1. Field of the Invention
The disclosure relates generally to sealing systems for use with panels, such as a door or a window, within a frame and, more specifically, to an active sealing system for providing an improved seal between a panel and frame.
2. Description of the Related Art
Certain types of panels, such as doors and windows, are positioned within openings of a wall and/or other structures using a frame. These panels may also open and close by pivoting relative to the frame. Alternatively, the one or more panel may slide relative to the frame. An issue associated with these types of panels is the integrity of the seals between the panels and the frame. In many instances, these seals are an insufficient barrier in preventing the transfer of such environmental elements as noise, weather, water, and insects from one side of the panel to the other side of the panel.
Attempts have been made to address these issues by using various types of weather stripping between the panels and frame. For example, the weather stripping may be strip of felt, foam, or a pile of flexible synthetic material. In many instances, however, this weather stripping fails to act as a sufficient seal between the panels and frame. Another issue prevalent associated with the seals between a frame and panel or between adjacent panels is that these seals can become disjoined. Either intentionally or unintentionally, the alignment between the frame and panel or between adjacent panels may be disturbed which can degrade the quality of the seal, since, in many instances, the integrity of the seal relies upon these members having certain positional relationships relative to one another.
Another issue associated with the movement of one or more panels relative to the frame is structural integrity and/or security of the panels relative to the frame. While in certain circumstances, allowing the panel to move relative to the frame is desirable, in other circumstances, not allowing the panel to move relative to the frame is desirable for the purpose of preventing undesired access through the panel. Means for providing these separate functionalities, however, can be incompatible with one another, and the means employed to provide both functions often involve tradeoffs that reduce the effectiveness of both functions.
There is, therefore, also a need for a sealing and/or locking system that effectively allows both a panel to move relative to the frame and also to selectively prevent movement of the panel relative to the frame. There is also a need for a sealing and/or locking system that can be employed between a frame and panel that prevents the transfer from one side of the panel to the other side of the panel such environmental effects as noise, weather, water, heat/cold, and insects.
Embodiments of the invention address deficiencies of the art with respect to effectively creating a seal between a panel and a frame. A combined sealing system comprises a frame, a panel, a first sealing system, a second sealing system, and a third sealing system. The panel is within and movable, relative to the frame, between at least an open position and a completely closed position, and the panel includes a plurality of subpanels hinged relative to one another. The first sealing system is configured to engage a sill rail of the panel with a sill of the frame. The second sealing system is configured to engage a stile rail of the panel with a jamb of the frame. The third sealing system is configured to engage a meeting rail of the first panel with a header of the frame. In the closed position, the first and second sealing systems movable between a locked configuration and an unlocked configuration. The panel is also a garage door.
In further aspects, a first transfer system is provided to connect the first sealing system to the second sealing system. The first transfer system transfers rotational motion within the second sealing system into linear motion within the first sealing system. The first transfer system includes a drive link connected to the first drive shaft; a coupling link connected to a first movable member of the first sealing system; a stationary pin about which the coupling link pivots, and the drive link is pivotally connected to the coupling link.
In additional aspects, a second transfer system may also be included that connects the second sealing system to the third sealing system. The second transfer system transfers rotational motion within the second sealing system into rotational motion within the third sealing system. The rotational motion within the second sealing system is about a first axis, and the rotational motion within the third sealing system is about a second axis with first axis substantially perpendicular to the second axis. The second transfer system includes a frame portion and a panel portion, and the frame portion is disengaged from the panel portion in the open position. The frame portion is attached to the frame, and the panel portion is attached to the panel.
In yet further aspects, the first sealing system includes a plurality of pins extending from the frame; and a first movable member, within the frame, including a plurality of slots. In the closed position the first movable member is movable between a first, unlocked position and a second, locked position, and individual ones of the plurality of pins extend through individual ones of the plurality of slots. The first movable member is positioned within the sill of the frame, and the first movable member linearly moves along a plane substantially parallel to the sill of the frame. The slot includes a first portion having a narrower width and a second portion having a wider width, the pin includes a recess, and the second portion of the slot is configured to be inserted within the recess.
