The described embodiments relate generally to utilizing a wireless power transmission in a portable computing environment.
Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques. For example, radiative wireless information transfer using low-directionality antennas, such as those used in radio and cellular communications systems and home computer networks, may be considered wireless energy transfer. However, this type of radiative transfer is very inefficient because only a tiny portion of the supplied or radiated power, namely, that portion in the direction of, and overlapping with, the receiver is picked up. The vast majority of the power is radiated away in all the other directions and lost in free space. Such inefficient power transfer may be acceptable for data transmission, but is not practical for transferring useful amounts of electrical energy for the purpose of doing work, such as for powering or charging electrical devices.
One way to improve the transfer efficiency of some radiative energy transfer schemes is to use directional antennas to confine and preferentially direct the radiated energy towards a receiver. However, these directed radiation schemes may require an uninterruptible line-of-sight and potentially complicated tracking and steering mechanisms in the case of mobile transmitters and/or receivers. In addition, such schemes may pose hazards to objects or people that cross or intersect the beam when modest to high amounts of power are being transmitted. A known non-radiative, or near-field, wireless energy transfer scheme, often referred to as either induction or traditional induction, does not (intentionally) radiate power, but uses an oscillating current passing through a primary coil, to generate an oscillating magnetic near-field that induces currents in a near-by receiving or secondary coil. Traditional induction schemes have demonstrated the transmission of modest to large amounts of power, however only over very short distances, and with very small offset tolerances between the primary power supply unit and the secondary receiver unit. Electric transformers and proximity chargers are examples of devices that utilize this known short range, near-field energy transfer scheme.
As described in Annals of Physics 323 (2008) 34-48 “Efficient Wireless Non-Radiative Mid-range Energy Transfer” by Aristeidis Karalis et al., available online Apr. 27, 2007 that is incorporated by reference in its entirety for all purposes useable power can be transferred wirelessly from a power source to a receiver located within a distance referred to as a near field. By near field it is meant that within a distance a few times larger than that of both objects involved in the transfer (about one meter or so for most applications) a relatively large amount of power (at least on the order of a few watts) can be transferred between a wireless source device and a receiver with an acceptable efficiency. In this way, a realistic and practical approach to wireless transferring useable amounts of power over distances suitable for limited applications can be realized. Typically, each battery powered device such as a wireless electronic device requires its own charger and power source, which is usually an alternating current (AC) power outlet. Such a wired configuration becomes unwieldy when many devices need charging.
What is desired are methods, systems, and apparatus for efficient and user friendly interaction between peripheral devices in a wirelessly powered local computing environment.
The present invention provides a system and method for utilizing wireless near field magnetic resonance (NFMR) power transmission in a computing environment. In particular, methods, systems, and apparatus that describe a peripheral device arranged to wirelessly receive power from an NFMR power transmitter in useable amounts while positioned in about any spatial orientation with respect to the NFMF transmitter.
A wireless power unit arranged to provide at least a minimum amount of power to a device wirelessly received from a magnetic field provided by a near field magnetic resonance (NFMR) transmitter unit having a resonance frequency ωT, the minimum amount of power delivered to the device being independent of a spatial orientation of the portable power unit with respect to the magnetic field is described. The wireless power unit includes a first resonator structure, the first resonator structure having a resonant frequency ω1, and a characteristic size L1, a second resonator structure, the second resonator structure having a resonant frequency ω2, and a characteristic size L2, wherein the first and second resonator structures are magnetically decoupled such that an effective magnetic coupling coefficient κeff between the first and second resonator structures is about zero, and a power combining circuit coupled to the magnetically decoupled first and second resonator structures arranged to: load match the first and second resonator structures and the device, load balance power from the first and second resonator structures, and maintain an effective magnetic coupling coefficient between the first and second resonator structures at about zero regardless of a spatial orientation of the wireless power unit with regards to the NFMR magnetic field such that the device wirelessly receives the at least the minimum amount of power from the wireless power unit regardless of an orientation of the at least two NFMR power receivers with respect to the NFMR magnetic field.
A peripheral device arranged to wirelessly receive power from a NFMR power transmitter independent of the orientation of the peripheral device with respect to the NFMR power transmitter is described. The peripheral device includes at least a wireless power receiving unit. The wireless power receiving unit includes at least two magnetically de-coupled near field magnetic resonance (NFMR) power receivers each arranged to receive power from a NFMR magnetic field, a power combining circuit coupled to the at least two magnetically decoupled NFMR power receivers arranged to: load match the at least two NFMR power receivers and the device, load balance power from the at least two NFMR power receivers, and maintain an effective magnetic coupling coefficient between the at least two magnetically de-coupled NFMR power receivers at about zero regardless of a spatial orientation of the wireless power unit with regards to the NFMR magnetic field such that the device wirelessly receives the substantial constant power from the wireless power unit regardless of an orientation of the at least two NFMR power receivers with respect to the NFMR magnetic field.
