The present invention generally relates to apparatus and methods for treatment of airstreams in an Environmental Control System (ECS) to adjust concentrations of air constituents. The constituents include natural air compounds as well as compounds that may cause odor.
ECSs of various types and complexity are used in military and civil airplane, helicopter, and spacecraft applications. In aircraft for example, airflow from outside the aircraft supplied through engine or APU bleed systems or other air sources including ground supplies and electric compressors, is circulated to occupied compartments, cargo compartments, and electronic equipment bays. The air delivered to cabin and other occupied compartment is usually a mixture of similar amounts of outside air and recirculated cabin air. The quality of this air is generally very good, especially at cruise altitudes and during normal operating conditions.
The source of the outside air is compressed engine air. The cost of this outside air is related to the fuel that the engine uses to compress the air without the benefit of generating thrust. Typically, the compression of outside air in the engine and its conditioning by the ECS is up to 3% of the total fuel burn for the flight. In the 1970's, NASA's studies concluded that recirculating cabin air could reduce fuel burn without compromising air quality. Since then, the ratio of recirculated air into the cabin is roughly 50%, but still provides a high flow rate of outside air per passenger. As the recirculation ratio increases above 50%, there is a possibility that the concentration of compounds that cause odors (volatile organic compounds, or VOC's) or carbon dioxide (CO2) from passenger exhalation, may impact the air quality. Another aspect of interest is the cabin pressure, which is determined in part by the pressure and flow rate of compressed engine air. Aluminum aircraft typically have a cabin pressure equivalent to an 8,000 foot altitude, while that of newer, composite aircraft are at 6,000 feet. The cost of pressurizing the cabin increases with lower equivalent altitudes, not only due to the cost of outside air, but to the strength and weight of the fuselage required to contain the increased pressure. Finally, outside air may contain VOC's, especially during ground operations, that may cause smell-in-cabin (SIC) incidents, which may lead to unscheduled and unwarranted maintenance, flight disruptions, and passenger discomfort.
Therefore, it would be desirable to increase the recirculation rate while maintaining or even improving the current air quality.
In one aspect of the present invention, an environmental control system (ECS) having constituents in supply air that flows into an environment, wherein the supply air includes outside air and recirculated air that exits the environment comprises an air conditioning pack that receives the outside air; a mix manifold upstream of the environment; a fan intermediate the environment and the mix manifold; and a regenerative treatment subsystem positioned in one of a: first position downstream of the environment; and second position upstream of the environment.
In another aspect of the present invention, an environmental control system (ECS) having constituents in supply air that flows into an environment, wherein the supply air includes outside air and recirculated air that exits the environment comprises an air conditioning pack that receives the outside air; a mix manifold upstream of the environment; a fan intermediate the environment and the mix manifold; and a regenerative treatment subsystem positioned in one of a: first position intermediate the fan and the environment; second position intermediate the mix manifold and the environment; and third position intermediate the fan and the mix manifold.
In yet another aspect of the present invention, a regenerative treatment subsystem in an environmental control system comprises a first treatment bed having a first set of adsorbent areas; and a second treatment bed having a second set of adsorbent areas; wherein the first and second treatment beds can cycle between an adsorption phase and a desorption phase.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any of the problems discussed above or may address only one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
The present invention generally provides an environmental control system (ECS) that can remove various air constituents in either outside or recirculated air. The outside air may include air entering the ECS through engine or APU bleed systems or other air sources including ground supplies and electric compressors.
As used herein, the term “directly”, in connection with a system component being upstream or downstream of another system component, means that between those two system components there is an absence of a third system component to affect a fluid, except for a means (e.g., tube) to flow fluid between the two system components.
As shown in
From the air conditioning pack 102, conditioned air 103 may flow into a mixing manifold 104 directly downstream of the pack 102. In the mixing manifold 104, the conditioned air 103 can mix with treated recirculation air 115, and distributed as mixed air 105 into a cabin and/or cockpit environment 106 directly downstream of the mix manifold 104.
In cabin and/or cockpit environment 106, the composition of air may be affected so that cabin outflow air 107 may include different concentrations of air constituents such as VOC's, O2, CO and/or CO2 as the outside air 101 or the air entering the cabin or cockpit environment 105. In embodiments, in the outflow air 107, the VOC's may be present from about 0 ppm to about 10 ppm, the O2 may be present from about 20% ppm to about 21%, and the CO2 may be present from about 400 ppm to about 5000 ppm.