In yet additional aspects, the second sealing system includes a second movable member positioned within the frame and rotatable relative to the frame; and a drive member positioned within the frame and engaging the second movable member. Engagement of the drive member with the movable member pivots the movable member between an unengaged position and an engaged position. In the locked configuration, the second movable member in the engaged position prevents movement of the panel along a direction substantially parallel to a jamb of the frame.
In yet further aspects, the third sealing system includes a third movable member attached to the panel with the third movable member being rotatable relative to the panel; and a biasing member connected to the third movable member. Prior to the panel being positioned into the closed position, the third movable member engaging the frame. In the closed position, the biasing member structured to be releasable thereby decreasing a force being exerted by the third movable member against the frame.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
The door/window system 100 is not limited in the manner in which the panel 110 moves relative to the frame 120. For example, the panel 110 may move relative to the frame 120 along a plane parallel to a longitudinal axis of one of the surfaces (e.g., the header 130, jambs 140, or sill 150) of the frame 120 and/or substantially along a plane defined by the panel 110. In still further aspects of the door/window system 100, the panel 110 may change the plane along which the panel 110 moves.
The frame 120 may include a header 130 (see
Each panel 110 and each subpanel 125 may include a sash that surrounds a pane. The pane is not limited as to a particular material. For example, the pane may be translucent, such as glass or plastic, opaque, such as with wood or metal, or any combination thereof. The sash may include a header rail, jamb or stile rails, and a sill rail. As recognized by those skilled in the art, different terms may also be associated with the structure identified as the header rail, the jamb or stile rail, and sill rail.
The sealing systems 200A, 200B, 200C (see
Although the present door/window system 100 is described herein with particular types of sealing systems 200 being positioned in particular locations, the door/window system 100 is not limited as to a particular type of sealing system 200 or a particular location of the sealing system 200. For example, a sealing system 200 may be positioned within the frame 120 and/or the sash 160.
To prevent the forced opening of the panels 110, the sealing systems 200 are not limited as to a percentage of coverage between particular members of the frame 120 and/or panels 110. For example, each sealing system 200 may only cover a fractional number (e.g., 10%, 50%, 85%) of the length between particular members of the frame 120 and/or panel 110. However, in certain aspects, each sealing system 200 provides substantially complete coverage between the sash of a panel 110 and the frame 120. In so doing, the combined sealing systems 200A, 200B, 200C can provide a seal substantially completely around the panel 110.
Side Active Sealing Mechanisms
Referring to
The active seal 205 operates by having a movable member 210A, disposed in the jamb 140, engage a stationary or movable portion of the sash of the panel 110. In certain aspects of the active sealing system 200A, as illustrated, the movable member 210A is positioned in the jamb 140 of the frame 120 and engages a stationary face 255 on the sash of the panel 110.
In certain aspects of the sealing system 200A, the active seal 205 can create a seal 250 between the movable member 210A and the opposing face 255. The movable member 210A and/or opposing face 255 may include passive seals 265 on one or both surfaces. The active seal 205 is not limited in the manner by which the movable member 210A engages the opposing face 255. For example, the movable member 210A may operate as a linearly-traveling piston. However, in certain aspects of the active seal 205, the movable member 210A (hereinafter referred to as seal gate 210A) pivots about a seal pivot 220. The manner by which the seal gate 210A is driven in not limited. For example, the seal gate 210A may be directly driven, for example, at the seal pivot 220. Alternatively, in certain aspects of the active seal, the seal gate 210A is driven using a drive gate 230 that causes the seal gate 210A to rotate about the seal pivot 220.
