The present application is a national filing in the U.S. Patent & Trademark Office of International Patent Application PCT/CN2011/000775 filed May 3, 2011. and claims priority of Chinese Patent Application NO. 201010604203.3 filed Dec. 21, 2010.
The present application relates to the mechanical field, specifically to the valve actuation technology for vehicle engines, particularly to a combined rocker arm device for an auxiliary engine valve event.
In the prior art, the method of conventional valve actuation for a vehicle engine is well known and its application has more than one hundred years of history. However, due to the additional requirements on engine emission and engine braking, more and more engines need to produce an auxiliary engine valve event, such as an exhaust gas recirculation event or an engine braking event, in addition to the normal engine valve event. The engine brake has gradually become the must-have device for the heavy-duty commercial vehicle engines.
The engine braking technology is also well known. The engine is temporarily converted to a compressor, and in the conversion process the fuel is cut off, the exhaust valve is opened near the end of the compression stroke of the engine piston, thereby allowing the compressed gases (being air during braking) to be released. The energy absorbed by the compressed gas during the compression stroke cannot be returned to the engine piston at the subsequent expansion stroke, but is dissipated by the engine exhaust and cooling systems, which results in an effective engine braking and the slow-down of the vehicle.
There are different types of engine brakes. Typically, an engine braking operation is achieved by adding an auxiliary valve event for engine braking event into the normal engine valve event. Depending on how the auxiliary valve event is generated, an engine brake can be defined as:
An example of engine brake devices in the prior art is disclosed by Cummins in U.S. Pat. No. 3,220,392. The engine brake system based on the patent has enjoyed a great commercial success. However, this engine brake system is a bolt-on accessory that fits above the engine. In order to mount the brake system, a spacer needs to be positioned between the cylinder and the valve cover. This arrangement may additionally increase height, weight, and cost to the engine.
Among these above five types of engine brakes, the third one, i.e. the dedicated cam or the dedicated rocker arm brake, has the best engine brake power. However, the existing dedicated rocker arm brake device cannot be applied to the engines with the valve bridge being parallel or almost parallel to the rocker arm.
An object of the present application is to provide a combined rocker arm device for producing an auxiliary engine valve event, so as to solve the technical problem in the prior art that the dedicated rocker arm brake system cannot be applied to the engines with the valve bridge being parallel to the rocker arm and to address the technical problems of increased engine height, weight and cost of a conventional engine brake device.
The combined rocker arm device for producing an auxiliary engine valve event of the present application is used to generate an auxiliary valve event of an engine, and the engine including a conventional valve actuator, the conventional valve actuator including a cam, a rocker arm shaft, a conventional rocker arm and a valve, wherein the combined rocker arm device includes an auxiliary actuator and a transition rocker arm, the auxiliary actuator acts on the transition rocker arm, and the transition rocker arm acts on the valve.
Further, the auxiliary engine valve event generated by the combined rocker arm device includes a valve event for engine braking.
Further, the auxiliary actuator of the combined rocker arm device includes an auxiliary rocker arm and an auxiliary cam, the auxiliary rocker arm and the conventional rocker arm are mounted on the rocker arm shaft side by side, one end of the auxiliary rocker arm is connected to the auxiliary cam, and the other end of the auxiliary rocker arm is placed adjacent to the transition rocker arm; the auxiliary rocker arm includes an actuation mechanism being provided with an actuation piston, the actuation mechanism includes an non-operating position and an operating position; in the non-operating position, the actuation piston of the actuation mechanism retracts, and the auxiliary rocker arm is separated from the transition rocker arm; and in the operating position, the actuation piston of the actuation mechanism extends, and the auxiliary rocker arm is connected to the transition rocker arm.
Further, a rocking axis of the transition rocker arm maintains relatively static during the auxiliary engine valve event.
Further, in the combined rocker arm device, the auxiliary rocker arm is a brake rocker arm, the auxiliary cam is a brake cam, the brake rocker arm includes a brake actuation mechanism being provided with a brake piston, the brake actuation mechanism includes an non-operating position and an operating position; in the non-operating position, the brake piston of the brake actuation mechanism retracts, and the brake rocker arm is separated from the transition rocker arm; and in the operating position, the brake piston of the brake actuation mechanism extends, and the brake rocker arm is connected to the transition rocker arm.
Further, in the combined rocker arm device, the transition rocker arm is rotationally mounted on the conventional rocker arm of the engine, and the transition rocker arm has a rocking shaft parallel to a rocker arm shaft of the conventional rocker arm.
Further, in the combined rocker arm device, the transition rocker arm shares the rocker arm shaft with the conventional rocker arm.
Further, the combined rocker arm device also includes an auxiliary spring located between the auxiliary rocker arm and the transition rocker arm.
Further, the transition rocker arm of the combined rocker arm device includes a rocking limiter.