Other apparatuses, methods, features and advantages of the described embodiments will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is target that all such additional apparatuses, methods, features and advantages be included within this description be within the scope of and protected by the accompanying claims.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and arrangements for the disclosed embodiments. These drawings in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the embodiments.
Various embodiments of a wirelessly powered local computing environment are described. The wireless powered local computing environment includes at least a near field magnetic resonance (NFMR) power supply arranged to wirelessly provide power to any of a number of suitably configured devices. In the described embodiments, the devices arranged to receive power wirelessly from the NFMR power supply can be located in a region known as the near field that extends about a distance D that can be a few times a characteristic size of the NFMR power supply transmission device. Typically, the distance D can be on the order of 1 meter or so.
In the context of this discussion, it is well known that useable power can be wirelessly transmitted by way of a wireless transmitter and receiver transiently coupled by way of a magnetic field. More specifically, a system in accordance with the described embodiments can include a wireless power receiver incorporated within or electrically coupled to a peripheral device that can wirelessly receive useful amounts of power from an external power supply. In the described system, the wireless power receiver can include a first resonator structure having a first resonant frequency ω1, a first Q factor Q1 (a measure of power transfer efficiency), and a first characteristic size L1. For example, in the context of a computing system where the peripheral device takes the form of a computer mouse or other input device, the characteristic size L1 can be on the order of a few inches or centimeters. The system can also include a power supply coupled to at least a second resonator structure positioned a variable distance d from the first resonator structure having a second resonant frequency ω2 and a second Q factor Q2 and second characteristic size L2. For example, the second resonator structure can be incorporated within a computer such as a desktop or laptop computer. In this way, a charging region can be formed around the computer in which the peripheral device (or any other appropriately configured device) can wirelessly receive useful amounts of power from the power supply via the second resonator structure.
When first and second resonant frequencies ω1 and ω2 are close together, a coupling region between the first and second resonator structures can be formed. Within this coupling region, useful power can be transferred by way of a non-radiative energy transfer mechanism that utilizes resonant-field evanescent tails of the magnetic field provided by the second resonator structure. For example, when the first resonator structure is incorporated into a peripheral device such as a computer mouse, the computer mouse can be at least partially supplied with power from the second resonator structure coupled to the power supply. In this way, the peripheral device can operate in a wireless mode without the need for a separate power supply other than that provided in the computing device. The amount and duration of power that can be delivered to the peripheral device can be strongly dependent on a number of factors. For example, the coupling between the first resonator structure and the second resonator structure can be dependent upon a spatial orientation of the second resonator structure and a magnetic field generated by the first resonant magnetic structure as well as by variable distance d.
In order to avoid or at least reduce the spatial orientation dependence, the peripheral device in the described embodiments can include a power receiving unit that incorporates a plurality of individual resonators having different spatial orientations with respect to each other. In this way, power wirelessly received at the power receiving unit can be essentially independent from any movement of the peripheral device with respect to the magnetic field generated by the second resonator structure (hereinafter referred to as the NFMR magnetic field). However, each of the individual resonators can themselves create a magnetic field in response to the NFMR magnetic field that, in turn, can couple with others of the individual resonators. The coupling between the individual resonators in the power receiving unit can be characterized by coupling coefficient κ c that can range from zero (0) in those cases where there is little or no magnetic coupling to about one (1) when there is strong magnetic coupling. In those arrangements where the individual resonators are strongly coupled, each resonator can have a substantial effect on other resonators thereby affecting the performance of the power receiving unit as a whole. Therefore it would be advantageous for those power receiving units having more than one individual resonator that coupling coefficient κ between the more than one resonators be as close to zero as practicable. This is particularly true for peripheral devices that can be moved about within the charging region where the relative orientation between the resonator structures and the NFMR magnetic field used to transfer energy from the power supply can vary greatly.
