The present disclosure relates to digital imaging. More precisely, the present disclosure relates to improved techniques for depth map generation.
Active depth sensors are technologies that can measure the position of points in space. Examples include Light Detection and Ranging (LiDAR), Time of Flight (ToF) cameras such as the Kinect sensor available from Microsoft Corporation of Redmond, Wash., and/or the like. Accurate depth data can be used in many different industries, including, for example, computer vision (3D reconstruction, image/video segmentation, scene understanding), visual effects (camera tracking, relighting, compositing CG contents) and virtual/augmented reality.
Light-field technologies are able to generate imagery that can be used in order to produce a high resolution depth map. However, the obtained depth maps may, in some circumstances, lack accuracy, especially at regions where there is no texture or features that can aid in generation of the depth map. By contrast, known active depth sensors often provide depth information that is relatively low in resolution. Thus, neither the depth information obtained from a light-field image, nor that gathered from active depth sensors can, alone, provide accurate and high-resolution depth maps. This limits the role that depth information can play in the applications listed above.
According to various embodiments, the system and method described herein provide enhanced depth map generation. Although the depth map generation afforded by light-field image processing can be inaccurate, the depth measurements from active depth sensing technologies can be highly accurate. Various embodiments described herein provide techniques for incorporating such depth measurements in order to improve and/or complement the depth maps obtained from light-field data.
For example, in some embodiments, LiDAR technologies can sense close and far away objects but, in general, the resolution (i.e., the number of 3D points they generate) is usually low. As another example, Time of Flight technologies usually generate a higher number of points, but the sensing range may be short (0.5-10 meters). Thus, depending on the application, one active depth sensing technology can be favored over the other, or they can also be combined with one another in order to achieve the desired effect or depth map accuracy.
In at least one embodiment, active depth sensing data can be combined with a light-field depth map so as to provide improved depth map generation. Sensor fusion techniques can be used to dramatically increase both the resolution and the accuracy of the depth maps.
For example, a light-field camera may capture a light-field image of the scene, and a depth sensor may capture depth sensor data of the scene. Light-field depth data may be extracted from the light-field image and used, in combination with the sensor depth data, to generate a depth map indicative of distance between the light-field camera and one or more objects in the scene.
The depth sensor may be an active depth sensor that transmits electromagnetic energy toward the scene; the electromagnetic energy may be reflected off of the scene and detected by the active depth sensor. For example, the active depth sensor may include LiDAR and/or Time of Flight technologies.
The active depth sensor may have a 360° field of view; accordingly, one or more mirrors may be used to direct the electromagnetic energy between the active depth sensor and the scene. The active depth sensor may emit electromagnetic energy generally radially at the mirror(s), and the mirrors may reflect the electromagnetic energy toward the scene. The electromagnetic energy may reflect off of the scene, back toward the mirror(s). Then, the mirrors may reflect the electromagnetic energy back toward the active depth sensor. The mirror(s) may be arranged in any of various shapes, including but not limited to conical, pyramidal, and multi-faceted shapes.
Using the light-field depth data and the depth sensor data to generate the depth map may include calibrating the light-field camera and/or the depth sensor to generate a correspondence between the sensor depth data and the light-field image, and applying a depth map generation algorithm to combine the sensor depth data with the light-field depth data. Calibrating the light-field camera and/or the depth sensor may include calibrating the mirror(s) by using the depth sensor to capture depth calibration data of a calibration scene containing a planar board positioned at one or more known orientations, and using the depth calibration data to ascertain locations of corners of the planar board in each of the one or more known orientations. The light-field camera may also be calibrated by capturing light-field calibration data of the calibration scene contemporaneously with capture of the depth calibration data, and establishing settings for the light-field camera in which the corners in the light-field calibration data are aligned with the corners in the depth calibration data.
Using the light-field depth data and the depth sensor data to generate the depth map may include creating a 3D data cost function based on multi-view geometry, applying heuristics to improve the 3D data cost function, and applying global optimization to generate the depth map using a Markov Random Field solution. These concepts will be described in greater detail below.
The accompanying drawings illustrate several embodiments. Together with the description, they serve to explain the principles of the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.
For purposes of the description provided herein, the following definitions are used:
In addition to the foregoing, additional terms will be set forth and defined in the description below. Terms not explicitly defined are to be interpreted, primarily, in a manner consistently with their usage and context herein, and, secondarily, in a manner consistent with their use in the art.
For ease of nomenclature, the term “camera” is used herein to refer to an image capture device or other data acquisition device. Such a data acquisition device can be any device or system for acquiring, recording, measuring, estimating, determining and/or computing data representative of a scene, including but not limited to two-dimensional image data, three-dimensional image data, and/or light-field data. Such a data acquisition device may include optics, sensors, and image processing electronics for acquiring data representative of a scene, using techniques that are well known in the art. One skilled in the art will recognize that many types of data acquisition devices can be used in connection with the present disclosure, and that the disclosure is not limited to cameras. Thus, the use of the term “camera” herein is intended to be illustrative and exemplary, but should not be considered to limit the scope of the disclosure. Specifically, any use of such term herein should be considered to refer to any suitable device for acquiring image data.
In the following description, several techniques and methods for processing light-field images are described. One skilled in the art will recognize that these various techniques and methods can be performed singly and/or in any suitable combination with one another. Further, many of the configurations and techniques described herein are applicable to conventional imaging as well as light-field imaging. Thus, although the following description focuses on light-field imaging, all of the following systems and methods may additionally or alternatively be used in connection with conventional digital imaging systems. In some cases, the needed modification is as simple as removing the microlens array from the configuration described for light-field imaging to convert the example into a configuration for conventional image capture.
Architecture
In at least one embodiment, the system and method described herein can be implemented in connection with light-field images captured by light-field capture devices including but not limited to those described in Ng et al., Light-field photography with a hand-held plenoptic capture device, Technical Report CSTR 2005-02, Stanford Computer Science. Further, any known depth sensing technology may be used.
Referring now to
In at least one embodiment, camera 200 may be a light-field camera that includes light-field image data acquisition device 209 having optics 201, image sensor 203 (including a plurality of individual sensors for capturing pixels), and microlens array 202. Optics 201 may include, for example, aperture 212 for allowing a selectable amount of light into camera 200, and main lens 213 for focusing light toward microlens array 202. In at least one embodiment, microlens array 202 may be disposed and/or incorporated in the optical path of camera 200 (between main lens 213 and image sensor 203) so as to facilitate acquisition, capture, sampling of, recording, and/or obtaining light-field image data via image sensor 203. Referring now also to
In at least one embodiment, camera 200 may also include a user interface 205 for allowing a user to provide input for controlling the operation of camera 200 for capturing, acquiring, storing, and/or processing image data. The user interface 205 may receive user input from the user via an input device 206, which may include any one or more user input mechanisms known in the art. For example, the input device 206 may include one or more buttons, switches, touch screens, gesture interpretation devices, pointing devices, and/or the like.
Further, in at least one embodiment, depth sensor 250 may be an active depth sensor that not only senses electromagnetic energy, but also emits the electromagnetic energy toward a scene for which depth information is desired. Thus, the depth sensor 250 may have an emitter 252 that emits the electromagnetic energy, and a sensor 253 that receives the electromagnetic energy after it has been reflected off of the scene. The depth sensor 250 may be of any known type, including but not limited to LiDAR and Time of Flight depth sensing devices.
Similarly, in at least one embodiment, post-processing system 300 may include a user interface 305 that allows the user to provide input to switch image capture modes, as will be set forth subsequently. The user interface 305 may additionally or alternatively facilitate the receipt of user input from the user to establish one or more other image capture parameters.
In at least one embodiment, camera 200 may also include control circuitry 210 for facilitating acquisition, sampling, recording, and/or obtaining light-field image data. The control circuitry 210 may, in particular, be used to switch image capture configurations such as the zoom level, resolution level, focus, and/or aperture size in response to receipt of the corresponding user input. For example, control circuitry 210 may manage and/or control (automatically or in response to user input) the acquisition timing, rate of acquisition, sampling, capturing, recording, and/or obtaining of light-field image data.
In at least one embodiment, camera 200 may include memory 211 for storing image data, such as output by image sensor 203. Such memory 211 can include external and/or internal memory. In at least one embodiment, memory 211 can be provided at a separate device and/or location from camera 200.
In at least one embodiment, captured image data is provided to post-processing circuitry 204. The post-processing circuitry 204 may be disposed in or integrated into light-field image data acquisition device 209, as shown in
Such a separate component may include any of a wide variety of computing devices, including but not limited to computers, smartphones, tablets, cameras, and/or any other device that processes digital information. Such a separate component may include additional features such as a user input 315 and/or a display screen 316. If desired, light-field image data may be displayed for the user on the display screen 316.
Overview
Light-field images often include a plurality of projections (which may be circular or of other shapes) of aperture 212 of camera 200, each projection taken from a different vantage point on the camera's focal plane. The light-field image may be captured on image sensor 203. The interposition of microlens array 202 between main lens 213 and image sensor 203 causes images of aperture 212 to be formed on image sensor 203, each microlens in microlens array 202 projecting a small image of main-lens aperture 212 onto image sensor 203. These aperture-shaped projections are referred to herein as disks, although they need not be circular in shape. The term “disk” is not intended to be limited to a circular region, but can refer to a region of any shape.
