Combined stereoscopic and phase detection depth mapping in a dual aperture camera

Information

  • Patent Grant
  • 10904512
  • Patent Number
    10,904,512
  • Date Filed
    Wednesday, September 6, 2017
    8 years ago
  • Date Issued
    Tuesday, January 26, 2021
    4 years ago
Abstract
In an imaging system having a first camera with a first field of view (FOV) and a second camera with a second FOV smaller than the first FOV, wherein the first and second FOVs overlap over an overlap region, a method for calculating a calibrated phase detection depth map over the entire first FOV comprises calculating a stereoscopic depth map in the overlap region using image information provided by the first and second cameras, obtaining a first camera phase detection (PD) disparity map in the entire first FOV, and using the stereoscopic depth map in the overlap region to provide a calibrated 2PD depth map in the entire first FOV.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a 371 National Phase application from international application PCT/IB2017/055380 filed Sep. 6, 2017.


FIELD

Embodiments disclosed herein relate in general to digital cameras and in particular to dual-aperture digital cameras.


BACKGROUND

Digital camera modules are currently being incorporated into a variety of host devices. Such host devices include cellular telephones (e.g. smartphones), personal data assistants (PDAs), computers, and so forth. Some of these host devices include two or more digital camera modules (also referred to as optical imaging sub-systems or “sub-cameras”). When two such modules are used for example as “back” cameras in a smartphone, the back cameras provide a dual-aperture imaging system, also referred to a “dual-aperture camera”. A number of smartphone manufacturers already include dual-aperture cameras in their products.


Dual-aperture cameras disclosed by at least some of the present inventors may be found for example in U.S. Pat. Nos. 9,185,291, 9,392,188 and 9,413,972. In a dual-aperture digital camera, each sub-camera includes one or more lenses and/or other optical elements which define an aperture such that received electro-magnetic radiation is imaged by the optical sub-system and a resulting image is directed towards a two-dimensional (2D) pixelated image sensor region. The image sensor (or simply “sensor”) region is configured to receive the image and to generate a set of image data based on the image. The digital camera may be aligned to receive electromagnetic radiation associated with scenery having a given set of one or more objects. The set of image data may be represented as digital image data, as well known in the art. Hereinafter in this description, “image” “image data” and “digital image data” may be used interchangeably. Also, “object” and “scene” may be used interchangeably. As used herein, the term “object” is an entity in the real world imaged to a point or pixel in the image.


A sensor and its associated lens form a lens/sensor combination. The two lenses of a dual-aperture camera have different focal lengths. Thus, even though each lens/sensor combination is aligned to look in the same direction, each captures an image of the same subject but with two different fields of view (FOVs). In such cases, one camera and its lens and sensor are commonly called “Wide” and the other camera and its sensor and lens are commonly called “Tele”. Each sensor provides a separate image, referred to respectively as “Wide” (or “W”) and “Tele” (or “T”) images. A Wide image reflects a wider FOV (marked FOVW) than a Tele image (where the FOV is marked FOVT). The Wide image also has lower resolution than the Tele image.


Depth maps and associated methods to obtain such maps using multi-cameras (and in particular dual-aperture cameras) are known. A depth map is a rendition of depth values for all the pixels in an image. If one can calculate the depth value of each pixel, then in essence one gets a depth map. The depth map can be extracted or calculated from a disparity map (a rendition of disparity for each pixel) plus from additional information discussed below.


A depth map obtained with a dual-aperture camera is referred to as “stereoscopic” depth map. In some dual-aperture cameras, one (“reference”) camera is equipped with a Wide lens and with a Phase-Detection (PD) sensor. The second camera is equipped with a Tele lens, so that the overlapping field of view of the two cameras is partial relative to the FOV reference camera. The region of the Tele FOV that overlaps the Wide FOV is referred to as “overlap region”. All regions in the Wide FOV that are not overlapped by the Tele FOV are referred to as “non-overlap regions”. Alternatively, in some embodiments both cameras may be equipped with a 2PD sensor, i.e. a sensor in which each sensor pixel is divided into 2 sub-pixels and supports depth estimation via calculation of disparity between the image produced by all the right sub-pixels and that produced by all left sub-pixels. PD sensors take advantage of multiple micro-lenses (or partially covered micro-lenses) to detect pixels in and out of focus. Micro-lenses are calibrated so that objects in focus are projected onto the sensor plane at the same location relative to the lens, see FIG. 1.