Although not limited in this manner, the drive gate 230 pivots about a drive pivot 240 and is itself driven by a drive system 300 (see discussion with regard to
Lower Sealing Mechanism
Referring to
In certain aspects of the sealing system 200, the seal 250 is formed by engagement of the movable member 210B positioned on one of the frame 120 and sash 160 with another feature positioned on the other of the frame 120 and sash 160. However, in certain aspects of the sealing system 200, the movable member 210B is disposed in the frame 120 and engages a portion of the sash 160 of the panel 110.
Although not limited in this manner, the movable member 210B may engage one or more pins 275 extending from the sash of the panel 110. As the panel 110 is positioned within the closed position, the pin 275 passes through a slot 281 within the movable member 210B. The slot 281 may have widths. Within the portion of the slot 281 having a wider width, the pin 275 can be inserted into and withdrawn from the slot 281 without interference. The slot 281 also has a portion having a narrower width which is dimensioned to be less than a diameter of a portion of the pin 275.
Once in the closed position, the movable member 210B moves relative to the pin 275 and positions a portion of the movable member 210B within a recess 285 of the pin 275. The portion of the movable member 210B positioned with the recess 285 corresponds to the portion of the slot 281 having the narrower width. Upon the movable member 210B being positioned within the recess 285 (see
Referring to
Upper Sealing Mechanism
Referring to
As the panel 110 moves from the open position (i.e.,
After the panel 110 has been positioned within the closed position of the panel 110 relative to the frame 120, second drive shaft 287 drives the movable member 210C against the header 130, thereby increasing a force being exerted by the movable member 210C against the header 130. When the sealing system 200C is to be unlocked, the stored energy within the biasing member can be released, the result of which is to reduce the force being exerted by the movable member 210C against the header 130.
Seal Drive Mechanisms
Referring to
The manner in which the drive system 300 moves the sealing system 200 from the unlocked configuration to the locked configuration (and back again) is not limited as to a particular methodology and/or device. As can be readily envisioned, the configuration and operation of the drive system 300 may be determined by the configuration and operation of the sealing systems 200A, 200B, 200C. The drive system 300 may be driven with a manual device. However, other devices capable of driving a sealing system 200 are commonly known, such as a pneumatic, hydraulic, magnetic, mechanical, and electro-mechanical devices. A combination of these devices may also be used.
Referring to
Transfer System
Referring to
Many types of transfer systems are capable of transferring motion from one drive system 300 to another drive system 300, and the door/window system 100 is not limited as to a transfer system 290, 295 so capable. For example, as illustrated in
Although not limited in this manner, the transfer system 290 includes a pair of links 291, 293 attached to one another about a pivot 296. The drive link 293 is attached to the first drive shaft 280, and the coupling link 291 is attached to the movable member 210B. The coupling link 291 also rotates about a stationary pin 292. As the first drive shaft 280 rotates, the movable member 210B moves along a plan substantially parallel to the sill 150 of the frame 120.
Referring to
As is recognized by those skill in the art, many different mechanisms can be used to transfer rotational movement along one axis to rotational movement along another axis or rotational movement to linear movement, and the door/window system 100 is capable of using any transfer system so capable.
Drive Mechanisms
Many types of motive power is capable of being supplied to the drive systems 300, and the door/window system 100 is not limited as to a particular device or manner so capable. For example, a manual handle may be used to rotate one of the drive shaft (e.g., the first drive shaft 285). In addition to, or as an alternative to a handle, an electro-mechanical system may be provided to supply motive power to the drive systems 300. The electro-mechanical system is not limited in the manner in which the electro-mechanical system receives electrical power. For example, the electro-mechanical system may receive electrical power from a battery located within the frame 120 or the panel 110. In addition to, or alternatively, the electromechanical system may receive electrical power from line voltage via the structure in which the door/window system is installed.