Light-field images include four dimensions of information describing light rays impinging on the focal plane of camera 200 (or other capture device). Two spatial dimensions (herein referred to as x and y) are represented by the disks themselves. For example, the spatial resolution of a light-field image with 120,000 disks, arranged in a Cartesian pattern 400 wide and 300 high, is 400×300. Two angular dimensions (herein referred to as u and v) are represented as the pixels within an individual disk. For example, the angular resolution of a light-field image with 100 pixels within each disk, arranged as a 10×10 Cartesian pattern, is 10×10. This light-field image has a 4-D (x,y,u,v) resolution of (400,300,10,10). Referring now to
In at least one embodiment, the 4-D light-field representation may be reduced to a 2-D image through a process of projection and reconstruction. As described in more detail in related U.S. Utility application Ser. No. 13/774,971 for “Compensating for Variation in Microlens Position During Light-Field Image Processing,”, filed Feb. 22, 2013, the disclosure of which is incorporated herein by reference in its entirety, a virtual surface of projection may be introduced, and the intersections of representative rays with the virtual surface can be computed. The color of each representative ray may be taken to be equal to the color of its corresponding pixel.
Active Depth Sensing
As mentioned previously, data from an active sensor may be combined with the depth maps generated from light-field data to obtain more accurate depth maps. In at least one embodiment, the system includes an active depth sensor that estimates distance by emitting a laser or light pulse (for example, at an infra-red wavelength) and measuring the time it gets reflected back to the sensor.
Referring to
The light-field camera 540 may be of any known type. In some embodiments, the light-field camera 540 may be a plenoptic light-field camera, such as the camera 200 of
The active depth sensor 550 may be any type of active depth sensor. The active depth sensor 550 may estimate distance by emitting a laser or light pulse (for example, at an infrared wavelength) and measure the time required for the light pulse to be reflected back to the active depth sensor 550. In some embodiments, the active depth sensor 550 may be a Time of Flight sensor, a LiDAR sensor, and/or the like. The active depth sensor 550 may transmit electromagnetic energy 560, which may or may not have a frequency within the visible spectrum, toward the scene 510. The electromagnetic energy 560 may reflect from the scene 510 as reflected electromagnetic energy 570, which may then be received and detected by the active depth sensor 550. The resulting depth data may be used to enhance the accuracy of depth maps computed from the light-field images and/or video captured by the light-field camera 540.
In alternative embodiments, any type of depth sensor may be used in place of the active depth sensor 550. A depth sensor that is not an active depth sensor may not transmit its own electromagnetic energy, but may instead simply receive electromagnetic energy transmitted from other sources. For example, the light sources 520 may transmit electromagnetic energy, in the form of visible light and/or electromagnetic energy outside the visible spectrum, which can be detected by the depth sensor.
Depth sensors such as active depth sensors can be used to measure the depth profile of objects. Their use can add to the accuracy of the depth measurement derived from a light-field camera. This is especially true for imaging regions that are monochromatic and featureless. The active depth sensor 550 may help add detail to the depth maps generated by the light-field camera 540 alone. As mentioned above, active depth sensors can include, for example, Light Detector and Ranging (LiDAR) scanning devices and/or Time of Flight (ToF) cameras.
Many known LiDAR sensors are adapted to be used with autonomous vehicles and can emit laser pulses with a 360 degree horizontal field of view (FOV). In many such implementations, the horizontal resolution is 0.1°-0.4°, depending on the speed with which the laser emitter rotates. The accuracy of depth measurement can typically vary by up to 3 cm for a range up to 100-150 meters. For dark (e.g. black) surfaces, the measurement range is often dramatically decreased; for example, in some environments it has been observed that the LiDAR sensor measures up to 5 meters for black matte surfaces.
Many Time of Flight cameras make use of the known speed of light in order to calculate distances. This may be done by measuring the time of flight of a light signal between the camera and each point of the image. In a time of flight camera, the depth of the entire scene may be captured with each light pulse, as opposed to a point by point approach as in LiDAR systems. Another difference with respect to a LiDAR is that the FOV of a ToF system is usually forward facing, i.e., non-circular.
LiDAR and Time of Flight sensors are merely exemplary technologies that may be incorporated into the active depth sensor 550; other known technologies for sensing depth maybe used. Further, the characteristics and parameters described herein are merely exemplary. The techniques described herein can be implemented using equipment having other characteristics.
LiDAR Reflectors
Many commercially available active depth sensors make measurements over a field of view (FOV) that is much larger than a typical field of view for a light-field camera. For example, the Velodyne VLP-16 device scans with sixteen lasers in a circular 360° field of view in the plane of rotation (the “azimuthal coordinate”) of the device, and +/−15° in the plane perpendicular to the plane of rotation (the “polar coordinate”). A photosensor, such as a photosensor that receives light through a tapered fiber optic bundle, as described in the above-referenced U.S. patent application Ser. No. 15/451,831, may be 560 mm by 316 mm, and may be used with a lens having a 1210 mm focal length; the corresponding field of view may be about 26° in the horizontal direction, and 15° in the vertical direction.
To measure depth of objects from a camera, it may be advantageous to reflect the beams of light from the active depth sensor 550 so that they are projected into a smaller angular region that more closely matches the field of view of the light-field camera 540. This technique may be used to avoid projecting the beams of light into places the light-field camera 540 cannot image, and instead redirect them to be more concentrated so the spatial sampling of the active depth sensor 550 within the field of view of the light-field camera 540 is increased. As previously mentioned, many active depth sensors, such as LiDAR sensors, have circular fields-of-view (FOVs). Accordingly, in at least one embodiment, the cylindrical FOV of the active depth sensing device is adapted to a forward-looking light-field capture system using a specialized mirror system that reflects and directs the active depth sensor samples to the front.
Specifically,
In three dimensions, it may be advantageous for the mirrored surfaces of the reflector to be arranged so they surround the active depth sensor in such a way as to reflect all the beams from the active depth sensor toward the opening in those mirrors. As shown in
One advantage of using a configuration with a number of mirrors that is much higher than 4 is that the pattern of sampling points is more evenly distributed across a field of view that is more narrow. For example, in the case of the 13-sided mirror design, the field of view may be 27.7°, compared with a 90° field of view for the 4-sided mirror design. This narrow field of view may better match the field of view of the light-field camera 540, and may thus result in more samples for objects that appear in the light-field images and/or light-field video captured by the light-field camera 540.
Active Depth Sensor Data Processing
In at least one embodiment, active depth information is used to augment acquired light-field data, so as to generate better depth maps. First, a correspondence may be generated between the active depth samples and the rays in a light-field image. Then, a depth map generation algorithm may be used to combine the depth information from the active depth sensor with that of the light-field data.
Calibration: Overview
Calibration may be performed to establish a correspondence between an active depth sensor sample in the sensor's coordinates x=(x,y,z) and a pixel in the image space (u,v,λ). In at least one embodiment, the following formula is used to transfer an active depth coordinate to image space:
where M is the mirror reflection transformation, P is the camera intrinsic matrix, T is the active depth sensor to camera transformation matrix, and g is a function that converts the world-space distance z to the lambda space λ.
In at least one embodiment, calibration includes four steps: camera calibration (P), LiDAR-camera calibration (T), depth calibration (g) and, for the case of active depth sensors with cylindrical FOVs, a mirror calibration (M) step. If there is no circular FOV in the active depth sensor, or no mirror or similar systems are used, the mirror calibration step M can be omitted.
Mirror Calibration
In at least one embodiment, mirror calibration involves scanning a rectangular planar board using the mirror system. The board may be rotated about 45° (in plane) relative to the mirror system, so that the active depth sensor scanlines are roughly diagonal across the board. This may be done so that the corners of the board can be computed: when the board is tilted, the end points of the scanlines can be used to compute all four edges of the board and then find the corners. In general, there should be enough active depth sensor scanlines (at least three or four) from each mirror covering the entire board.
A plane can be represented by
n·x+w=0
where n is the normalized vector of the plane normal and w is the plane distance to origin. A point x that is reflected by the mirror has a new coordinate x′.
x′=x−2(n·x+w)n=M(n,w,x)
where M is the mirror reflection transformation, which depends on the unknown n and w.
For each quadrant of LiDAR samples (corresponding to one of the four mirrors), the four corners of the board xij may be computed, where the subscript i is for the ith corner and j is for the jth mirror. After mirror reflection, each reflected corner x′ij from all four mirrors should align with each other.
This yields the following optimization:
This is a nonlinear optimization. The gradient may be computed numerically, for example using finite difference. Once the optimization is solved, the four plane equations can transform the LiDAR samples x from the LiDAR space to the LiDAR-mirror space x′.
Camera Calibration
In at least one embodiment, a standard camera calibration process is used to find the intrinsic projection matrix P and the lens distortion parameters (which are usually very small and can be ignored if the image has been undistorted). For example, a chessboard pattern can be captured many times at different locations and/or orientations. During the capture process, it may be preferable for the entire chessboard to be seen in the camera, without necessarily occupying the entire field of view. The images may be captured with focus settings that cause the chessboard to be in focus and sharp. Usually, ten to twenty images are sufficient for one focus distance. In at least one embodiment, separate camera calibrations are performed for different focus distances; linear interpolation may be performed between them to obtain calibrations for intermediate distances.
Active Depth Sensor to Camera Calibration
The purpose of Active Depth Sensor to Camera calibration is to find the relative transformation (rotation R and translation t) between the active depth sensor and the camera. The calibration procedure of this step may be very similar to that of mirror calibration. The difference is that when the planar board is scanned by the active depth sensor, it is also captured as an image by the camera. For each corner of the board (xi, yi, zi) in the active depth sensor space, there is a corresponding pixel for that corner in the image space (ui, vi). This formulates another optimization problem:
Note that in the above equation, the matrix P is known from the camera calibration step and, for the case of LiDAR sensors (or similar active depth sensors) with circular FOVs, the matrix M is known from the mirror calibration step. The only unknown here is the transformation matrix T=[R t]. This optimization is nonlinear, and can be solved by known nonlinear optimization software.
Depth Calibration
Depth calibration may be used to find the relationship between the distances in the world space and the lambda space. The thin lens equation may provide a suitable starting point:
where f is the focal length of the main lens, fmla is the focal length of the microlens array, or MLA, z is the distance from an object point to the main lens, and i is the distance between the main lens and MLA, which may be given by the readings of the focus motor.
