments of this invention include, but are not limited to:
Mooring—mooring stiffness is provided by the steel catenary risers, the vertical mooring lines to the buoy, and the mooring lines between the offloading buoy system and the FPV;
Risers—the produced fluids are routed from the seabed through steel catenary risers to the goosenecks on the vertical mooring and through jumper pipes from the goosenecks to the FPV; and
Offloading—Oil is exported through a jumper from the FPV to the buoy, through the turntable and the floating hose to the export tanker. The export tanker is moored by the hawser from the buoy.
A method for mooring a floating production vessel and an export tanker in a marine environment is also provided. Generally, the floating production vessel (such as FPV 110 of
Next, the tanker (such as export vessel 120 of
The purpose for the mooring steps is to offload hydrocarbons from the FPV to the tanker. To do this, an operative connection is made between a first fluid jumper line to the offloading buoy. The first fluid jumper line carries production fluids from the FPV to the offloading buoy. An example is offloading jumper 115 of
The offloading buoy is moored by a mooring line, such as vertical mooring line 145. Either of the offloading buoy or the mooring line may optionally provide a riser connector for supporting a riser and a production export hose to the FPV. An example of such a riser connector is the gooseneck 146 of
The method may include unloading a fluid from the floating production vessel to the tanker. The fluid may be unloaded using a fluid conduit or conduits. For example, the fluid may be unloaded through the first fluid jumper line, the offloading hose, and/or a fluid conduit connector. The method may further include transporting the fluid to a second location. Exemplary second locations include an offshore import terminal, an onshore import terminal, and combinations thereof. The fluid may include, for example, petroleum hydrocarbons. Exemplary petroleum hydrocarbons include crude oil, natural gas, combinations thereof and portions thereof.
A description of certain embodiments of the inventions has been presented above. However, the scope of the inventions is defined by the claims that follow. Each of the appended claims defines a separate invention, which for infringement purposes is recognized as including equivalents to the various elements or limitations specified in the claims.
Various terms have also been defined, above. To the extent a claim term has not been defined, it should be given its broadest definition that persons in the pertinent art have given that term as reflected in printed publications, dictionaries and issued patents.
This application claims the benefit of U.S. Provisional Application 60/613,834, filed 28 Sep., 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/28732 | 8/11/2005 | WO | 3/6/2007 |
Number | Date | Country | |
---|---|---|---|
60613834 | Sep 2004 | US |