FIG. 1 shows a point object 102 in focus, with a micro-lens projecting the light from the object onto the center of two sub-pixels, causing zero-disparity. FIG. 2 shows light-rays from a point object 202 out of focus. The left micro-lens projects the light from the object onto the center of the left sub-pixel. The right micro-lens projects the same object onto the right sub-pixel, causing a positive disparity value of 2, which is not directly related to the true distance of the object from the sensor. Objects before/after the focal plane are projected to different locations relative to each lens, creating a positive/negative disparity between the projections. As stated above, this disparity is zero for the focal plane and increases in magnitude as the object moves further away from that plane. The 2PD disparity information can be used to create a “2PD depth map”. Note that this 2PD depth map is both crude (due to a very small baseline) and relative to the focal plane. That is, zero-disparity is detected for objects in focus, rather than for objects at infinity.


All known methods to obtain depth maps using dual or multi-aperture cameras suffer from the problem that while the depth map is accurate in an overlap region, it is inaccurate in the non-overlap region. For camera arrays where the FOV of the modules is different (e.g. dual- or multi-aperture cameras with Wide and Tele lenses), a fine and absolute depth map can be extracted only for the overlap region using mainly the stereoscopic information. No absolute depth map can be obtained for the non-overlap regions. There is therefore a need for and it would be advantageous to have systems and methods to extend the absolute depth information to the non-overlap regions as well. Further, it would be advantageous to enhance the accuracy of the depth map in the overlap region, by relying on additional information from 2PD sensor(s).


SUMMARY

In an exemplary embodiment there is provided a method comprising providing an imaging system having a first camera with a first FOV and a second camera with a second FOV smaller than the first FOV, wherein the first FOV and the second FOV overlap over an overlap region, calculating a stereoscopic depth map in the overlap region using respective image information provided by the first and second cameras, obtaining a first camera 2 sub-pixel phase detection (2PD) disparity map in the entire first FOV, and improving the stereoscopic depth map or the 2PD depth map in at least the overlap region using the stereoscopic depth map in the overlap region and/or the first camera 2PD disparity map in the entire first FOV.


In an exemplary embodiment, the improving the stereoscopic depth map or the 2PD depth map in at least the overlap region includes using the stereoscopic depth map in the overlap region and/or the first camera 2PD disparity map in the entire first FOV to provide a calibrated 2PD depth map in the entire first FOV.


In an exemplary embodiment, the calculating a stereoscopic depth map in the overlap region includes calculating an absolute stereoscopic depth map in the overlap region.


In an exemplary embodiment, the calculating an absolute stereoscopic depth map in the overlap region includes cropping the image information provided by the first camera to match the second FOV so that disparity at infinity is zero.


In an exemplary embodiment, the using the stereoscopic depth map in the overlap region and the first camera 2PD disparity map in the entire first FOV to provide a calibrated PD depth map in the entire first FOV includes converting disparities in the first camera 2PD disparity map in the entire first FOV from pixel units into calibrated physical units based on the calibrated result of a stereo disparity.


In an exemplary embodiment, the improving the stereoscopic depth map or the 2PD depth map in at least the overlap region includes using the 2PD depth map to improve the stereoscopic depth map in the overlap region.


In an exemplary embodiment, the obtaining a 2PD depth map in the entire first FOV includes obtaining the 2PD depth map using a first camera image sensor.


In an exemplary embodiment, the obtaining a 2PD depth map in the entire first FOV includes obtaining the 2PD depth map using a first camera image sensor and a second camera image sensor.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated by like numerals. Elements in the drawings are not necessarily drawn to scale.



FIG. 2 shows an object in focus, with a micro-lens projecting the light from the object onto the center of two sub-pixels, causing zero-disparity;



FIG. 3 shows an object out of focus, with a left micro-lens projecting the light from the object onto the center of the left sub-pixel and a right micro-lens projecting the same object onto the center of the right sub-pixel, causing a positive disparity value of 2, which has no physical meaning of the true object distance;



FIG. 3 shows an exemplary baseline (d1) between two cameras used for stereoscopic depth calculation;



FIG. 4 shows on the left an exemplary disparity map obtained from the 2PD sensor and on the right the disparity map for the same image generated using a stereoscopic method;



FIG. 5 shows an exemplary baseline (d2) used for 2PD depth calculation;



FIG. 6 shows in a flow chart an exemplary embodiment of a method disclosed herein;



FIG. 7 shows in (a) an exemplary disparity map for an image generated using a 2PD sensor and on the right, in (b) the disparity map for the same image generated using a stereoscopic method, and in (c) a calibrated result with physical distance units as produced by the method described in the flow chart of FIG. 6.





DETAILED DESCRIPTION

An exemplary embodiment of a method to extend the absolute depth information obtained by stereoscopic vision in the overlap region to the non-overlap region as well is described next, with reference to FIG. 6. In the exemplary embodiment, the method includes:


In a step 602, provide Wide and Tele images having respective Wide and Tele field of view (FOVs)


In a step 604, crop the Wide image so that disparity at infinity is zero to provide a cropped Wide image. This prepares the Wide camera image for depth calculation.