After mathematical derivations, the following two formulas may convert the distance from the world space (z) to the lambda space (λ) and vice versa:
Depth Fusion Between Active Depth Sensor Data and Light-Field
In at least one embodiment, active depth sensor data is combined with light-field data to generate a more accurate depth map, using the following three steps:
1. Data cost function creation;
2. Data cost function massage; and
3. Application of a solver such as Markov Random Field (MRF).
In the first step, a 3D data cost function C(u,v,λ) may be created based on multi-view geometry, using, for example, a function in a light-field pipeline. Intuitively, the data cost function may indicate how unlikely the depth is equal to λ at pixel (u,v). The larger the cost, the less likely that the depth is equal to λ.
In the second step, the data cost function may be modified (improved) using heuristics. In at least one embodiment, a cross-based aggregation heuristic is used, which indicates that two adjacent pixels with similar color probably have similar depth.
The last step is a global optimization to find the depth map λ(u,v), using a solver such as an MRF solution. This optimization may have two objectives: a per-pixel data cost that minimizes C(u,v,λ), and a smoothness cost that minimizes the variation of depth among adjacent pixels.
To fuse active depth sensor data, an additional step can be added between the first and second steps set forth above. After the cost volume has been created from light-field data, the value may be modified to accommodate the active depth sensor samples. After each active depth sensor sample (xi, yi, zi) is converted to the image space (ui, vi, λi) using the calibration results, the data cost volume may be modified as follows:
C(ui,vi,λ)=w|λ−λi|
where w is the weight that specifies the influence of the active depth sensor data.
Two other possible alternatives are quadratic cost:
C(ui,vi,λ)=w(λ−λi)2
and the delta cost:
Results
The above pipeline can greatly improve the quality of depth maps.
Variations
In various embodiments, the techniques described herein can be used in connection with different active depth sensing technologies in addition to (or instead of) LiDAR or ToF cameras. According to some examples, forward-facing LiDAR sensors such as Solid State LiDAR sensors may be used.
In various embodiments, the depth calibration process can involve a space different from the lambda space or if the cost volume is generated in world coordinates, such depth calibration step can be omitted. Those of skill in the art will recognize that various other aspects of the systems and methods may be utilized, within the scope of the present disclosure.
The above description and referenced drawings set forth particular details with respect to possible embodiments. Those of skill in the art will appreciate that the techniques described herein may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms that implement the techniques described herein may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, as described, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.
Reference in the specification to “one embodiment” or to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some embodiments may include a system or a method for performing the above-described techniques, either singly or in any combination. Other embodiments may include a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.
Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within a memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions of described herein can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.
Some embodiments relate to an apparatus for performing the operations described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), and/or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the techniques set forth herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the techniques described herein, and any references above to specific languages are provided for illustrative purposes only.
Accordingly, in various embodiments, the techniques described herein can be implemented as software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, trackpad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or nonportable. Examples of electronic devices that may be used for implementing the techniques described herein include: a mobile phone, personal digital assistant, smartphone, kiosk, server computer, enterprise computing device, desktop computer, laptop computer, tablet computer, consumer electronic device, television, set-top box, or the like. An electronic device for implementing the techniques described herein may use any operating system such as, for example: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.
In various embodiments, the techniques described herein can be implemented in a distributed processing environment, networked computing environment, or web-based computing environment. Elements can be implemented on client computing devices, servers, routers, and/or other network or non-network components. In some embodiments, the techniques described herein are implemented using a client/server architecture, wherein some components are implemented on one or more client computing devices and other components are implemented on one or more servers. In one embodiment, in the course of implementing the techniques of the present disclosure, client(s) request content from server(s), and server(s) return content in response to the requests. A browser may be installed at the client computing device for enabling such requests and responses, and for providing a user interface by which the user can initiate and control such interactions and view the presented content.
Any or all of the network components for implementing the described technology may, in some embodiments, be communicatively coupled with one another using any suitable electronic network, whether wired or wireless or any combination thereof, and using any suitable protocols for enabling such communication. One example of such a network is the Internet, although the techniques described herein can be implemented using other networks as well.
While a limited number of embodiments has been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised which do not depart from the scope of the claims. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/359,022 for “Combining Light-Field Data with Active Depth Data for Depth Map Generation,”, filed Jul. 6, 2016, the disclosure of which is incorporated herein by reference in its entirety. The present application is also a continuation-in-part of U.S. patent application Ser. No. 14/834,924 for “Active Illumination for Enhanced Depth Map Generation,”, filed Aug. 25, 2015, the disclosure of which is incorporated herein by reference in its entirety. The present application is also a continuation-in-part of U.S. patent application Ser. No. 15/451,831 for “Video Capture, Processing, Calibration, Computational Fiber Artifact Removal, and Light-field Pipeline,”, filed Mar. 7, 2017, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/451,831 claims the benefit of U.S. Provisional Patent Application Ser. No. 62/305,917 for “Video Capture, Processing, Calibration, Computational Fiber Artifact Removal, and Light-field Pipeline,”, filed Mar. 9, 2016, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/451,831 is also a continuation-in-part of U.S. patent application Ser. No. 15/098,674 for “Light Guided Image Plane Tiled Arrays with Dense Fiber Optic Bundles for Light-Field and High Resolution Image Acquisition,”, filed Apr. 14, 2016, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/098,674 claims the benefit of U.S. Provisional Application Ser. No. 62/148,055 for “Light Guided Image Plane Tiled Arrays with Dense Fiber Optic Bundles for Light-Field and High Resolution Image Acquisition”, filed Apr. 15, 2015, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/098,674 also claims the benefit of U.S. Provisional Application Ser. No. 62/200,804 for “Light Guided Image Plane Tiled Arrays with Dense Fiber Optic Bundles for Light-Field Display”, filed Aug. 4, 2015, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 15/098,674 also claims the benefit of U.S. Provisional Application Ser. No. 62/305,917 for “Video Capture, Processing, Calibration, Computational Fiber Artifact Removal, and Light-field Pipeline”, filed Mar. 9, 2016, the disclosure of which is incorporated herein by reference in its entirety. This application is further related to U.S. patent application Ser. No. 13/774,971 for “Compensating for Variation in Microlens Position During Light-Field Image Processing,”, filed Feb. 22, 2013, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
