Embodiments of the present disclosure relate to a combined window shade and solar panel and a method of making and using the same.
Many commercial and residential buildings utilize window shades to cover various windows. The window shades may be subject to sunlight during use. Residential and commercial buildings typically consume electricity from a surrounding power grid. It is desirable for owners of residential and commercial buildings to minimize electricity consumption from the surrounding power grid as such consumption can be costly.
Systems, methods, and apparatuses for a window shade system are provided. One embodiment is directed to a window shade system. The window shade system includes a mounting bracket, a shade tube bracket, a shade, and a first solar panel. The mounting bracket is coupled to a structure. The mounting bracket includes a coupler, a ground contact, and a hot contact. The coupler is removably coupled to the mounting bracket. The coupler includes a first aperture and a second aperture. The ground contact is positioned between the mounting bracket and the coupler and is configured to protrude through the coupler via the first aperture. The hot contact is positioned between the mounting bracket and the coupler and is configured to protrude through the coupler via the second aperture. The shade tube bracket includes a center pin that is configured to selectively rotate relative to the mounting bracket. The shade is partially coupled to the shade tube bracket. The first solar panel is coupled to the shade. The first solar panel is electrically communicable with the ground contact and the hot contact. The first solar panel is configured to receive solar energy, to transform the solar energy received by the first solar panel into electricity, and to provide the electricity transformed by the first solar panel to the hot contact. The center pin facilitates movement of the shade relative to the mounting bracket.
Another embodiment is directed to a window shade system. The window shade system includes a mounting bracket, a shade tube bracket, and a shade. The mounting bracket is structurally and electrically coupled to a structure. The shade tube bracket is structurally and electrically coupled to the mounting bracket. The shade tube bracket includes a center pin and a carriage. The center pin is configured to selectively rotate relative to the mounting bracket. The carriage is coupled to the center pin and configured to facilitate selective decoupling of the shade tube bracket from the mounting bracket. The shade is partially coupled to the shade tube bracket. The shade includes a first solar panel. The first solar panel is configured to receive solar energy and to transform the solar energy received by the first solar panel into electricity. The first solar panel is also configured to provide the electricity to the shade tube bracket. The center pin facilitates movement of the shade relative to the mounting bracket.
Yet another embodiment is directed to a window shade system. The window shade system includes a mounting bracket, a shade tube bracket, and a shade. The mounting bracket is structurally and electrically coupled to a structure. The shade tube bracket is structurally and electrically coupled to the mounting bracket. The shade is partially coupled to the shade tube bracket. The shade includes a first solar panel, a second solar panel, a first layer, a second layer, and a gap. The first solar panel is configured to receive solar energy and to transform the solar energy received by the first solar panel into electricity. The first solar panel is also configured to provide the electricity to the shade tube bracket. The second solar panel is configured to receive solar energy and to transform the solar energy received by the second solar panel into electricity. The second solar panel is also configured to provide the electricity to the shade tube bracket. The first layer includes a transparent material. The second layer includes an opaque material. The gap is between the first layer and the second layer. The first solar panel and the second solar panel are disposed within the gap between the first layer and the second layer. The first solar panel and the second solar panel are configured to receive the solar energy through the transparent material. The shade tube bracket is configured to facilitate selective rotation of the shade relative to the mounting bracket.
These and other features, together with the organization and manner of operation thereof, may become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring to the Figures generally, systems, methods, and apparatuses for a combined window shade and solar panel are provided herein.
In order to reduce costs associated with operating a building, it is often desirable to reduce an energy consumption of the building from a surrounding power grid. This energy consumption is often billed by a power company on an energy usage basis (e.g., kilowatt hours, etc.). Accordingly, energy generation devices may be incorporated within the building to produce energy that can reduce the energy consumption of the building from the surrounding power grid, thereby lowering the amount billed by the power company. The energy generation devices may be configured to harvest solar energy through the use of solar (e.g., photovoltaic cells, etc.) panels.
According to the present disclosure, a window shade is provided that includes an integrated solar panel. In some embodiments, the window shade may harvest solar energy to be supplied to a building thus reducing operating costs associated with the building. The window shade may simultaneously harvest energy while allowing light to pass through the window shade, thus illuminating the building. The window shade may thereby reduce glare experienced in the building. Beneficially, the window shade may harvest solar energy in low-angle and low-light conditions. In some applications, the window shade may produce one-hundred peak Watts per square meter of electricity. These and other benefits are explained more fully herein below.
Referring now to
According to various embodiments, shade tube bracket 120 includes a shade (e.g., window shade, screen, etc.), shown as shade 140. Shade 140 is structurally and electrically coupled to shade tube bracket 120. In application, shade 140 may be rolled on shade tube bracket 120. As described more fully herein, shade 140 is configured to harvest solar energy. However, shade 140 may also harvest other light energy (e.g., artificial).