In a step 606, calculate stereoscopic disparity (in absolute physical units) in the overlap region using the cropped Wide image and the Tele image to output a disparity map in absolute physical units in the overlap region. Such a disparity map has zero-disparity at infinity and in general follows equation 1:









Z
=




F
wide

*

d
1



D
1







(
1
)








where Z is the reference (in this case Wide) camera-to-object distance in physical units (e.g. in mm), Fwide the focal length of the Wide camera, d1 the distance between the centers of the main lenses (baseline) and D1 is the disparity in pixels (see FIG. 3 for more details). For example, d1=10 mm. Equation 1 provides stereoscopic conversion from disparity in pixel units to distance in physical units. Note that this equation is true for optimal conditions, which can be obtained by applying a known calibration process.

    • In a step 608, calculate a 2PD disparity map with disparities in pixel units in the entire Wide FOV using a 2PD sensor. FIG. 4 shows on the left an exemplary 2PD disparity map obtained from a 2PD sensor: the central region (marked with dots) is in focus and thus has zero disparity (pixel units). Other pixels have different disparity values, i.e. are out of focus, but their camera-to-object distance is unknown. On the right, FIG. 4 shows a disparity map for the same image generated using a known stereoscopic method the disparity in pixels is zero for objects at infinity and increases as the object distance from the camera decreases. Thus, the 2PD disparity values can be converted to the physical camera-to-object distances. Disparities in the stereoscopic map are much larger, as the baseline is larger (d2<d1).
    • The 2PD disparities may be converted from pixel units to distance in physical units using Equation 2.









Z
=




F
wide

*

d
2




D
infinity

-

D
2








(
2
)








where Z is the camera-to-object distance in physical units (e.g. mm), Fwide the focal length of the Wide camera, d2 is approximately equal to 0.5×m where m is the diameter of the wide camera lens aperture and, Dinfinity is the disparity of objects at infinity and D2 the disparity in pixels, dependent on focal position (see FIG. 5 for more details). For example, m=2 mm. Note that Dinfinity depends on the focus position.

    • In a step 610, compare the absolute stereoscopic physical distances obtained in step 606 with the 2PD disparities obtained in step 608 in the overlap region to create an absolute physical distance map for the entire Wide FOV For a given pixel in the overlap region, its camera-to-object distance in physical units (Z), should be identical for both (stereoscopic and 2PD) methods Based on equation 1 and equation 2, Dinfinity is found using equation 3:










D
infinity



=




d
2

*

D
1



d
1


+

D
2







(
3
)








Using Dinfinity, the disparities in the non-overlap region can now be converted into calibrated physical units, by applying equation 2.



FIG. 7 shows in (a) an exemplary disparity map for an image generated using a 2PD sensor and in (b) the disparity map for the same image generated using a stereoscopic method. Both (a) and (b) show disparities (offsets) in units of pixel. FIG. 7 shows in (c) a calibrated depth map obtained over the entire Wide FOV with a method disclosed herein, with physical distance units (e.g. cm). The dotted areas in (a), (b) and (c) represent the overlap region.


Alternatively or in addition to the extension of the absolute depth information obtained by stereoscopic vision in the overlap region to the non-overlap region, one may use the 2PD disparity map from step 608 above to enhance the result of stereoscopic disparity, step 612. The 2PD disparities may be obtained from the Wide camera alone, of from both the Wide and Tele cameras. The 2PD disparity map can be used to define a local search range for the stereoscopic algorithm. 2PD disparity can be calculated along a vertical (e.g. Y) axis, while stereoscopic disparity can be calculated along a horizontal (e.g. X) axis, or vice-versa (depending on hardware assembly). Objects lying along a single axis will be better detected by one calculation than by the other (i.e. by 2PD disparity vs. stereoscopic disparity or vice versa). Such objects are detected and greater reliability is assigned to the appropriate choice.


The level of disagreement between the depth calculated by the 2PD disparity and the depth calculated by stereoscopic disparity algorithms can be used as a reliability measure per pixel. For example, after the calibration of the 2PD disparity map (using steps 600-610 above for the overlap region only), one may compare the depth calculated by both methods. In case of significant disagreement (for example, if the stereoscopic disparity method can reach an accuracy of ±1 pixel, “significant disagreement” may be defined as more than 2 pixels), this depth value can be considered unreliable and marked as an outlier.