725567 | Ives | Apr 1903 | A |
4383170 | Takagi et al. | May 1983 | A |
4661986 | Adelson | Apr 1987 | A |
4694185 | Weiss | Sep 1987 | A |
4920419 | Easterly | Apr 1990 | A |
5076687 | Adelson | Dec 1991 | A |
5077810 | D'Luna | Dec 1991 | A |
5157465 | Kronberg | Oct 1992 | A |
5251019 | Moorman et al. | Oct 1993 | A |
5282045 | Mimura et al. | Jan 1994 | A |
5499069 | Griffith | Mar 1996 | A |
5572034 | Karellas | Nov 1996 | A |
5610390 | Miyano | Mar 1997 | A |
5748371 | Cathey, Jr. et al. | May 1998 | A |
5757423 | Tanaka et al. | May 1998 | A |
5818525 | Elabd | Oct 1998 | A |
5835267 | Mason et al. | Nov 1998 | A |
5907619 | Davis | May 1999 | A |
5949433 | Klotz | Sep 1999 | A |
5974215 | Bilbro et al. | Oct 1999 | A |
6005936 | Shimizu et al. | Dec 1999 | A |
6021241 | Bilbro et al. | Feb 2000 | A |
6023523 | Cohen et al. | Feb 2000 | A |
6028606 | Kolb et al. | Feb 2000 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6061083 | Aritake et al. | May 2000 | A |
6061400 | Pearlstein et al. | May 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6075889 | Hamilton, Jr. et al. | Jun 2000 | A |
6091860 | Dimitri | Jul 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6115556 | Reddington | Sep 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6169285 | Pertrillo et al. | Jan 2001 | B1 |
6201899 | Bergen | Mar 2001 | B1 |
6221687 | Abramovich | Apr 2001 | B1 |
6320979 | Melen | Nov 2001 | B1 |
6424351 | Bishop et al. | Jul 2002 | B1 |
6448544 | Stanton et al. | Sep 2002 | B1 |
6466207 | Gortler et al. | Oct 2002 | B1 |
6476805 | Shum et al. | Nov 2002 | B1 |
6479827 | Hamamoto et al. | Nov 2002 | B1 |
6483535 | Tamburrino et al. | Nov 2002 | B1 |
6529265 | Henningsen | Mar 2003 | B1 |
6577342 | Webster | Jun 2003 | B1 |
6587147 | Li | Jul 2003 | B1 |
6597859 | Leinhardt et al. | Jul 2003 | B1 |
6606099 | Yamada | Aug 2003 | B2 |
6658168 | Kim | Dec 2003 | B1 |
6674430 | Kaufman et al. | Jan 2004 | B1 |
6687419 | Atkin | Feb 2004 | B1 |
6768980 | Meyer et al. | Jul 2004 | B1 |
6785667 | Orbanes et al. | Aug 2004 | B2 |
6833865 | Fuller et al. | Dec 2004 | B1 |
6842297 | Dowski, Jr. et al. | Jan 2005 | B2 |
6900841 | Mihara | May 2005 | B1 |
6924841 | Jones | Aug 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7025515 | Woods | Apr 2006 | B2 |
7034866 | Colmenarez et al. | Apr 2006 | B1 |
7079698 | Kobayashi | Jul 2006 | B2 |
7102666 | Kanade et al. | Sep 2006 | B2 |
7164807 | Morton | Jan 2007 | B2 |
7206022 | Miller et al. | Apr 2007 | B2 |
7239345 | Rogina | Jul 2007 | B1 |
7286295 | Sweatt et al. | Oct 2007 | B1 |
7304670 | Hussey et al. | Dec 2007 | B1 |
7329856 | Ma et al. | Feb 2008 | B2 |
7336430 | George | Feb 2008 | B2 |
7417670 | Linzer et al. | Aug 2008 | B1 |
7469381 | Ording | Dec 2008 | B2 |
7477304 | Hu | Jan 2009 | B2 |
7587109 | Reininger | Sep 2009 | B1 |
7620309 | Georgiev | Nov 2009 | B2 |
7623726 | Georgiev | Nov 2009 | B1 |
7633513 | Kondo et al. | Dec 2009 | B2 |
7683951 | Aotsuka | Mar 2010 | B2 |
7687757 | Tseng et al. | Mar 2010 | B1 |
7723662 | Levoy et al. | May 2010 | B2 |
7724952 | Shum et al. | May 2010 | B2 |
7748022 | Frazier | Jun 2010 | B1 |
7847825 | Aoki et al. | Dec 2010 | B2 |
7936377 | Friedhoff et al. | May 2011 | B2 |
7936392 | Ng et al. | May 2011 | B2 |
7941634 | Georgi | May 2011 | B2 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
7949252 | Georgiev | May 2011 | B1 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8085391 | Machida et al. | Dec 2011 | B2 |
8106856 | Matas et al. | Jan 2012 | B2 |
8115814 | Iwase et al. | Feb 2012 | B2 |
8155456 | Babacan | Apr 2012 | B2 |
8155478 | Vitsnudel et al. | Apr 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8228417 | Georgiev et al. | Jul 2012 | B1 |
8248515 | Ng et al. | Aug 2012 | B2 |
8259198 | Cote et al. | Sep 2012 | B2 |
8264546 | Witt | Sep 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8289440 | Knight et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8310554 | Aggarwal et al. | Nov 2012 | B2 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8400533 | Szedo | Mar 2013 | B1 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8427548 | Lim et al. | Apr 2013 | B2 |
8442397 | Kang et al. | May 2013 | B2 |
8446516 | Pitts et al. | May 2013 | B2 |
8494304 | Venable et al. | Jul 2013 | B2 |
8531581 | Shroff | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8570426 | Pitts et al. | Oct 2013 | B2 |
8577216 | Li et al. | Nov 2013 | B2 |
8581998 | Ohno | Nov 2013 | B2 |
8589374 | Chaudhri | Nov 2013 | B2 |
8593564 | Border et al. | Nov 2013 | B2 |
8605199 | Imai | Dec 2013 | B2 |
8614764 | Pitts et al. | Dec 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8629930 | Brueckner et al. | Jan 2014 | B2 |
8665440 | Kompaniets et al. | Mar 2014 | B1 |
8675073 | Aagaard et al. | Mar 2014 | B2 |
8724014 | Ng et al. | May 2014 | B2 |
8736710 | Spielberg | May 2014 | B2 |
8736751 | Yun | May 2014 | B2 |
8749620 | Pitts et al. | Jun 2014 | B1 |
8750509 | Renkis | Jun 2014 | B2 |
8754829 | Lapstun | Jun 2014 | B2 |
8760566 | Pitts et al. | Jun 2014 | B2 |
8768102 | Ng et al. | Jul 2014 | B1 |
8797321 | Bertolami et al. | Aug 2014 | B1 |
8811769 | Pitts et al. | Aug 2014 | B1 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8860856 | Wetsztein et al. | Oct 2014 | B2 |
8879901 | Caldwell et al. | Nov 2014 | B2 |
8903232 | Caldwell | Dec 2014 | B1 |
8908058 | Akeley et al. | Dec 2014 | B2 |
8948545 | Akeley et al. | Feb 2015 | B2 |
8953882 | Lim et al. | Feb 2015 | B2 |
8971625 | Pitts et al. | Mar 2015 | B2 |
8976288 | Ng et al. | Mar 2015 | B2 |
8988317 | Liang et al. | Mar 2015 | B1 |
8995785 | Knight et al. | Mar 2015 | B2 |
8997021 | Liang et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9013611 | Szedo | Apr 2015 | B1 |
9106914 | Doser | Aug 2015 | B2 |
9172853 | Pitts et al. | Oct 2015 | B2 |
9184199 | Pitts et al. | Nov 2015 | B2 |
9201193 | Smith | Dec 2015 | B1 |
9210391 | Mills | Dec 2015 | B1 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9294662 | Vondran, Jr. et al. | Mar 2016 | B2 |
9300932 | Knight et al. | Mar 2016 | B2 |
9305375 | Akeley | Apr 2016 | B2 |
9305956 | Pittes et al. | Apr 2016 | B2 |
9386288 | Akeley et al. | Jul 2016 | B2 |
9392153 | Myhre et al. | Jul 2016 | B2 |
9419049 | Pitts et al. | Aug 2016 | B2 |
9467607 | Ng et al. | Oct 2016 | B2 |
9497380 | Jannard et al. | Nov 2016 | B1 |
9607424 | Ng et al. | Mar 2017 | B2 |
9628684 | Liang et al. | Apr 2017 | B2 |
9635332 | Carroll et al. | Apr 2017 | B2 |
9639945 | Oberheu et al. | May 2017 | B2 |
9647150 | Blasco Claret | May 2017 | B2 |
9681069 | El-Ghoroury et al. | Jun 2017 | B2 |
9774800 | El-Ghoroury et al. | Sep 2017 | B2 |
9858649 | Liang et al. | Jan 2018 | B2 |
9866810 | Knight et al. | Jan 2018 | B2 |
9900510 | Karafin et al. | Feb 2018 | B1 |
9979909 | Kuang et al. | May 2018 | B2 |
20010048968 | Cox et al. | Dec 2001 | A1 |
20010053202 | Mazess et al. | Dec 2001 | A1 |
20020001395 | Davis et al. | Jan 2002 | A1 |
20020015048 | Nister | Feb 2002 | A1 |
20020061131 | Sawhney | May 2002 | A1 |
20020109783 | Hayashi et al. | Aug 2002 | A1 |
20020159030 | Frey et al. | Oct 2002 | A1 |
20020199106 | Hayashi | Dec 2002 | A1 |
20030081145 | Seaman et al. | May 2003 | A1 |
20030103670 | Schoelkopf et al. | Jun 2003 | A1 |
20030117511 | Belz et al. | Jun 2003 | A1 |
20030123700 | Wakao | Jul 2003 | A1 |
20030133018 | Ziemkowski | Jul 2003 | A1 |
20030147252 | Fioravanti | Aug 2003 | A1 |
20030156077 | Balogh | Aug 2003 | A1 |
20040002179 | Barton et al. | Jan 2004 | A1 |
20040012688 | Tinnerino et al. | Jan 2004 | A1 |
20040012689 | Tinnerino et al. | Jan 2004 | A1 |
20040101166 | Williams et al. | May 2004 | A1 |
20040114176 | Bodin et al. | Jun 2004 | A1 |
20040135780 | Nims | Jul 2004 | A1 |
20040189686 | Tanguay et al. | Sep 2004 | A1 |
20040257360 | Sieckmann | Dec 2004 | A1 |
20050031203 | Fukuda | Feb 2005 | A1 |
20050049500 | Babu et al. | Mar 2005 | A1 |
20050052543 | Li et al. | Mar 2005 | A1 |
20050080602 | Snyder et al. | Apr 2005 | A1 |
