Combined vapor and particulate filter

Information

  • Patent Grant
  • 6821321
  • Patent Number
    6,821,321
  • Date Filed
    Tuesday, September 3, 2002
    22 years ago
  • Date Issued
    Tuesday, November 23, 2004
    20 years ago
Abstract
A personal respirator has a face mask and is provided with a filter unit comprising a canister housing contiguous layers of novel filter material. The filter material is suitable for both particulate and vapor filtration, and comprises a composite of first and second groups of chopped fibres, the fibres of the first group having a relatively large diameter (about 7×10−6 m) and the second group having a relatively small diameter (about 0.5×10−6 m).
Description




BACKGROUND OF THE INVENTION




This invention relates to filter material and is concerned with both the production and use of the material. Filter materials made of several different fibre types, including fibres with different diameter dimensions are already known in the art. Database WPI Section Ch, Week 198733 Derwent Publications Ltd, London reference AN 1987-231919 discloses a filter material comprising 20-60% active carbon fibre with a diameter less than 15×10


−6


m; 10-20% ultra thin glass fibre with a diameter of 0.2-0.5×10


−6


m; and 20-70% cellulose fibre. Database WPI Section Ch, Week 198506 Derwent Publications Ltd, London reference AN 1985-034894 discloses a filter material comprising 20% fibres with a diameter 0.1-3×10


−6


m eg K titanate fibre; 20% fibres with a diameter 5-15×10


−6


m eg polyethylene terephthalate; and 20% fibres with a diameter 20-50×10


−6


m eg polyethylene terephthalate. U.S. Pat. No. 4,765,812 discloses a filter material comprising 10-20% of a binder material, and 80-90% of a fibre mixture wherein the fibre mixture comprises 75-95% fibres with a diameter greater than or equal to 20×10


−6


m and 5-25% fibres with a diameter less than 3×10


−6


m.




BRIEF SUMMARY OF THE INVENTION




Material according to the invention is suitable for both particulate and vapour filtration.




As used herein, the term “vapour” includes air and gases.




According to one aspect of the invention, filter material suitable for both particulate and vapour filtration comprises a composite of first and second groups of fibres, the fibres of the first group having a relatively large diameter, and the fibres of the second group having a relatively small diameter.




Typically, the fibres of the first group have a diameter of about 7.0×10


−6


m and the fibres of the second group have a diameter of about 0.5×10


−6


m.




Also typically, the composite material contains about 70% (by mass) of first group fibres.




The fibres of the first group may comprise carbon fibres the fibres of the second group may comprise glass and/or carbon fibres.




According to a second aspect of the invention, a method of producing filter material of composite form suitable for both particulate and vapour filtration, comprises mixing together with binder, first and second groups of fibres, fibres of the first group having a relatively large diameter and fibres of the second group having a relatively small diameter.




The invention also comprises filter material produced by the foregoing method.




The invention further comprises a respirator provided with a filter unit incorporating the novel filter material.




The various aspects of the invention will now be described, by way of example only, with reference to the accompanying drawings wherein:











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a respirator provided with a filter unit,





FIG. 2

is a cross-section of filter material employed by the filter unit,





FIG. 3

is a flow chart illustrating manufacturing steps used in producing the filter material and





FIGS. 4

,


5


and


6


illustrate various forms of filter materials.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a personal respirator


1


of the form disclosed by GB 2,080,120 (Secretary of State for Defence), having a face mask


2


, a filter unit


3


and a canister


4


. By the current invention, canister


4


houses contiguous layers


5


of filter material


6


according to the invention (FIG.


2


).




Filter material


6


is suitable for both particulate and vapour filtration, a comprises a composite of first and second groups


10


,


11


of chopped fibres, the fibres of the first group


10


having a relatively large diameter (about 7.0×10


−6


m) and the fibres of the second group


11


having a relatively small diameter (about 0.5×10


−6


m).