The air 107 exiting the environment 106 can be vented overboard 108 and/or recirculated as recirculation air 109.
The recirculation air 109 can be treated by a regenerative treatment subsystem 110 directly downstream of the environment 106. The subsystem may include two or more treatment beds, each of which can adsorb and desorb constituent(s). This can allow for a first treatment bed 110A to be in an adsorption phase adsorbing constituents while a second treatment bed 110B is in a desorption phase desorbing constituents and, thus regenerating itself to adsorb constituents. After one or both phases are completed, the first bed can switch to a desorption phase and the second bed can switch to an adsorption phase. Thereby, the treatment beds can continue to cycle between adsorption and desorption phases.
For example, in
In
In embodiments, the regenerative treatment subsystem 110 may adsorb VOC's such that the VOC's exiting the subsystem 110 in treated air 111 may be at a level of from about 0 ppm to about 1 ppm, or from about 0 ppm to about 0.1 ppm, or from about 0 ppm to about 0.01 ppm. In embodiments, the regenerative treatment subsystem 110 may adsorb N2 such that the O2 exiting the subsystem 110 in the treated air 111 may be at a level of from about from about 21% to about 24%, or from about 22% to about 26%, or from about 22% to about 28%.
In embodiments, the regenerative treatment subsystem 110 may adsorb CO2 such that the CO2 exiting the subsystem 110 in the treated air 111 may be at a level of from about 1000 ppm to about 2000 ppm, or from about 400 ppm to about 1000 ppm, or from about 0 ppm to about 400 ppm.
From the regenerative treatment subsystem 110, the treated air 111 can be pulled by an adaptive recirculation fan 114, directly downstream of the subsystem 110, that may receive and modulate the flow of the treated recirculated air 111. The fan 114 may be of conventional design, such as that shown in U.S. Pat. No. 5,145,124 which is incorporated in its entirety herein. From the fan 114, air 115 may return to the mixing manifold 104.
In
From the mix manifold 214, a mixed air 215 can enter a regenerative treatment subsystem 205 directly downstream of the manifold 214. From the subsystem 205, a portion of a treated air 207 can go to overboard 204 assisting the desorption phase of one of the treatment beds, and the rest of the treated air 207, as treated air 208, can go to an environment 209, such as an aircraft cabin and/or cockpit.
Air in the environment 209 may exit, and partially or wholly go to overboard 210, or partially or wholly flow as recirculated air 211. The balance between air vented overboard 210 and recirculated air 211 can be determined by a cabin pressure control schedule. The recirculated air 211 may include constituents such as VOC's, O2, and/or CO2. In embodiments, the recirculated air 211 may have the following initial concentration of constituents prior to application of treatment. The VOC's may be present from about 0 ppm to about 10 ppm, the O2 may be present from about 20% to about 21%, and the CO2 may be present from about 400 ppm to about 5000 ppm.
The recirculated air 211 can flow through an adaptive recirculation fan 212, directly downstream of the environment 209, and from the fan 212, air 213 can flow into the mix manifold 214 where the air 213 can mix at varying amounts, from zero to 100%, with the conditioned air 203.
In
From the environment 306, an air 307 may exit and then go partially or wholly to overboard 308. The air 307 may also flow as recirculated air 309. The recirculated air 309 may include constituents such as VOC's and/or CO2. In embodiments, the VOC's may be present up to about 10 ppm, and the CO2 may be present from about 400 ppm to about 5000 ppm—depending on passenger activity and cabin ventilation rates—and oxygen concentration may be only marginally decreased from ambient air oxygen level of about 21%. These concentrations represent exemplary initial concentrations of constituents prior to application of treatment.
The recirculated air 309 may enter a first regenerative treatment subsystem 310, directly downstream of the environment 306, to remove humidity, volatile organic compounds and carbon dioxide, each in a separate stage (described below in reference to
From the first regenerative treatment subsystem 310, a majority (i.e., >50%) of the recirculation air 309 can exit as a treated air 311. A fraction 312 of the treated air 311 can be used to purge the regenerating bed (310A or B) and exit to overboard 319.