20050162540 | Yata | Jul 2005 | A1 |
20050212918 | Serra et al. | Sep 2005 | A1 |
20050276441 | Debevec | Dec 2005 | A1 |
20060023066 | Li et al. | Feb 2006 | A1 |
20060050170 | Tanaka | Mar 2006 | A1 |
20060056040 | Lan | Mar 2006 | A1 |
20060056604 | Sylthe et al. | Mar 2006 | A1 |
20060072175 | Oshino | Apr 2006 | A1 |
20060082879 | Miyoshi et al. | Apr 2006 | A1 |
20060130017 | Cohen et al. | Jun 2006 | A1 |
20060208259 | Jeon | Sep 2006 | A1 |
20060248348 | Wakao et al. | Nov 2006 | A1 |
20060256226 | Alon et al. | Nov 2006 | A1 |
20060274210 | Kim | Dec 2006 | A1 |
20060285741 | Subbarao | Dec 2006 | A1 |
20070008317 | Lundstrom | Jan 2007 | A1 |
20070019883 | Wong et al. | Jan 2007 | A1 |
20070030357 | Levien et al. | Feb 2007 | A1 |
20070033588 | Landsman | Feb 2007 | A1 |
20070052810 | Monroe | Mar 2007 | A1 |
20070071316 | Kubo | Mar 2007 | A1 |
20070081081 | Cheng | Apr 2007 | A1 |
20070097206 | Houvener | May 2007 | A1 |
20070103558 | Cai et al. | May 2007 | A1 |
20070113198 | Robertson et al. | May 2007 | A1 |
20070140676 | Nakahara | Jun 2007 | A1 |
20070188613 | Norbori et al. | Aug 2007 | A1 |
20070201853 | Petschnigg | Aug 2007 | A1 |
20070229653 | Matusik et al. | Oct 2007 | A1 |
20070230944 | Georgiev | Oct 2007 | A1 |
20070269108 | Steinberg et al. | Nov 2007 | A1 |
20080007626 | Wernersson | Jan 2008 | A1 |
20080012988 | Baharav et al. | Jan 2008 | A1 |
20080018668 | Yamauchi | Jan 2008 | A1 |
20080031537 | Gutkowicz-Krusin et al. | Feb 2008 | A1 |
20080049113 | Hirai | Feb 2008 | A1 |
20080056569 | Williams et al. | Mar 2008 | A1 |
20080122940 | Mori | May 2008 | A1 |
20080129728 | Satoshi | Jun 2008 | A1 |
20080144952 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080180792 | Georgiev | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080205871 | Utagawa | Aug 2008 | A1 |
20080226274 | Spielberg | Sep 2008 | A1 |
20080232680 | Berestov et al. | Sep 2008 | A1 |
20080253652 | Gupta et al. | Oct 2008 | A1 |
20080260291 | Alakarhu et al. | Oct 2008 | A1 |
20080266688 | Errando Smet et al. | Oct 2008 | A1 |
20080277566 | Utagawa | Nov 2008 | A1 |
20080309813 | Watanabe | Dec 2008 | A1 |
20080316301 | Givon | Dec 2008 | A1 |
20090027542 | Yamamoto et al. | Jan 2009 | A1 |
20090041381 | Georgiev et al. | Feb 2009 | A1 |
20090041448 | Georgiev et al. | Feb 2009 | A1 |
20090070710 | Kagaya | Mar 2009 | A1 |
20090128658 | Hayasaka et al. | May 2009 | A1 |
20090128669 | Ng et al. | May 2009 | A1 |
20090135258 | Nozaki | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090102956 | Georgiev | Jul 2009 | A1 |
20090185051 | Sano | Jul 2009 | A1 |
20090185801 | Georgiev et al. | Jul 2009 | A1 |
20090190022 | Ichimura | Jul 2009 | A1 |
20090190024 | Hayasaka et al. | Jul 2009 | A1 |
20090195689 | Hwang et al. | Aug 2009 | A1 |
20090202235 | Li et al. | Aug 2009 | A1 |
20090204813 | Kwan | Aug 2009 | A1 |
20090273843 | Raskar et al. | Nov 2009 | A1 |
20090295829 | Georgiev et al. | Dec 2009 | A1 |
20090309973 | Kogane | Dec 2009 | A1 |
20090310885 | Tamaru | Dec 2009 | A1 |
20090321861 | Oliver et al. | Dec 2009 | A1 |
20100003024 | Agrawal et al. | Jan 2010 | A1 |
20100021001 | Honsinger et al. | Jan 2010 | A1 |
20100026852 | Ng et al. | Feb 2010 | A1 |
20100050120 | Ohazama et al. | Feb 2010 | A1 |
20100060727 | Steinberg et al. | Mar 2010 | A1 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103311 | Makii | Apr 2010 | A1 |
20100107068 | Butcher et al. | Apr 2010 | A1 |
20100111489 | Presler | May 2010 | A1 |
20100123784 | Ding et al. | May 2010 | A1 |
20100141780 | Tan et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100201789 | Yahagi | Aug 2010 | A1 |
20100253782 | Elazary | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277617 | Hollinger | Nov 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100278382 | Chapman et al. | Nov 2010 | A1 |
20100303288 | Malone | Dec 2010 | A1 |
20100328485 | Imamura et al. | Dec 2010 | A1 |
20110018903 | Lapstun et al. | Jan 2011 | A1 |
20110019056 | Hirsch et al. | Jan 2011 | A1 |
20110025827 | Shpunt et al. | Feb 2011 | A1 |
20110050864 | Bond | Mar 2011 | A1 |
20110050909 | Ellenby | Mar 2011 | A1 |
20110069175 | Mistretta et al. | Mar 2011 | A1 |
20110075729 | Dane et al. | Mar 2011 | A1 |
20110090255 | Wilson et al. | Apr 2011 | A1 |
20110123183 | Adelsberger et al. | May 2011 | A1 |
20110129120 | Chan | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110148764 | Gao | Jun 2011 | A1 |
20110149074 | Lee et al. | Jun 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110205384 | Zamowski et al. | Aug 2011 | A1 |
20110210969 | Barenbrug | Sep 2011 | A1 |
20110221947 | Awazu | Sep 2011 | A1 |
20110242334 | Wilburn et al. | Oct 2011 | A1 |
20110242352 | Hikosaka | Oct 2011 | A1 |
20110261164 | Olesen et al. | Oct 2011 | A1 |
20110261205 | Sun | Oct 2011 | A1 |
20110267263 | Hinckley | Nov 2011 | A1 |
20110273466 | Imai et al. | Nov 2011 | A1 |
20110133649 | Bales et al. | Dec 2011 | A1 |
20110292258 | Adler | Dec 2011 | A1 |
20110298960 | Tan et al. | Dec 2011 | A1 |
20110304745 | Wang et al. | Dec 2011 | A1 |
20110311046 | Oka | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20120014837 | Fehr et al. | Jan 2012 | A1 |
20120050562 | Perwass et al. | Mar 2012 | A1 |
20120056889 | Carter et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120057806 | Backlund et al. | Mar 2012 | A1 |
20120062755 | Takahashi et al. | Mar 2012 | A1 |
20120132803 | Hirato et al. | May 2012 | A1 |
20120133746 | Bigioi et al. | May 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188344 | Imai | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120206574 | Shikata et al. | Aug 2012 | A1 |
20120218463 | Benezra et al. | Aug 2012 | A1 |
20120224787 | Imai | Sep 2012 | A1 |
20120229691 | Hiasa et al. | Sep 2012 | A1 |
20120249529 | Matsumoto et al. | Oct 2012 | A1 |
20120249550 | Akeley | Oct 2012 | A1 |
20120249819 | Imai | Oct 2012 | A1 |
20120251131 | Henderson et al. | Oct 2012 | A1 |
20120257065 | Velarde et al. | Oct 2012 | A1 |
20120257795 | Kim et al. | Oct 2012 | A1 |
20120271115 | Buerk | Oct 2012 | A1 |
20120272271 | Nishizawa et al. | Oct 2012 | A1 |
20120287246 | Katayama | Nov 2012 | A1 |
20120287296 | Fukui | Nov 2012 | A1 |
20120287329 | Yahata | Nov 2012 | A1 |
20120293075 | Engelen et al. | Nov 2012 | A1 |
20120300091 | Shroff et al. | Nov 2012 | A1 |
20120237222 | Ng et al. | Dec 2012 | A9 |
20130002902 | Ito | Jan 2013 | A1 |
20130002936 | Hirama et al. | Jan 2013 | A1 |
20130010077 | Nguyen | Jan 2013 | A1 |
20130021486 | Richardson | Jan 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130041215 | McDowall | Feb 2013 | A1 |
20130044290 | Kawamura | Feb 2013 | A1 |
20130050546 | Kano | Feb 2013 | A1 |
20130060540 | Frahm | Mar 2013 | A1 |
20130064453 | Nagasaka et al. | Mar 2013 | A1 |
20130064532 | Caldwell et al. | Mar 2013 | A1 |
20130070059 | Kushida | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130082905 | Ranieri et al. | Apr 2013 | A1 |
20130088616 | Ingrassia, Jr. | Apr 2013 | A1 |
20130093844 | Shuto | Apr 2013 | A1 |
20130093859 | Nakamura | Apr 2013 | A1 |
20130094101 | Oguchi | Apr 2013 | A1 |
20130107085 | Ng et al. | May 2013 | A1 |
20130113981 | Knight et al. | May 2013 | A1 |
20130120356 | Georgiev et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130120636 | Baer | May 2013 | A1 |
20130127901 | Georgiev et al. | May 2013 | A1 |
20130128052 | Catrein et al. | May 2013 | A1 |
20130128081 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130176481 | Holmes et al. | Jul 2013 | A1 |
20130188068 | Said | Jul 2013 | A1 |
20130208083 | Li | Aug 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215226 | Chauvier et al. | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130234935 | Griffith | Sep 2013 | A1 |
20130242137 | Kirkland | Sep 2013 | A1 |
20130258451 | El-Ghoroury et al. | Oct 2013 | A1 |
20130262511 | Kuffner et al. | Oct 2013 | A1 |
20130286236 | Wankowski | Oct 2013 | A1 |
20130321574 | Zhang et al. | Dec 2013 | A1 |
20130321581 | El-Ghoroury | Dec 2013 | A1 |
20130321677 | Cote et al. | Dec 2013 | A1 |
20130329107 | Burley et al. | Dec 2013 | A1 |
20130329132 | Tico et al. | Dec 2013 | A1 |
20130335596 | Demandoix et al. | Dec 2013 | A1 |
20130342700 | Kass | Dec 2013 | A1 |
20140002502 | Han | Jan 2014 | A1 |
20140002699 | Guan | Jan 2014 | A1 |
20140003719 | Bai et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140035959 | Lapstun | Feb 2014 | A1 |