This application is a Continuation-In-Part of U.S. application Ser. No. 11/846,139, filed on Aug. 28, 2007, which is a Continuation-In-Part of U.S. application Ser. No. 11/322,952, filed on Dec. 30, 2005 and a Continuation-In-Part of U.S. application Ser. No. 11/756,957, filed on Jun. 1, 2007, which is a Continuation-In-Part of U.S. application Ser. No. 11/425,377, filed on Jun. 20, 2006, all of which are incorporated herein by reference in their entirety. This application also claims the benefit of U.S. Provisional Application No. 61/101,542, filed Sep. 30, 2008, which is incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 12/414,948 filed Mar. 31, 2009 and entitled “SEALING SYSTEMS FOR GARAGE DOOR,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
19217 | Tinney | Jan 1858 | A |
313742 | Kintner | Mar 1885 | A |
703889 | Berry | Jul 1902 | A |
724139 | Smith | Mar 1903 | A |
918213 | Specht | Apr 1909 | A |
946305 | Abbott | Jan 1910 | A |
966939 | Mitchell | Aug 1910 | A |
982828 | Kelly | Jan 1911 | A |
1009978 | Knappe | Nov 1911 | A |
1021862 | Culver | Apr 1912 | A |
1170101 | Pullets | Feb 1916 | A |
1178775 | Albright | Apr 1916 | A |
1265478 | Montgomery | May 1918 | A |
1345967 | Smelser | Jul 1920 | A |
1468958 | Champion | Sep 1923 | A |
1489018 | Shultz | Apr 1924 | A |
1675230 | Snyder | Jun 1928 | A |
1715188 | Bullock | May 1929 | A |
1716764 | Carrigan | Jun 1929 | A |
1797839 | Ramsay | Mar 1931 | A |
1974269 | Gonder | Sep 1934 | A |
1977726 | Jacobson | Oct 1934 | A |
1993506 | Fauner | Mar 1935 | A |
1995939 | Osten | Mar 1935 | A |
2065590 | Jennings | Dec 1936 | A |
2207065 | McCormick | Jul 1940 | A |
2248719 | Owen | Jul 1941 | A |
2268114 | Foster | Dec 1941 | A |
2541421 | Hunter | Feb 1951 | A |
2552369 | Currie | May 1951 | A |
2593093 | Bjork | Apr 1952 | A |
2628678 | Webster | Feb 1953 | A |
2663056 | Hardgrave | Dec 1953 | A |
2719342 | Hunt | Oct 1955 | A |
2753020 | Ware, Jr. | Jul 1956 | A |
2763038 | Hagerty et al. | Sep 1956 | A |
2766860 | Travis | Oct 1956 | A |
2805451 | Evans | Sep 1957 | A |
2837151 | Stroup | Jun 1958 | A |
2862256 | Stroup | Dec 1958 | A |
2862262 | Shea | Dec 1958 | A |
2928144 | Persson | Mar 1960 | A |
3004309 | Karodi | Oct 1961 | A |
3054152 | Trammell | Sep 1962 | A |
3059287 | Baruch | Oct 1962 | A |
3070856 | Minick | Jan 1963 | A |
3077644 | Kesling | Feb 1963 | A |
3098519 | Myers | Jul 1963 | A |
3111727 | Gerecke | Nov 1963 | A |
3126051 | Sussin | Mar 1964 | A |
3161229 | Sanders | Dec 1964 | A |
3163891 | Seliger | Jan 1965 | A |
3184806 | Bragman | May 1965 | A |
3252255 | Marpe | May 1966 | A |
3289377 | Hetman | Dec 1966 | A |
3295257 | Douglass | Jan 1967 | A |
3335524 | Carson | Aug 1967 | A |
3374821 | White | Mar 1968 | A |