The treated air 311 can pass through an adaptive recirculation fan 314, directly downstream of the subsystem 310, and be distributed, by a flow split valve 315, partially or fully to a second regenerative treatment subsystem 317 or bypassed through a duct 316.
The second regenerative treatment subsystem 317, directly downstream of the fan 314, can remove nitrogen and thus generate oxygen enriched air from treated air 311 that has been already purified by the first regenerative treatment subsystem 310.
In embodiments, the first regenerative treatment subsystem 310 may adsorb VOC's and CO2 such that the VOC's exiting the subsystem 310 in the treated air 311 may be at a level of from about 0 ppm to about 1 ppm, or from about 0 ppm to about 0.1 ppm, or from about 0 ppm to about 0.01 ppm. CO2 exiting the subsystem 310 in the treated air 311 may be at a level of from about 1000 ppm to about 2000 ppm, or from about 400 ppm to about 1000 ppm, or from about 0 ppm to about 400 ppm.
In embodiments, the second regenerative treatment subsystem 317 may remove nitrogen thus providing oxygen enriched air such that the O2 exiting the subsystem 317 in the treated air 318 may be at a level of from about from about 21% to about 24%, or from about 22% to about 26%, or from about 22% to about 28%.
From the second regenerative treatment subsystem 317, the air exists as treated air 318. A fraction 320 of treated air 318 can be used to purge the regenerating bed (317A or B) and exit to overboard 321. The treated air 318 may then flow to the mix manifold 304, where the treated air 318 may mix in varying amounts, from zero to 100%, with the conditioned air 303 from ECS conditioning pack 302.
In
Similarly, the valve 407A can direct the air 409 to the bed 406, through the segments 406A-D, through valve 410A, and exit as treated air 412.
An adsorption phase can be enabled in
The listed zeolites above can also adsorb VOC's. The level of adsorbent bed saturation may be determined by expected air composition and time from adsorption phase activation or by air composition sensor downstream of the combined treatment bed (not shown).
A desorption phase can be enabled in
Each adsorbent bed may be physically separated from other beds by a coarse support grid allowing airflow 401 to pass through.
Although not depicted in
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3355860 | Amoldi | Dec 1967 | A |
4428372 | Beysel et al. | Jan 1984 | A |
4651728 | Gupta et al. | Mar 1987 | A |
4711645 | Kumar | Dec 1987 | A |
4775484 | Schmidt | Oct 1988 | A |
4786294 | Jonqueres | Nov 1988 | A |
4919124 | Stevenson et al. | Apr 1990 | A |
5256103 | Abthoff | Oct 1993 | A |
5769928 | Leavitt | Jun 1998 | A |
6027548 | Ackley | Feb 2000 | A |
6212882 | Greger | Apr 2001 | B1 |
6423275 | D'Souza | Jul 2002 | B1 |
7527670 | Ackley | May 2009 | B2 |
20010015131 | Angermann | Aug 2001 | A1 |
20050211090 | McCullough | Sep 2005 | A1 |
20060117950 | Lessi | Jun 2006 | A1 |
20080148937 | Rege | Jun 2008 | A1 |
20090145297 | Ferguson | Jun 2009 | A1 |
20090221224 | Centofante | Sep 2009 | A1 |
20110277490 | Meirav | Nov 2011 | A1 |
20120000220 | Altay | Jan 2012 | A1 |
20120006193 | Roychoudhury et al. | Jan 2012 | A1 |
20120024157 | Maheshwary | Feb 2012 | A1 |
20130252526 | Paul | Sep 2013 | A1 |
20140020559 | Meirav | Jan 2014 | A1 |
20140033925 | Gueret | Feb 2014 | A1 |
20140134056 | Shinoda | May 2014 | A1 |
20140174292 | Kwon | Jun 2014 | A1 |
20150078964 | Meirav | Mar 2015 | A1 |
20160047562 | Bartlett | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
102841178 | Dec 2012 | CN |
2740666 | Jun 2014 | EP |
4174606 | Jun 2003 | JP |
Entry |
---|
European Search Report in EP Application No. 16165892.7 dated Oct. 7, 2016. |
Number | Date | Country | |
---|---|---|---|
20160318613 A1 | Nov 2016 | US |