The working principle of the present application is as follows, when the auxiliary engine valve event is needed, i.e. when the engine needs to be converted from the normal engine operation state to the engine braking state, the engine braking controller is turned on. The brake actuation mechanism in the brake rocker arm is converted from the non-operating position to the operating position, and the brake rocker arm is connected to the transition rocker arm. The motion from the auxiliary cam. i.e. the brake cam, is transmitted to the exhaust valve through the brake rocker arm and the transition rocker arm, thereby producing the auxiliary valve event for engine braking. When engine braking is not needed, the engine braking controller is turned off. The brake actuation mechanism retracts from the operating position to the non-operating position, and the brake rocker arm is separated from the transition rocker arm. The motion from the brake cam cannot be transmitted to the exhaust valve, and the engine is disengaged from the braking operation, and back to the normal operation state.
The present application has positive and obvious effects over the prior art. In the present application, less or no height, size and weight of the engine need to be increased, the application scope of the dedicated cam or the dedicated rocker arm brake device is enlarged, the engine braking performance is improved, and the affect of the engine braking operation on the engine ignition operation is reduced.
The exhaust valve actuator 200 has many parts, including a cam 230, a cam follower 235, a conventional rocker arm 210, a valve bridge 400 and exhaust valves 300 (3001 and 3002). The exhaust valves 300 are biased on valve seats 320 in an engine cylinder block 500 by engine valve springs 310 (3101 and 3102) to prevent gases flowing between the engine cylinder and an exhaust manifold 600. The conventional rocker arm 210 is rotationally mounted on a rocker arm shaft 205 and transmits the motion from the cam 230 to the exhaust valves 300 for cyclic opening and closing of the exhaust valves 300. The exhaust valve actuator 200 also includes a valve lash adjusting screw 110 and an elephant foot pad 114. The valve lash adjusting screw 110 is fixed on the rocker arm 210 by a nut 105. On an inner base circle 225, the cam 230 has a conventional cam lobe 220 to generate the conventional valve lift profile (see 2202 in
As shown in
When the auxiliary valve event, i.e. the engine braking, is needed, the engine brake controller (not shown) is turned on to supply engine oil, and the engine oil acts on the brake actuation mechanism 100, such that the brake piston 160 is extended from the retracted non-operating position (as shown in
The auxiliary spring or the brake spring 198 in
In
Therefore, the rocking shaft 2052 of the transition rocker arm 2103 can also be installed on other portions of the engine, for example, sharing the rocker shaft 205 with the conventional rocker arm 210, as long as the rocking axis of the transition rocker arm 2103 can remain relatively static when the auxiliary rocker arm produces the auxiliary valve event. In addition, the actuation mechanism on the auxiliary rocker arm 2102 can also be transferred onto the transition rocker arm 2103.
While the above description contains many specific embodiments, these embodiments should not be regarded as limitations on the scope of the present application, but rather as specific exemplifications of the present application. Many other variations are likely to be derived from the specific embodiments. For example, the combined rocker arm device described herein can be used to produce the auxiliary engine valve event not only for engine braking, but also for exhaust gas recirculation and other auxiliary engine valve events.
In addition, the combined rocker arm device described herein can be used not only for overhead cam engines, but also for push rod/tubular engines, and can be used not only for exhaust valve actuation, but also for intake valve actuation.
Also, the auxiliary actuator 2002 described herein can include not only the brake rocker arm and the brake cam, but also other actuation mechanisms, including mechanical, hydraulic, electromagnetic, or a combined mechanism. Therefore, the scope of the present application should not be defined by the above-mentioned specific examples, but by the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0604203 | Dec 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/000775 | 5/3/2011 | WO | 00 | 10/3/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/083574 | 6/28/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3220392 | Cummins | Nov 1965 | A |
5148783 | Shinkai | Sep 1992 | A |
5809952 | Ono | Sep 1998 | A |
6032624 | Tsuruta | Mar 2000 | A |
6135076 | Benlloch Martinez | Oct 2000 | A |
6311659 | Pierik | Nov 2001 | B1 |
6467443 | Tsuruta | Oct 2002 | B1 |
6588384 | Yapici | Jul 2003 | B2 |
6588387 | Cecur | Jul 2003 | B2 |
6968819 | Fujii | Nov 2005 | B2 |
7146945 | Persson | Dec 2006 | B2 |
7392772 | Janak | Jul 2008 | B2 |
7673602 | Masegi | Mar 2010 | B2 |
20060207532 | Fujita | Sep 2006 | A1 |
20070204826 | Diggs | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
1077209 | Jan 2002 | CN |
1985072 | Jun 2007 | CN |
100427740 | Oct 2008 | CN |
Entry |
---|
ISR for application No. PCT/CN2011/000775, mailing date Sep. 1, 2011, pp. 6. |
Number | Date | Country | |
---|---|---|---|
20140020654 A1 | Jan 2014 | US |