In operation, solar energy is harvested by shade 140 and transmitted from shade tube bracket 120 to mounting bracket 110 and supplied to the building. The building may use the solar energy obtained from window shade system 100 to replace or supplement electricity typically acquired from a surrounding power grid. In one embodiment, window shade system 100 produces more solar energy than can be consumed by the building. According to this embodiment, surplus energy can be stored in the building (e.g., in capacitors, in batteries etc.) and/or can be transmitted to a converter for use by the building and/or to be supplied back to the surrounding power grid.
As shown in
In some embodiments, shade 140 includes a shade material and a solar film. The shade material can include any type of material capable of blocking sunlight and providing privacy, including fabrics, plastics, metals, and so on. The shade material may be clear, translucent, or opaque. The solar film may be applied to shade 140 by any method known in the art, including bonding, embedding, painting, pressing, and printing. The film may be applied to a surface of shade 140 that receives the most sunlight (e.g., facing the outside of a building), though it will be appreciated that the film may be applied to any surface or both surfaces of shade 140. The film is configured to withstand retraction and deployment of shade 140 such that shade 140 can be retracted and deployed numerous times or indefinitely without significant wear. The solar film is made of a solar material configured to convert sunlight into electricity. For example, in one embodiment, a solar film is printed onto a fabric shade such that, when the shade is deployed, the solar film generates electricity from any light that interacts with the shade.
In some embodiments, shade 140 is made of a solar material configured to convert sunlight into electricity. Shade 140 may be made of a single sheet of flexible solar material configured to be retracted and deployed when shade tube bracket 120 is rotated. In some embodiments, shade 140 includes a plurality of solar panels coupled together. For example, the solar panels can be directly coupled together or spaced apart and coupled by a conductive material.
In some embodiments, shade 140 is a transparent shade configured to not block any light or to block only some light. For example, the shade may be a clear plastic, a translucent fabric, a fabric having a loose weave such that light passes through. When the solar film is applied to a transparent window shade, the window shade may reduce glare, generate electricity, and allow at least some light to pass through.
Shade 140 may be any length or size and configured to generate any amount of electricity as it will be appreciated that shade 140 can include any known shade materials and solar materials. For example, in one embodiment, shade 140 is configured such that every square meter of shade 140 generates enough electricity to power a 100 watt bulb while maintaining efficiency in low angle and low-light conditions.
It will also be appreciated that electricity generated by shade 140 may be used for any known purpose of using electricity. For example, electricity generated by shade 140 may be used to power a motorized window shade system including shade 140. In another embodiment, shade 140 may generate a surplus of electricity that can be used for other applications (e.g., powering devices inside a home or apartment, providing power to another home or an entire apartment building, providing power to a city's electricity grid, storing power for later use, etc.). For example, a system of power-generating shades may include a plurality of shades 140 configured to generate a surplus of electricity producing twenty percent of a building's electricity needs. It will be appreciated that electricity generated by shade 140 provides cost-effective energy to provide power to a shading system and other devices throughout any space.
Interface 130 allows for rotational displacement of shade tube bracket 120 relative to mounting bracket 110. According to one embodiment, interface 130 does not facilitate translational displacement, other than axial displacement, of shade tube bracket 120 relative to mounting bracket 110. Interface 130 may allow axial displacement of shade tube bracket 120 relative to mounting bracket 110. Interface 130 facilitates constant rotary transmission of low voltage power. According to various embodiments, interface 130 is a slip joint interface. In one embodiment, mounting bracket 110 is an E Series bracket.
As shown in
According to various embodiments, coupler 210 is selectively removable from mounting bracket 110. Coupler 210 may be constructed from a non-conductive (e.g., insulating, etc.) material or a material with a relatively low electric and/or thermal conductivity (e.g., plastic, polymer, rubber, aluminum, etc.). In some applications, ground contacts 240 are brushes (e.g., brush contacts).
Referring now to
First shade orientation 440 may be termed a forward roll and second shade orientation 450 may be termed a backward roll. In some embodiments, shade 140 includes a solar film on second side 470, which is oriented towards the window and therefore towards the sun.
According to various embodiments, ground contact springs 300 bias ground contacts 240 against grounding plate 410. Similarly, in some embodiments, hot contact spring 310 biases hot contact 250 against center pin 430.
Referring now to
When installing, servicing, or replacing shade 140, it may be desirable remove shade 140 from window shade system 100. According to an exemplary operation, a user inserts implement 520 into slot 510 in carriage 420. The user then provides a force on carriage 420 that opposes a force provided by spring 530 while simultaneously biasing shade tube bracket 120 away from mounting bracket 110.