The preferred range of fibre diameter is:





















First group




6.0 to 14 × 10


−6


m







Second group




0.1 to 1.0 × 10


−6


m















Preferred length of fibres:





















First group




1.0 mm to 6.0 mm







Second group




100.0 × 10


−6


m to 200.0 × 10


−6


m















First group fibres


10


of this example comprises Polyacrylonitrile (PAN) or pitch carbon fibres which have been activated by conventional steam or CO


2


activation methods so as to render them porous whereby they are capable of adsorbing high boiling point (say >50° C.) vapours. These fibres have also been chemically treated with impregnants so as to render them capable of adsorbing low (e.g. <50° C.) boiling point vapours. The fibres


10


, which may be regarded as macrofibres, make up approximately 70% (by mass) of the composite material. The range of fibre mix may vary, with the fibres


10


of the first group ranging from 60% to 90% (by mass) and fibres


11


of the second group making up the remainder of the mass.




Fibres


11


of the second group, which may be regarded as microfibres, comprise vapour grown carbon (or glass) fibres.




The first group fibres filter vapours and the second group fibres filter particulates. By combining the two groups of fibres a combined vapour and particulate filter material results.




The dual role of the filter material results in a reduction in weight (when compared with conventional two filter units), as well as a reduction in breathing resistance, due to a lesser requirement for total filtration media.





FIG. 3

illustrates how the filter material is produced.




The desired portions of first and second groups of fibres are mixed in a mixing vessel


15


together with water, soluble binder, such as sodium carboxymethyl cellulose or acrylic base binder and a viscosity modifier such as glycerol, which aids dispersion and ensures a substantially uniform mixture. The mixture is then passed to a sheet former


16


, of the type used in the paper industry to make test samples. Water soluble binder (such as mentioned above) can be added to ensure that the subsequent composite has good mechanical properties.




If binder is added, the material is heated to 130° C. to 150° C. to cure the binder for 10-20 minutes.




Use of the former


16


results in composite filter material of mat form which is subsequently cut to size for incorporation as layers into the filter canister


4


of

FIG. 1

, using cutter


17


.




The composite material can be produced in mats of flat sheet form, such as rectangles (

FIG. 4

) or discs (FIG.


5


). Alternatively, the mats may be pleated (FIG.


6


). The finished shapes are produced so as to allow ease of integration in the respirator system.




EXAMPLES




1. Particulate Removal




A 25 g activated pitch carbon fibre mat has been produced that can remove 99.5% of NaCl particles (mean particle diameter 0.6×10


−6


m) when tested at a face velocity of 30 cc/min. The associated pressure drop is low, 0.9 mmH2O.




2. Vapour Removal




Activated pitch carbon fibres tested against hexane (concentration 4000 mg/m3@ 11/min) in dry conditions (<5% relative humidity), and dry sample. Weight of carbon fibres is 0.8 g in a 2.5 cm brass sample tube. One of the activated carbon fibres did not display any hexane breakthrough until 63 minutes.