3383801 | Dallaire | May 1968 | A |
3466801 | Bohn | Sep 1969 | A |
3512303 | Wright | May 1970 | A |
3590530 | Duguay | Jul 1971 | A |
3590531 | Childs | Jul 1971 | A |
3660936 | Bryson | May 1972 | A |
3660940 | Tavano | May 1972 | A |
3816966 | Sause, Jr. | Jun 1974 | A |
3818636 | Calais et al. | Jun 1974 | A |
3821884 | Walsh | Jul 1974 | A |
3848908 | Rich | Nov 1974 | A |
3857199 | Frach et al. | Dec 1974 | A |
3910155 | Wilson | Oct 1975 | A |
3959927 | Good | Jun 1976 | A |
4018022 | Fink | Apr 1977 | A |
4027431 | Rackard | Jun 1977 | A |
4064651 | Homs | Dec 1977 | A |
4128967 | Kirsch | Dec 1978 | A |
4170846 | Dumenil et al. | Oct 1979 | A |
4307542 | Lense | Dec 1981 | A |
4317312 | Heideman | Mar 1982 | A |
4322914 | McGaughey | Apr 1982 | A |
4392329 | Suzuki | Jul 1983 | A |
4413446 | Dittrich | Nov 1983 | A |
4453346 | Powell et al. | Jun 1984 | A |
4479330 | Muller | Oct 1984 | A |
4496942 | Matsuoka | Jan 1985 | A |
4535563 | Mesnel | Aug 1985 | A |
4614060 | Dumenil et al. | Sep 1986 | A |
4643239 | Wentzel | Feb 1987 | A |
4656779 | Fedeli | Apr 1987 | A |
4656799 | Maryon | Apr 1987 | A |
4716693 | Webster | Jan 1988 | A |
4765105 | Tissington et al. | Aug 1988 | A |
4768316 | Haas | Sep 1988 | A |
4831509 | Jones et al. | May 1989 | A |
4837560 | Newberry | Jun 1989 | A |
4870909 | Richter | Oct 1989 | A |
4936049 | Hansen | Jun 1990 | A |
5007202 | Guillon | Apr 1991 | A |
5020292 | Strom et al. | Jun 1991 | A |
5029911 | Daniels | Jul 1991 | A |
5030488 | Sobolev | Jul 1991 | A |
5187867 | Rawlings | Feb 1993 | A |
5293726 | Schick | Mar 1994 | A |
5327684 | Herbst | Jul 1994 | A |
5339881 | Owens | Aug 1994 | A |
5349782 | Yulkowski | Sep 1994 | A |
5379518 | Hopper | Jan 1995 | A |
5446997 | Simonton | Sep 1995 | A |
5467559 | Owens | Nov 1995 | A |
5479151 | Lavelle et al. | Dec 1995 | A |
5511833 | Tashman et al. | Apr 1996 | A |
5521585 | Hamilton | May 1996 | A |
5522180 | Adler et al. | Jun 1996 | A |
5522195 | Bargen | Jun 1996 | A |
5569878 | Zielinski | Oct 1996 | A |
5584142 | Spiess | Dec 1996 | A |
5605013 | Hogston | Feb 1997 | A |
5638639 | Goodman et al. | Jun 1997 | A |
5784834 | Stutzman | Jul 1998 | A |
5786547 | Zielinski | Jul 1998 | A |
5848630 | Manzo | Dec 1998 | A |
5870859 | Kitada | Feb 1999 | A |
5870869 | Schrader | Feb 1999 | A |
5964060 | Furlong | Oct 1999 | A |
6041552 | Lindahl | Mar 2000 | A |
6057658 | Kovach et al. | May 2000 | A |
6061967 | Judds | May 2000 | A |
6082047 | Comaglio et al. | Jul 2000 | A |
6105313 | Holloway et al. | Aug 2000 | A |
6112466 | Smith et al. | Sep 2000 | A |
6112467 | Bark et al. | Sep 2000 | A |
6112496 | Hugus et al. | Sep 2000 | A |
6119307 | Weishar et al. | Sep 2000 | A |
6170195 | Lim | Jan 2001 | B1 |
6173533 | Cittadini et al. | Jan 2001 | B1 |