In some applications, window shade system 100 includes a processing circuit. The processing circuit may include a processor configured to control operation of window shade system 100. The processing circuit may also include memory. The memory may, for example, store usage information or instructions for operation of window shade system 100. For example, the memory may store instructions for causing the processor to operate a motor for rotating shade tube bracket 120 to retract and deploy shade 140.
Referring now to
Solar panels 602 may be integrated within shade 140 or coupled to (e.g., attached to, adhered to, etc.) shade 140. In an exemplary embodiment, solar panels 602 are structurally and electrically coupled to shade tube bracket 120 (e.g., such that solar panels 602 may provide electricity to shade tube bracket 120, etc.). In this way, solar panels 602 may be electrically communicable with any of energizing hub 230, ground contacts 240, hot contact 250, and grounding plate 410. For example, solar panels 602 may generate electricity and provide the electricity to the hot contact 250.
As shown in
As shown in
According to an exemplary embodiment, solar panels 602 are wired in parallel. For example, a first solar panel 602a is wired in parallel with a second solar panel 602b. In this way, the voltage provided to window shade system 100 can remain constant regardless of how many solar panels 602 are included on shade 140. In one example, shade 140 includes four solar panels 602 each capable of generating approximately sixty Volts and ten Amperes. In some embodiments, solar panels 602 are wired in series. In some embodiments, sub-circuits 604 are wired in parallel. In other embodiments, sub-circuits 604 are wired in series. In some embodiments, a first subset of the solar panels 602 are wired in series and a second subset of the solar panels 602 are wired in series, and the first and second subsets of the solar panels 602 are wired in parallel. Accordingly, it will be appreciated that any number of solar panels 602 may be wired in any configuration (e.g., in series, in parallel) with respect to some or all other solar panels 602 of shade 140.
Solar panels 602 are capable of taking various shapes and sizes such that shade 140 can be tailored for a target application. For example, larger windows may require larger shades 140 which could utilize larger and/or additional solar panels 602. In one example, shade 140 is approximately twenty feet long and includes twenty solar panels 602 wired in parallel and each capable of generating approximately sixty Volts. Further, windows of atypical shapes (e.g., hexagons, octagons, circular shapes, semi-circular shapes, oval shapes, rhomboids, etc.) may require shades 140 with similarly atypical shapes. To accommodate for these shades 140, solar panels 602 may take on similarly atypical shapes or may be of various sizes so as to be capable of being arranged in an atypical shape.
Referring to
Solar panels 602 may oriented towards front side 612 such that the ability of solar panels 602 to receive light energy is maximized. In some embodiments, the construction of base material 600 in front layer 606 is different from the construction of base material 600 in rear layer 608. For example, front layer 606 may be transparent and/or translucent while rear layer 608 can be opaque so that a viewer viewing the shade 140 from rear side 614 cannot see solar panels 602. This configuration enables window shade system 100 to optimally convert solar energy into electricity while also obstructing or otherwise preventing all or a substantial amount of the light from entering a region of the rear side 614. In some embodiments, front layer 606 comprises a transparent material and solar panels 602 are configured such that solar energy is received by solar panels 602 through the transparent material. In some embodiments, front layer 606 comprises a material that enhances the amount of solar energy received by solar panels 602.
In some embodiments, front layer 606 is coupled to rear layer 608, thereby confining solar panels 602 in between front layer 606 and rear layer 608. In some embodiments front layer 606 is coupled to solar panels 602 and then solar panels 602 are coupled to rear layer 608. In some embodiments, the front layer 606, rear layer 608, and solar panels 602 are secured to one another using glue, thread (e.g., stitches), or any other known adhesion techniques or substances known in the art. As shown in
In some embodiments, window shade system 100 includes a motor configured to selectively rotate shade tube bracket 120 to retract and deploy shade 140. In one example, window shade system 100 includes an illumination sensor and a processor configured to compare an ambient illumination level to a threshold level. In this way, window shade system 100 can determine to automatically deploy shade 140 based on a sensed ambient light level. For example, window shade system 100 can determine to automatically deploy shade 140 when it is sunny outside. This function of window shade system 100 enables window shade system 100 to block sunlight or glare for a user when a threshold amount of ambient light or glare enters an area that shade 140 can provide shade for (e.g., such as during mid-afternoon) and to allow the user to view an exterior environment when a threshold amount of ambient light or glare is not present (e.g., such as at dawn, dusk, or during the night). This function of window shade system 100 further enables window shade system 100 to receive light energy at optimal times of the day rather than at times of the day when less than a threshold amount of ambient light is present. For example, window shade system 100 may automatically deploy at times when the most sunlight is present during a day for a specific time of year. Additionally, or alternatively, window shade system 100 can receive scheduling data and/or meteorological data that window shade system 100 interprets to determine when to deploy shade 140.