20140037280 | Shirakawa | Feb 2014 | A1 |
20140049663 | Ng et al. | Feb 2014 | A1 |
20140049765 | Zheleznyak | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140071234 | Millett | Mar 2014 | A1 |
20140085282 | Luebke et al. | Mar 2014 | A1 |
20140092424 | Grosz | Apr 2014 | A1 |
20140098191 | Rime et al. | Apr 2014 | A1 |
20140132741 | Aagaard et al. | May 2014 | A1 |
20140133749 | Kuo et al. | May 2014 | A1 |
20140139538 | Barber et al. | May 2014 | A1 |
20140167196 | Heimgartner et al. | Jun 2014 | A1 |
20140168415 | Ihlenburg | Jun 2014 | A1 |
20140176540 | Tosic et al. | Jun 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140176710 | Brady | Jun 2014 | A1 |
20140177905 | Grefalda | Jun 2014 | A1 |
20140184885 | Tanaka et al. | Jul 2014 | A1 |
20140192208 | Okincha | Jul 2014 | A1 |
20140193047 | Grosz | Jul 2014 | A1 |
20140195921 | Grosz | Jul 2014 | A1 |
20140204111 | Vaidyanathan et al. | Jul 2014 | A1 |
20140211077 | Ng et al. | Jul 2014 | A1 |
20140218540 | Geiss et al. | Aug 2014 | A1 |
20140218718 | Mander | Aug 2014 | A1 |
20140226038 | Kimura | Aug 2014 | A1 |
20140240463 | Pitts et al. | Aug 2014 | A1 |
20140240578 | Fishman et al. | Aug 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267639 | Tatsuta | Sep 2014 | A1 |
20140300753 | Yin | Oct 2014 | A1 |
20140313350 | Keelan | Oct 2014 | A1 |
20140313375 | Milnar | Oct 2014 | A1 |
20140340390 | Lanman et al. | Nov 2014 | A1 |
20140347540 | Kang | Nov 2014 | A1 |
20140354863 | Ahn et al. | Dec 2014 | A1 |
20140368494 | Sakharnykh et al. | Dec 2014 | A1 |
20140368640 | Strandemar et al. | Dec 2014 | A1 |
20140375613 | Spears | Dec 2014 | A1 |
20150024336 | Blassnig et al. | Jan 2015 | A1 |
20150062178 | Matas et al. | Mar 2015 | A1 |
20150062386 | Sugawara | Mar 2015 | A1 |
20150092071 | Meng et al. | Apr 2015 | A1 |
20150097985 | Akeley | Apr 2015 | A1 |
20150146051 | Abe et al. | May 2015 | A1 |
20150170371 | Muninder et al. | Jun 2015 | A1 |
20150193937 | Georgiev et al. | Jul 2015 | A1 |
20150206340 | Munkberg et al. | Jul 2015 | A1 |
20150207990 | Ford et al. | Jul 2015 | A1 |
20150237273 | Sawadaishi | Aug 2015 | A1 |
20150104101 | Bryant et al. | Oct 2015 | A1 |
20150310592 | Kano | Oct 2015 | A1 |
20150312553 | Ng et al. | Oct 2015 | A1 |
20150312593 | Akeley et al. | Oct 2015 | A1 |
20150370011 | Ishihara | Dec 2015 | A1 |
20150370012 | Ishihara | Dec 2015 | A1 |
20160029017 | Liang | Jan 2016 | A1 |
20160048970 | Loghman | Feb 2016 | A1 |
20160142615 | Liang | May 2016 | A1 |
20160155215 | Suzuki | Jun 2016 | A1 |
20160165206 | Huang et al. | Jun 2016 | A1 |
20160173844 | Knight et al. | Jun 2016 | A1 |
20160191823 | El-Ghoroury | Jun 2016 | A1 |
20160253837 | Zhu et al. | Sep 2016 | A1 |
20160269620 | Romanenko et al. | Sep 2016 | A1 |
20160307368 | Akeley | Oct 2016 | A1 |
20160307372 | Pitts et al. | Oct 2016 | A1 |
20160309065 | Karafin et al. | Oct 2016 | A1 |
20160330434 | Chen | Nov 2016 | A1 |
20160353026 | Blonde et al. | Dec 2016 | A1 |
20160381348 | Hayasaka | Dec 2016 | A1 |
20170059305 | Nonn et al. | Mar 2017 | A1 |
20170061635 | Oberheu et al. | Mar 2017 | A1 |
20170067832 | Ferrara, Jr. et al. | Mar 2017 | A1 |
20170094906 | Liang et al. | Mar 2017 | A1 |
20170134639 | Pitts et al. | May 2017 | A1 |
20170139131 | Karafin et al. | May 2017 | A1 |
20170237971 | Pitts et al. | Aug 2017 | A1 |
20170243373 | Bevensee et al. | Aug 2017 | A1 |
20170244948 | Pang et al. | Aug 2017 | A1 |
20170256036 | Song et al. | Sep 2017 | A1 |
20170263012 | Sabater et al. | Sep 2017 | A1 |
20170302903 | Ng et al. | Oct 2017 | A1 |
20170358092 | Bleibel et al. | Dec 2017 | A1 |
20180012397 | Carothers | Jan 2018 | A1 |
20180020204 | Pang et al. | Jan 2018 | A1 |
20180033209 | Akeley et al. | Feb 2018 | A1 |
20180034134 | Pang et al. | Feb 2018 | A1 |
20180070066 | Knight et al. | Mar 2018 | A1 |
20180070067 | Knight et al. | Mar 2018 | A1 |
20180082405 | Liang | Mar 2018 | A1 |
20180089903 | Pang et al. | Mar 2018 | A1 |
20180097867 | Pang et al. | Apr 2018 | A1 |
20180139431 | Simek | May 2018 | A1 |
20180158198 | Kamad | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
101226292 | Jul 2008 | CN |
101309359 | Nov 2008 | CN |
19624421 | Jan 1997 | DE |
2010020100 | Jan 2010 | JP |
2011135170 | Jul 2011 | JP |
2003052465 | Jun 2003 | WO |
2006039486 | Apr 2006 | WO |
2007092545 | Aug 2007 | WO |
2007092581 | Aug 2007 | WO |
2011029209 | Mar 2011 | WO |
2011030234 | Mar 2011 | WO |
2011081187 | Jul 2011 | WO |
Entry |
---|
Park, Yoonsu & Yun, Seokmin & Won, Chee & Cho, Kyungeun & Um, Kyhyun & Sim, Sungdae. (2014). Calibration between Color Camera and 3D Lidar Instruments with a Polygonal Planar Board. Sensors (Basel, Switzerland). 14. 5333-5353. 10.3390/s140305333. |
Georgiev, T., et al., “Suppersolution with Plenoptic 2.0 Cameras,” Optical Society of America 2009; pp. 1-3. |
Georgiev, T., et al., “Unified Frequency Domain Analysis of Lightfield Cameras” (2008). |
Georgiev, T., et al., Plenoptic Camera 2.0 (2008). |
Girod, B., “Mobile Visual Search”, IEEE Signal Processing Magazine, Jul. 2011. |
Gortler et al., “The lumigraph” SIGGRAPH 96, pp. 43-54. |
Groen et al., “A Comparison of Different Focus Functions for Use in Autofocus Algorithms,” Cytometry 6:81-91, 1985. |
Haeberli, Paul “A Multifocus Method for Controlling Depth of Field” GRAPHICA Obscura, 1994, pp. 1-3. |
Heide, F. et al., “High-Quality Computational Imaging Through Simple Lenses,” ACM Transactions on Graphics, SIGGRAPH 2013; pp. 1-7. |
Heidelberg Collaboratory for Image Processing, “Consistent Depth Estimation in a 4D Light Field,” May 2013. |
Hirigoyen, F., et al., “1.1 um Backside Imager vs Frontside Image: an optics-dedicated FDTD approach”, IEEE 2009 International Image Sensor Workshop. |
Huang, Fu-Chung et al., “Eyeglasses-free Display: Towards Correcting Visual Aberrations with Computational Light Field Displays,” ACM Transaction on Graphics, Aug. 2014, pp. 1-12. |
Isaksen, A., et al., “Dynamically Reparameterized Light Fields,” SIGGRAPH 2000, pp. 297-306. |
Ives H., “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931). |
Ives, H. “Parallax Panoramagrams Made with a Large Diameter Lens”, Journal of the Optical Society of America; 1930. |
Jackson et al., “Selection of a Convolution Function for Fourier Inversion Using Gridding” IEEE Transactions on Medical Imaging, Sep. 1991, vol. 10, No. 3, pp. 473-478. |
Kautz, J., et al., “Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics”, in Eurographic Rendering Workshop 2002, 291-296. |
Koltun, et al., “Virtual Occluders: An Efficient Interediate PVS Representation”, Rendering Techniques 2000: Proc. 11th Eurographics Workshop Rendering, pp. 59-70, Jun. 2000. |
Kopf, J., et al., Deep Photo: Model-Based Photograph Enhancement and Viewing, SIGGRAPH Asia 2008. |
Lehtinen, J., et al. “Matrix radiance transfer”, in Symposium on Interactive 3D Graphics, 59-64, 2003. |
Lesser, Michael, “Back-Side Illumination”, 2009. |
Levin, A., et al., “Image and Depth from a Conventional Camera with a Coded Aperture”, SIGGRAPH 2007, pp. 1-9. |
Levoy et al.,“Light Field Rendering” SIGGRAPH 96 Proceeding, 1996. pp. 31-42. |
Levoy, “Light Fields and Computational Imaging” IEEE Computer Society, Aug. 2006, pp. 46-55. |
Levoy, M. “Light Field Photography and Videography,” Oct. 18, 2005. |
Levoy, M. “Stanford Light Field Microscope Project,” 2008; http://graphics.stanford.edu/projects/lfmicroscope/, 4 pages. |
Levoy, M., “Autofocus: Contrast Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M., “Autofocus: Phase Detection”, http://graphics.stanford.edu/courses/cs178/applets/autofocusPD.html, pp. 1-3, 2010. |
Levoy, M., et al., “Light Field Microscopy,” ACM Transactions on Graphics, vol. 25, No. 3, Proceedings SIGGRAPH 2006. |
Liang, Chia-Kai, et al., “Programmable Aperture Photography: Multiplexed Light Field Acquisition”, ACM SIGGRAPH, 2008. |
Lippmann, “Reversible Prints”, Communication at the French Society of Physics, Journal of Physics, 7, 4, Mar. 1908, pp. 821-825. |
Lumsdaine et al., “Full Resolution Lightfield Rendering” Adobe Technical Report Jan. 2008, pp. 1-12. |
Maeda, Y. et al., “A CMOS Image Sensor with Pseudorandom Pixel Placement for Clear Imaging,” 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Dec. 2009. |
Magnor, M. et al., “Model-Aided Coding of Multi-Viewpoint Image Data,” Proceedings IEEE Conference on Image Processing, ICIP-2000, Vancouver, Canada, Sep. 2000. https://graphics.tu-bs.de/static/people/magnor/publications/icip00.pdf. |