6181089 | Kovach et al. | Jan 2001 | B1 |
6202353 | Giacomelli | Mar 2001 | B1 |
6218939 | Peper | Apr 2001 | B1 |
6243999 | Silverman | Jun 2001 | B1 |
6289643 | Bonar | Sep 2001 | B1 |
6318037 | Hansen | Nov 2001 | B1 |
6442899 | Gledhill | Sep 2002 | B1 |
6490832 | Fischbach et al. | Dec 2002 | B1 |
D470252 | Castrey | Feb 2003 | S |
6546682 | DeBlock et al. | Apr 2003 | B1 |
6553735 | Chen | Apr 2003 | B1 |
6568131 | Milano, Jr. | May 2003 | B1 |
6619005 | Chen | Sep 2003 | B1 |
6644884 | Gledhill | Nov 2003 | B2 |
6651389 | Minter et al. | Nov 2003 | B2 |
6772818 | Whitley et al. | Aug 2004 | B2 |
6786005 | Williams | Sep 2004 | B1 |
6871902 | Carson et al. | Mar 2005 | B2 |
6973753 | Liebscher | Dec 2005 | B2 |
7010888 | Tumlin et al. | Mar 2006 | B2 |
7124538 | Kline | Oct 2006 | B1 |
7145436 | Ichikawa et al. | Dec 2006 | B2 |
7185468 | Clark et al. | Mar 2007 | B2 |
7487616 | Deaver | Feb 2009 | B2 |
7566035 | Bonshor | Jul 2009 | B2 |
7624539 | Speyer et al. | Dec 2009 | B2 |
7627987 | Thielmann et al. | Dec 2009 | B2 |
7665245 | Speyer et al. | Feb 2010 | B2 |
7685774 | Thielmann | Mar 2010 | B2 |
7685775 | Speyer et al. | Mar 2010 | B2 |
7685776 | Speyer et al. | Mar 2010 | B2 |
7707773 | Thielmann et al. | May 2010 | B2 |
7719213 | Herman et al. | May 2010 | B2 |
8074399 | Speyer et al. | Dec 2011 | B2 |
8074400 | Speyer et al. | Dec 2011 | B2 |
8109037 | Speyer et al. | Feb 2012 | B2 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20040068935 | Ichikawa et al. | Apr 2004 | A1 |
20040194386 | Albiero | Oct 2004 | A1 |
20050097842 | Arcamonte et al. | May 2005 | A1 |
20050102908 | Martin | May 2005 | A1 |
20060207199 | Darnell | Sep 2006 | A1 |
20070289221 | Speyer et al. | Dec 2007 | A1 |
20070290456 | Speyer et al. | Dec 2007 | A1 |
20090151259 | Speyer et al. | Jun 2009 | A1 |
20090165415 | Salerno | Jul 2009 | A1 |
20090165423 | Salerno | Jul 2009 | A1 |
20100077665 | Speyer et al. | Apr 2010 | A1 |
Entry |
---|
Dictionary.com, “Active,” retrieved online at: http://dictionary.reference.com/browse/active (2010). |
Patio Life—Operation, retrieved online at: http://www.rotohardware.com/Products/Patio%20Life/PL-Operation.htm (2006). |
International Search Report for Application No. PCT/US2010/029383, dated May 25, 2010. |
International Search Report for Application No. PCT/US2010/029206, dated Jun. 2, 2010. |
Number | Date | Country | |
---|---|---|---|
20090178344 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61101542 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11846139 | Aug 2007 | US |
Child | 12414948 | US | |
Parent | 11322952 | Dec 2005 | US |
Child | 11846139 | US | |
Parent | 11756957 | Jun 2007 | US |
Child | 11322952 | US | |
Parent | 11425377 | Jun 2006 | US |
Child | 11756957 | US |