The embodiments described herein have been described with reference to drawings. The drawings illustrate certain details of specific embodiments that implement the systems, methods, and programs described herein. However, describing the embodiments with drawings should not be construed as imposing on the disclosure any limitations that may be present in the drawings.
The present invention is not limited to the particular methodology, protocols, and expression of design elements, etc., described herein and as such may vary. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention.
As used herein, the singular forms include the plural reference and vice versa unless the context clearly indicates otherwise. The term “or” is inclusive unless modified, for example, by “either.” For brevity and clarity, a particular quantity of an item may be described or shown while the actual quantity of the item may differ. Other than in the operating examples, or where otherwise indicated, all numbers expressing measurements used herein should be understood as modified in all instances by the term “about,” allowing for ranges accepted in the art.
Unless defined otherwise, all technical terms used herein have the same meaning as those commonly understood to one of ordinary skill in the art to which this invention pertains. Although any known methods, devices, and materials may be used in the practice or testing of the invention, the methods, devices, and materials in this regard are described herein.
The foregoing description of embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from this disclosure. The embodiments were chosen and described in deposit to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the scope of the present disclosure.
The present application claims the benefit of, and priority to, PCT Application PCT/US2017/025773 having a filing date of Apr. 3, 2017 which claims the benefit or, and priority to, U.S. Provisional Patent Application No. 62/318,153, filed Apr. 4, 2016, the entirety of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/025773 | 4/3/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/176643 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4137098 | Field | Jan 1979 | A |
4513161 | Mauldin | Apr 1985 | A |
4604990 | Nikkel | Aug 1986 | A |
5760558 | Popat | Jun 1998 | A |
8528621 | Murphy, Jr. | Sep 2013 | B2 |
8748729 | Nocito | Jun 2014 | B2 |
9133662 | Nocito | Sep 2015 | B2 |
9237821 | Geiger | Jan 2016 | B2 |
D776456 | Geiger | Jan 2017 | S |
9695635 | Taylor | Jul 2017 | B2 |
9789949 | Hontz | Oct 2017 | B2 |
9790739 | Colson | Oct 2017 | B2 |
9840868 | Geiger | Dec 2017 | B2 |
9988839 | Geiger | Jun 2018 | B2 |
10256589 | Russikoff | Apr 2019 | B2 |
10273747 | Hall | Apr 2019 | B2 |
10294717 | Geiger | May 2019 | B2 |
10415307 | Geiger | Sep 2019 | B2 |
10718159 | Colson | Jul 2020 | B2 |
10738530 | Campagna | Aug 2020 | B2 |
20040045683 | Carrillo | Mar 2004 | A1 |
20040055633 | Lambey | Mar 2004 | A1 |
20050254234 | Wang | Nov 2005 | A1 |
20060000558 | Fennell | Jan 2006 | A1 |
20090255568 | Morgan | Oct 2009 | A1 |
20100051100 | Nocito | Mar 2010 | A1 |
20110005694 | Ng | Jan 2011 | A1 |
20120073624 | Nocito | Mar 2012 | A1 |
20130284234 | Funayama | Oct 2013 | A1 |
20140027069 | Oppizzi | Jan 2014 | A1 |
20140028242 | Akin | Jan 2014 | A1 |
20140224434 | Gross | Aug 2014 | A1 |
20150136941 | Geiger | May 2015 | A1 |
20180058143 | Selogy | Mar 2018 | A1 |
20180112463 | Derk, Jr. | Apr 2018 | A1 |
20180310745 | Giri | Nov 2018 | A1 |
20190032404 | Chacon | Jan 2019 | A1 |
20190162022 | Geiger | May 2019 | A1 |
20200018118 | Geiger | Jan 2020 | A1 |
20200032583 | Hebeisen | Jan 2020 | A1 |
20200131849 | Campagna | Apr 2020 | A1 |
20200185965 | Poirier | Jun 2020 | A1 |
20200263494 | Hebeisen | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
202706840 | Jan 2013 | CN |
202706840 | Jan 2013 | CN |
103321553 | Sep 2013 | CN |
103321553 | Sep 2013 | CN |
3219898 | Sep 2017 | EP |
2455753 | Jun 2009 | GB |
2455753 | Jun 2009 | GB |
2004012818 | Jan 2004 | JP |
2004012818 | Jan 2004 | JP |
2010021501 | Jan 2010 | JP |
2010021501 | Jan 2010 | JP |
2011179193 | Sep 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20190162022 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62318153 | Apr 2016 | US |