Mallat, Stephane, “A Wavelet Tour of Signal Processing”, Academic Press 1998. |
Malzbender, et al., “Polynomial Texture Maps”, Proceedings SIGGRAPH 2001. |
Masselus, Vincent, et al., “Relighting with 4D Incident Light Fields”, SIGGRAPH 2003. |
Meynants, G., et al., “Pixel Binning in CMOS Image Sensors,” Frontiers in Electronic Imaging Conference, 2009. |
Moreno-Noguer, F. et al., “Active Refocusing of Images and Videos,” ACM Transactions on Graphics, Aug. 2007; pp. 1-9. |
Munkberg, J. et al., “Layered Reconstruction for Defocus and Motion Blur” EGSR 2014, pp. 1-12. |
Naemura et al., “3-D Computer Graphics based on Integral Photography” Optics Express, Feb. 12, 2001. vol. 8, No. 2, pp. 255-262. |
Nakamura, J., “Image Sensors and Signal Processing for Digital Still Cameras” (Optical Science and Engineering), 2005. |
National Instruments, “Anatomy of a Camera,” pp. 1-5, Sep. 6, 2006. |
Nayar, Shree, et al., “Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No. 8, pp. 824-831, Aug. 1994. |
Ng, R., et al. “Light Field Photography with a Hand-held Plenoptic Camera,” Stanford Technical Report, CSTR 2005-2, 2005. |
Ng, R., et al., “All-Frequency Shadows Using Non-linear Wavelet Lighting Approximation. ACM Transactions on Graphics,” ACM Transactions on Graphics; Proceedings of SIGGRAPH 2003. |
Ng, R., et al., “Triple Product Wavelet Integrals for All-Frequency Relighting”, ACM Transactions on Graphics Proceedings of SIGGRAPH 2004). |
Ng, Yi-Ren, “Digital Light Field Photography,” Doctoral Thesis, Standford University, Jun. 2006; 203 pages. |
Ng., R., “Fourier Slice Photography,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2005, vol. 24, No. 3, 2005, pp. 735-744. |
Nguyen, Hubert. “Practical Post-Process Depth of Field.” GPU Gems 3. Upper Saddle River, NJ: Addison-Wesley, 2008. |
Marshall, Richard J., et al., “Improving Depth Estimation from a Plenoptic Camera by Patterned Illumination”, Proc. of SPIE, vol. 9528, 2015, pp. 1-6. |
Tao, Michael, et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, Dec. 2013. |
Wikipedia—Data overlay techniques for real-time visual feed. For example, heads-up displays: http://en.wikipedia.org/wiki/Head-up_display. Retrieved Jan. 2013. |
Wikipedia—Exchangeable image file format: http://en.wikipedia.org/wiki/Exchangeable_image_file_format. Retrieved Jan. 2013. |
Wikipedia—Expeed: http://en.wikipedia.org/wiki/EXPEED. Retrieved Jan. 15, 2014. |
Wikipedia—Extensible Metadata Platform: http://en.wikipedia.org/wiki/Extensible_Metadata_Platform. Retrieved Jan. 2013. |
Wikipedia—Key framing for video animation: http://en.wikipedia.org/wiki/Key_frame. Retrieved Jan. 2013. |
Wikipedia—Lazy loading of image data: http://en.wikipedia.org/wiki/Lazy_loading. Retrieved Jan. 2013. |
Wikipedia—Methods of Variable Bitrate Encoding: http://en.wikipedia.org/wiki/Variable_bitrate#Methods_of_VBR_encoding Retrieved Jan. 2013. |
Wikipedia—Portable Network Graphics format: http://en.wikipedia.org/wiki/Portable_Network_Graphics. Retrieved Jan. 2013. |
Wikipedia—Unsharp Mask Technique: https://en.wikipedia.org/wiki/Unsharp_masking. Retrieved May 3, 2016. |
Wilburn et al., “High Performance Imaging using Large Camera Arrays”, ACM Transactions on Graphics (TOG), vol. 24, Issue 3 (Jul. 2005), Proceedings of ACM SIGGRAPH 2005, pp. 765-776. |
Wilburn, Bennett, et al., “High Speed Video Using a Dense Camera Array”, 2004. |
Wilburn, Bennett, et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002. |
Williams, L. “Pyramidal Parametrics,” Computer Graphic (1983). |
Winnemoller, H., et al., “Light Waving: Estimating Light Positions From Photographs Alone”, Eurographics 2005. |
Wippermann, F. “Chirped Refractive Microlens Array,” Dissertation 2007. |
Wuu, S., et al.,“ A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors”, 2009 International Image Sensor Workshop, Bergen, Norway. |
Wuu, S., et al., “BSI Technology with Bulk Si Wafer”, 2009 International Image SensorWorkshop, Bergen, Norway. |
Xiao, Z. et al., “Aliasing Detection and Reduction in Plenoptic Imaging,” IEEE Conference on Computer Vision and Pattern Recognition; 2014. |
Xu, Xin et al., “Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure,” Sensors 2011; 14 pages. |
Zheng, C. et al., “Parallax Photography: Creating 3D Cinematic Effects from Stills”, Proceedings of Graphic Interface, 2009. |
Zitnick, L. et al., “High-Quality Video View Interpolation Using a Layered Representation,” Aug. 2004; ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2004; vol. 23, Issue 3; pp. 600-608. |
Zoberbier, M., et al., “Wafer Cameras—Novel Fabrication and Packaging Technologies”, 2009 International Image Senor Workshop, Bergen, Norway, 5 pages. |
U.S. Appl. No. 15/967,076, filed Apr. 30, 2018 listing Jiantao Kuang et al. as inventors, entitled “Automatic Lens Flare Detection and Correction for Light-Field Images”. |
U.S. Appl. No. 15/666,298, filed Aug. 1, 2017 listing Yonggang Ha et al. as inventors, entitled “Focal Reducer With Controlled Optical Properties for Interchangeable Lens Light-Field Camera”. |
U.S. Appl. No. 15/590,808, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Adaptive Control for Immersive Experience Delivery”. |
U.S. Appl. No. 15/864,938, filed Jan. 8, 2018 listing Jon Karafin et al. as inventors, entitled “Motion Blur for Light-Field Images”. |
U.S. Appl. No. 15/703,553, filed Sep. 13, 2017 listing Jon Karafin et al. as inventors, entitled “4D Camera Tracking and Optical Stabilization”. |
U.S. Appl. No. 15/590,841, filed May 9, 2017 listing Kurt Akeley et al. as inventors, entitled “Vantage Generation and Interactive Playback”. |
U.S. Appl. No. 15/590,951, filed May 9, 2017 listing Alex Song et al. as inventors, entitled “Wedge-Based Light-Field Video Capture”. |
U.S. Appl. No. 15/944,551, filed Apr. 3, 2018 listing Zejing Wang et al. as inventors, entitled “Generating Dolly Zoom Effect Using Light Field Image Data”. |
U.S. Appl. No. 15/874,723, filed Jan. 18, 2018 listing Mark Weir et al. as inventors, entitled “Multi-Camera Navigation Interface”. |
U.S. Appl. No. 15/897,994, filed Feb. 15, 2018 listing Trevor Carothers et al. as inventors, entitled “Generation of Virtual Reality With 6 Degrees of Freesom From Limited Viewer Data”. |
U.S. Appl. No. 15/605,037, filed May 25, 2017 listing Zejing Wang et al. as inventors, entitled “Multi-View Back-Projection to a Light-Field”. |
U.S. Appl. No. 15/897,836, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-Mew Contour Tracking”. |
U.S. Appl. No. 15/897,942, filed Feb. 15, 2018 listing Francois Bleibel et al. as inventors, entitled “Multi-Mew Contour Tracking With Grabcut”. |
Adelsberger, R. et al., “Spatially Adaptive Photographic Flash,” ETH Zurich, Department of Computer Science, Technical Report 612, 2008, pp. 1-12. |
Adelson et al., “Single Lens Stereo with a Plenoptic Camera” IEEE Translation on Pattern Analysis and Machine Intelligence, Feb. 1992. vol. 14, No. 2, pp. 99-106. |
Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elementsof early vision. In Computational Models of Visual Processing, edited by Michael S. Landy and J. Anthony Movshon. Cambridge, Mass.: mit Press. |
Adobe Systems Inc, “XMP Specification”, Sep. 2005. |
Adobe, “Photoshop CS6 / in depth: Digital Negative (DNG)”, http://www.adobe.com/products/photoshop/extend.displayTab2html. Retrieved Jan. 2013. |
Agarwala, A., et al., “Interactive Digital Photomontage,” ACM Transactions on Graphics, Proceedings of SIGGRAPH 2004, vol. 32, No. 3, 2004. |
Andreas Observatory, Spectrograph Manual: IV. Flat-Field Correction, Jul. 2006. |
Apple, “Apple iPad: Photo Features on the iPad”, Retrieved Jan. 2013. |
Bae, S., et al., “Defocus Magnification”, Computer Graphics Forum, vol. 26, Issue 3 (Proc. of Eurographics 2007), pp. 1-9. |
Belhumeur, Peter et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1997, pp. 1060-1066. |
Belhumeur, Peter, et al., “The Bas-Relief Ambiguity”, International Journal of Computer Vision, 1999, pp. 33-44, revised version. |
Bhat, P. et al. “Gradientshop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” SIGGRAPH 2010; 14 pages. |
Bolles, R., et al., “Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion”, International Journal of Computer Vision, 1, 7-55 (1987). |
Bourke, Paul, “Image filtering in the Frequency Domain,” pp. 1-9, Jun. 1998. |