In conclusion, using either steps 600-610 or steps 600-608 plus the enhancement of stereoscopic disparity described above, the entire FOV of the Wide camera will have absolute disparity values (i.e. true physical distance to an object), with the overlap region obtaining these absolute values from the stereoscopic+2PD values and the non-overlap region obtaining these absolute values based on Equation 3.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. For example, while the usage of 2 cameras for depth calculation is described in some detail, depth information may be extracted from multiple (>2) cameras as well. The disclosure is to be understood as not limited by the specific embodiments described herein.


All references mentioned in this application are hereby incorporated by reference in their entirety for all purposes set forth herein. It is emphasized that citation or identification of any reference in this application shall not be construed as an admission that such a reference is available or admitted as prior art.

Claims
  • 1. A method, comprising: obtaining respective image information by applying an imaging system having a first camera with a first field of view (FOV) and a second camera with a second FOV smaller than the first FOV, wherein the first FOV and the second FOV overlap over an overlap region;calculating a stereoscopic depth map in the overlap region using the respective image information provided by the first and second cameras;obtaining a first camera 2 sub-pixel phase detection (2PD) disparity map in the entire first FOV; andgenerating a calibrated 2PD depth map in the entire first FOV to improve the stereoscopic depth map or a 2PD depth map in at least the overlap region based on the stereoscopic depth map in the overlap region and the first camera 2PD disparity map in the entire first FOV.
  • 2. The method of claim 1, wherein the generating the calibrated 2PD depth map in the entire first FOV to improve the stereoscopic depth map or the 2PD depth map in at least the overlap region includes using the stereoscopic depth map in the overlap region ands the first camera 2PD disparity map in the entire first FOV.
  • 3. The method of claim 2, wherein the calculating a stereoscopic depth map in the overlap region includes calculating an absolute stereoscopic depth map in the overlap region.
  • 4. The method of claim 3, wherein the calculating an absolute stereoscopic depth map in the overlap region includes cropping the image information provided by the first camera to match the second FOV so that disparity at infinity is zero.
  • 5. The method of claim 4, wherein the using the stereoscopic depth map in the overlap region and the first camera 2PD disparity map in the entire first FOV includes converting disparities in the first camera 2PD disparity map in the entire first FOV from pixel units into calibrated physical units based on the calibrated result of a stereo disparity.
  • 6. The method of claim 1, wherein the generating the calibrated 2PD depth map in the entire first FOV to improve the stereoscopic depth map or the 2PD depth map in at least the overlap region includes using the 2PD depth map to improve the stereoscopic depth map in the overlap region.
  • 7. The method of claim 6, wherein the obtaining the 2PD depth map in the entire first FOV includes obtaining the 2PD depth map using a first camera image sensor.
  • 8. The method of claim 6, wherein the obtaining the 2PD depth map in the entire first FOV includes obtaining the 2PD depth map using a first camera image sensor and a second camera image sensor.
  • 9. A method comprising: obtaining respective image information by applying an imaging system having a first camera with a first field of view (FOV) and a second camera with a second FOV smaller than the first FOV, wherein the first FOV and the second FOV overlap over an overlap region;calculating a stereoscopic depth map in the overlap region using the respective image information provided by the first and second cameras;obtaining a first camera 2 sub-pixel phase detection (2PD) disparity map in the entire first FOV; andgenerating a calibrated 2PD depth map in the entire first FOV to improve a 2PD depth map in at least the overlap region based on the stereoscopic depth map in the overlap region and the first camera 2PD disparity map in the entire first FOV.
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2017/055380 9/6/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2019/048904 3/14/2019 WO A
US Referenced Citations (291)
Number Name Date Kind
4199785 McCullough et al. Apr 1980 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6208765 Bergen Mar 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
3274552 Dahi et al. Sep 2012 A1
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8803990 Smith Aug 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9392188 Shabtay et al. Jul 2016 B2
9413930 Geerds Aug 2016 B2
9413972 Shabtay et al. Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070126911 Nanjo Jun 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070247522 Holliman Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110188736 Xu Aug 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahl et al. May 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150138381 Ahn May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160241751 Park Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170118399 Kim et al. Apr 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170242225 Fiske Aug 2017 A1
20170289458 Song et al. Oct 2017 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20190121103 Bachar et al. Apr 2019 A1
Foreign Referenced Citations (39)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102739949 Oct 2012 CN
103024272 Apr 2013 CN
103841404 Jun 2014 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2006238325 Sep 2006 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2010204341 Sep 2010 JP
2011085666 Apr 2011 JP
2013106289 May 2013 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20140014787 Feb 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (17)
Entry
International Search Report and Written Opinion issued in related PCT patent application PCT/IB2017/055380, dated Jan. 26, 2018. 7 pages.
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7 μm Pixels in 0.11 μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera an-ay, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 9 pages.
Superimposed multi-resolution imaging, Caries et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Related Publications (1)
Number Date Country
20200221064 A1 Jul 2020 US