Claims
  • 1. Filter material suitable for both particulate and vapour filtration comprising a composite of first and second groups of fibres, the fibres of the first group having a relatively large diameter and the fibres of the second group having a relatively small diameter, wherein the fibres of the first group have a range of 6.0 to 14.0×10−6 m in diameter, wherein the fibres of the second group have a range of 0.1 to 1.0×10−6 m in diameter and wherein the fibres of the first group and the fibres of the second group comprise carbon fibres.
  • 2. Filter material as claimed in claim 1, wherein the fibres of the first group have a range of 1.0 mm to 6.0 mm in length.
  • 3. Filter material as claimed in claim 1, wherein the fibres of the second group have a range of 100.0 to 200.0×10−6 m in length.
  • 4. Filter material as claimed in claim 1, wherein the fibres of the first group are about 7×10−6 m in diameter.
  • 5. Filter material as claimed in claim 1, wherein the fibres of the second group are about 0.5×10−6 m in diameter.
  • 6. Filter material as claimed in claim 1, wherein the fibres of the first group range from 60% to 90% by mass.
  • 7. Filter material as claimed in claim 6, wherein the fibres of the first group comprise approximately 70% by mass.
  • 8. Filter material as claimed in claim 1, wherein the fibres of the first group have been activated by conventional steam or CO2 activation methods.
  • 9. Filter material as claimed in claim 1, wherein the fibres of the first group have been chemically treated with impregnants.
  • 10. A method of producing filter material of composite form suitable for both particulate and vapour filtration, comprising mixing both together, first and second groups of fibres, the fibres of the first group having a relatively large diameter and the fibres of the second group having a relatively mall diameter, wherein the fibres of the first group have a range of 6.0 to 14.0×10−6 m diameter, wherein the fibres the second group have a range of 0.1 to 1.0×10−6 m diameter, and wherein the fibres of the first group and the fibres of the second group comprise carbon fibres.
  • 11. The method as claimed in claim 10, wherein a binder is mixed with the first and second group of fibres.
  • 12. The method as claimed in claim 10, wherein the material is produced as sheets, subsequently cut to size for incorporation as layers in a respirator system.
  • 13. A respirator provided with a filter unit incorporating a filter material comprising a composite of first and second groups of fibres, the fibres of the first group having a relatively large diameter and the fibres of the second group having a relatively small diameter, wherein the fibres of the first group have a range of 6.0 to 14.0×10−6 m in diameter, wherein the fibres of the second group have a range of 0.1 to 1.0×10−6 m in diameter and wherein the fibres of the first group and the fibres of the second group comprise carbon fibres.
  • 14. Filter material as claimed in claim 2, wherein the fibres of the second group have a range of 100.0 to 200.0×10−6 m in length.
  • 15. The method as claimed in claim 11, wherein the material is produced as sheets, subsequently cut to size for incorporation as layers in a respirator system.
Priority Claims (1)
Number Date Country Kind
0005037 Mar 2000 GB
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to Great Britain Application No. 0005037.7 filed on Mar. 3, 2000 and International Application No. PCT/GB01/00836 filed on Feb. 28, 2001 and published in English as International Publication No. WO 01/66223A1 on Sep. 13, 2001, the entire contents of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/GB01/00836 WO 00
Publishing Document Publishing Date Country Kind
WO01/66223 9/13/2001 WO A
US Referenced Citations (7)
Number Name Date Kind
4181513 Fukuda et al. Jan 1980 A
4495030 Giglia Jan 1985 A
4765812 Homonoff et al. Aug 1988 A
5187584 Nishiki et al. Feb 1993 A
5399423 McCullough et al. Mar 1995 A
5976471 Simandl et al. Nov 1999 A
6315806 Torobin et al. Nov 2001 B1
Foreign Referenced Citations (7)
Number Date Country
482137 Mar 1938 GB
2080120 Feb 1982 GB
2-171234 Jul 1990 JP
2-198631 Aug 1990 JP
2031668 Mar 1995 SU
WO 8503013 Jul 1985 WO
WO 9723246 Jul 1997 WO
Non-Patent Literature Citations (3)
Entry
Database WPI Section Ch. Week 198733, Derwent Publication Ltd., London GB; An 1987-231919 XP002165203 & JP 62 155914 A (Toyo Roshi KK), Jul. 10, 1987 (1098-07-10) Abstract.*
Database WPI Section Ch. Week 198733, Derwent Publications Ltd., London, GB; An 1987-231919 XP002165203 & JP 62 155914 A (Toyo Roshi KK), Jul. 10, 1987 Abstract.
Database WPI Section Ch. Week 198606, Derwent Publications Ltd., London GB; AN-1985-034894, XP002165204 & JP 59 228918 A (Teijin Ltd. ), Dec. 22, 1984 Abstract.