Canon, Canon Speedlite wireless flash system, User manual for Model 550EX, Sep. 1998. |
Chai, Jin-Xang et al., “Plenoptic Sampling”, ACM SIGGRAPH 2000, Annual Conference Series, 2000, pp. 307-318. |
Chen, S. et al., “A CMOS Image Sensor with On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm,” Very Large Scalee Integration (VLSI) Systems, IEEE Transactions, vol. 19, Issue 4; Apr. 2011. |
Chen, W., et al., “Light Field mapping: Efficient representation and hardware rendering of surface light fields”, ACM Transactions on Graphics 21, 3, 447-456, 2002. |
Cohen, Noy et al., “Enhancing the performance of the light field microscope using wavefront coding,” Optics Express, vol. 22, issue 20; 2014. |
Daly, D., “Microlens Arrays” Retrieved Jan. 2013. |
Debevec, et al., “A Lighting Reproduction Approach to Live-Action Compoisting” Proceedings SIGGRAPH 2002. |
Debevec, P., et al., “Acquiring the reflectance field of a human face”, SIGGRAPH 2000. |
Debevec, P., et al., “Recovering high dynamic radiance maps from photographs”, SIGGRAPH 1997, 369-378. |
Design of the xBox menu. Retrieved Jan. 2013. |
Digital Photography Review, “Sony Announce new RGBE CCD,” Jul. 2003. |
Dorsey, J., et al., “Design and simulation of opera light and projection effects”, in Computer Graphics (Proceedings of SIGGRAPH 91), vol. 25, 41-50. |
Dorsey, J., et al., “Interactive design of complex time dependent lighting”, IEEE Computer Graphics and Applications 15, 2 (Mar. 1995), 26-36. |
Dowski et al., “Wavefront coding: a modern method of achieving high performance and/or low cost imaging systems” SPIE Proceedings, vol. 3779, Jul. 1999, pp. 137-145. |
Dowski, Jr. “Extended Depth of Field Through Wave-Front Coding,” Applied Optics, vol. 34, No. 11, Apr. 10, 1995 pp. 1859-1866. |
Duparre, J. et al., “Micro-Optical Artificial Compound Eyes,” Institute of Physics Publishing, Apr. 2006. |
Eisemann, Elmar, et al., “Flash Photography Enhancement via Intrinsic Relighting”, SIGGRAPH 2004. |
Fattal, Raanan, et al., “Multiscale Shape and Detail Enhancement from Multi-light Image Collections”, SIGGRAPH 2007. |
Fernando, Randima, “Depth of Field—A Survey of Techniques,” GPU Gems. Boston, MA; Addison-Wesley, 2004. |
Fitzpatrick, Brad, “Camlistore”, Feb. 1, 2011. |
Fujifilm, Super CCD EXR Sensor by Fujifilm, brochure reference No. EB-807E, 2008. |
Georgiev, T. et al., “Reducing Plenoptic Camera Artifacts,” Computer Graphics Forum, vol. 29, No. 6, pp. 1955-1968; 2010. |
Georgiev, T., et al., “Spatio-Angular Resolution Tradeoff in Integral Photography,” Proceedings of Eurographics Symposium on Rendering, 2006. |
Nimeroff, J., et al., “Efficient rendering of naturally illuminatied environments” in Fifth Eurographics Workshop on Rendering, 359-373, 1994. |
Nokia, “City Lens”, May 2012. |
Ogden, J., “Pyramid-Based Computer Graphics”, 1985. |
Okano et al., “Three-dimensional video system based on integral photograohy” Optical Engineering, Jun. 1999. vol. 38, No. 6, pp. 1072-1077. |
Orzan, Alexandrina, et al., “Diffusion Curves: A Vector Representation for Smooth-Shaded Images,” ACM Transactions on Graphics—Proceedings of SIGGRAPH 2008; vol. 27; 2008. |
Pain, B., “Back-Side Illumination Technology for SOI-CMOS Image Sensors”, 2009. |
Perez, Patrick et al., “Poisson Image Editing,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH 2003; vol. 22, Issue 3; Jul. 2003; pp. 313-318. |
Petschnigg, George, et al., “Digial Photography with Flash and No-Flash Image Pairs”, SIGGRAPH 2004. |
Primesense, “The Primesense 3D Awareness Sensor”, 2007. |
Ramamoorthi, R., et al, “Frequency space environment map rendering” ACM Transactions on Graphics (SIGGRAPH 2002 proceedings) 21, 3, 517-526. |
Ramamoorthi, R., et al., “An efficient representation for irradiance environment maps”, in Proceedings of SIGGRAPH 2001, 497-500. |
Raskar, Ramesh et al., “Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses,” ACM Transactions on Graphics—Proceedings of ACM SIGGRAPH, Aug. 2008; vol. 27, Issue 3; pp. 1-10. |
Raskar, Ramesh et al., “Non-photorealistic Camera: Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging”, SIGGRAPH 2004. |
Raytrix, “Raytrix Lightfield Camera,” Raytrix GmbH, Germany 2012, pp. 1-35. |
Roper Scientific, Germany “Fiber Optics,” 2012. |
Scharstein, Daniel, et al., “High-Accuracy Stereo Depth Maps Using Structured Light,” CVPR'03 Proceedings of the 2003 IEEE Computer Society, pp. 195-202. |
Schirmacher, H. et al., “High-Quality Interactive Lumigraph Rendering Through Warping,” May 2000, Graphics Interface 2000. |
Shade, Jonathan, et al., “Layered Depth Images”, SIGGRAPH 98, pp. 1-2. |
Shreiner, OpenGL Programming Guide, 7th edition, Chapter 8, 2010. |
Simpleviewer, “Tiltview”, http://simpleviewer.net/tiltviewer. Retrieved Jan. 2013. |
Skodras, A. et al., “The JPEG 2000 Still Image Compression Standard,” Sep. 2001, IEEE Signal Processing Magazine, pp. 36-58. |
Sloan, P., et al., “Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments”, ACM Transactions on Graphics 21, 3, 527-536, 2002. |
Snavely, Noah, et al., “Photo-tourism: Exploring Photo collections in 3D”, Acm Transactions on Graphics (SIGGRAPH Proceedings), 2006. |
Sokolov, “Autostereoscopy and Integral Photography by Professor Lippmann's Method”, 1911, pp. 23-29. |
Sony Corp, “Interchangeable Lens Digital Camera Handbook”, 2011. |
Sony, Sony's First Curved Sensor Photo: http://www.engadget.com; Jul. 2014. |
Stensvold, M., “Hybrid AF: A New Approach to Autofocus Is Emerging for both Still and Video”, Digital Photo Magazine, Nov. 13, 2012. |
Story, D., “The Future of Photography”, Optics Electronics, Oct. 2008. |
Sun, Jian, et al., “Stereo Matching Using Belief Propagation”, 2002. |
Tagging photos on Flickr, Facebook and other online photo sharing sites (see, for example, http://support.gnip.com/customer/portal/articles/809309-flickr-geo-photos-tag-search). Retrieved Jan. 2013. |
Takahashi, Keita, et al., “All in-focus View Synthesis from Under-Sampled Light Fields”, ICAT 2003, Tokyo, Japan. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification” Applied Optics 40, 11 (Apr. 10, 2001), pp. 1806-1813. |
Techcrunch, “Coolinis”, Retrieved Jan. 2013. |
Teo, P., et al., “Efficient linear rendering for interactive light design”, Tech. Rep. STAN-CS-TN-97-60, 1998, Stanford University. |
Teranishi, N. “Evolution of Optical Structure in Images Sensors,” Electron Devices Meeting (IEDM) 2012 IEEE International; Dec. 10-13, 2012. |
Vaish et al., “Using plane + parallax for calibrating dense camera arrays”, In Proceedings CVPR 2004, pp. 2-9. |
Vaish, V., et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform,” Workshop on Advanced 3D Imaging for Safety and Security (in conjunction with CVPR 2005), 2005. |
VR Playhouse, “The Surrogate,” http://www.vrplayhouse.com/the-surrogate. |
Wanner, S. et al., “Globally Consistent Depth Labeling of 4D Light Fields,” IEEE Conference on Computer Vision and Pattern Recognition, 2012. |
Wanner, S. et al., “Variational Light Field Analysis for Disparity Estimation and Super-Resolution,” IEEE Transacations on Pattern Analysis and Machine Intellegence, 2013. |
Wenger, et al, “Performance Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, Institute for Creative Technologies, SIGGRAPH 2005. |
Wetzstein, Gordon, et al., “Sensor Saturation in Fourier Multiplexed Imaging”, IEEE Conference on Computer Vision and Pattern Recognition (2010). |
Wikipedia—Adaptive Optics: http://en.wikipedia.org/wiki/adaptive_optics. Retrieved Feb. 2014. |
Wikipedia—Autofocus systems and methods: http://en.wikipedia.org/wiki/Autofocus. Retrieved Jan. 2013. |
Wikipedia—Bayer Filter: http:/en.wikipedia.org/wiki/Bayer_filter. Retrieved Jun. 20, 2013. |
Wikipedia—Color Image Pipeline: http://en.wikipedia.org/wiki/color_image_pipeline. Retrieved Jan. 15, 2014. |
Wikipedia—Compression standard JPEG XR: http://en.wikipedia.org/wiki/JPEG_XR. Retrieved Jan. 2013. |
Wikipedia—CYGM Filter: http://en.wikipedia.org/wiki/CYGM_filter. Retrieved Jun. 20, 2013. |
Number | Date | Country | |
---|---|---|---|
20170365068 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62359022 | Jul 2016 | US | |
62305917 | Mar 2016 | US | |
62200804 | Aug 2015 | US | |
62148055 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15451831 | Mar 2017 | US |
Child | 15635894 | US | |
Parent | 15098674 | Apr 2016 | US |
Child | 15451831 | US | |
Parent | 14834924 | Aug 2015 | US |
Child | 15098674 | US |