Accordingly, in one embodiment a wirelessly powered local computing environment is described. The wirelessly powered local computing environment can include a NFMR wireless power supply arranged to use a resonance channel to transfer useable energy to resonance circuits within near field distance D. (that defines an outermost wireless range of a magnetic field transmitted by an NFMR power supply transmitter) and a central processing unit that provides processing resources to the NFMR power supply. Also included in the local computing environment is a peripheral device that can freely move about within the local computing environment arranged to wirelessly receive power from the NFMR power transmitter. The peripheral device can include at least a power receiving unit having a least two magnetically de-coupled NFMR power receivers in the form of individual resonators that are electrically coupled to each other to provide output voltage Vout. Since magnetic coupling coefficient κ between the receiver resonators is about zero, output voltage Vout is substantially independent of the spatial orientation of the peripheral device with respect to the NFMR magnetic field. In this way, the peripheral device can wirelessly receive a usable amount of power from the NFMR power supply regardless of its orientation. In another embodiment, a peripheral device arranged to wirelessly receive power from a NFMR power transmitter is described. The peripheral device includes at least a power receiving unit having a least two magnetically de-coupled NFMR power receivers. In other words, a coupling coefficient between the at least two magnetically de-coupled NFMR power receivers is about zero regardless of the spatial orientation of the power receiving unit with regards to a magnetic field generated by the NFMR power transmitter. In this way, power is received from the NFMR power transmitter at the peripheral device in usable amounts regardless of the relative orientation of the magnetic field generated by the NFMR power transmitter and the peripheral device.
In one embodiment the peripheral device is a user input device such as a computer mouse and the NFMR power transmitter is incorporated into a computing system in communication with the computer mouse. Furthermore, the magnetically de-coupled NFMR power receivers in the power receiving unit have a shape and size consistent with a conventional battery unit each having longitudinal axes that in some cases overlap each other at about ninety degrees while in other cases are orthogonal to each other but do not overlap.
In another embodiment, a small form factor wireless power unit arranged to provide useable power. The small form factor wireless power unit includes at least a resonance power coil arranged to receive power from a near field magnetic resonance (NFMR) transmitter coupled to a power supply by way of a power transfer channel when the resonance power coil is configured to operate at a resonance frequency of the NFMR transmitter, wherein the small form factor wireless power unit is sized to fit within a battery compartment of a peripheral device.
In one aspect of the described embodiment, the peripheral unit includes at least three NFMR power receiver units around perpendicular to each other. In this way, the peripheral device can be moved in any three dimensional spatial volume without a substantial loss in power wirelessly received from an NFMR power transmitter.
These and other embodiments are discussed below with reference to
The magnetic coupling between individual resonators in the power receiving unit can be described using Faraday's Law of Induction or more simply Faraday's Law that defines electromotive force (EMF) or voltage as the amount of work done moving unit charge q around the closed curve as shown in
Eq. (1)
where ε is electromotive force, or voltage, developed by a change in magnetic flux ΦB enclosed within area A of a single one of N conductive closed loops each having the same cross sectional area.
Magnetic flux ΦB is a scalar that is related to
magnetic field vector B and normal vector A corresponding to surface A defined by closed loop path 102 according to Eq. (2):
ΦB=B·A Eq. (2)
where:
B is magnetic field vector,
A is normal vector of surface A enclosed by closed loop 102; and
B·A is the dot product vectors B and A, or in scalar form, AB cos(θ).
Therefore, magnetic flux ΦB varies as the cosine of orientation angle θ where orientation angle θ represents the spatial orientation of magnetic field vector B and normal vector A shown in
More specifically, first resonator 302 can resonate with magnetic field BNFMR to create magnetic field B1. Since magnetic coupling coefficient κ≈1.0 any magnetic field generated by first resonator 302 will magnetically couple with second resonator 304 (and vice versa). For example, as shown in
Therefore, by changing the orientation and position of first resonator 302 and second resonator 304 with respect to each other, the magnetic coupling between the resonators can be substantially reduced. In other words, properly orienting and positioning first resonator 302 and second resonator 304 can result in effectively magnetically de-coupling of first resonator 302 and second resonator 304 in which case an effective magnetic coupling coefficient κeff can approach zero. For example,
However, for magnetic resonance power units having more than one resonant receiver, assuring that the magnetic coupling coefficient κeff≈0 for the receivers is only the first step to be able to combine their power additively. In particular, the resonating circuit attached to each receiver is required to be isolated from the resonating circuit of another receiver as well as provide load sharing duties for a load device.
However, in situations where power is received from the NFMR magnetic field at either frequency ω1 or frequency ω2, combiner unit 804 can be used to select whichever resonance receiver (either resonance receiver 802-1 or resonance receiver 802-2) is operating or at least receiving an amount of power greater than a threshold value. In this situation, combiner unit 804 can sense an amount of power being received at resonance receivers 802-1 and 802-2 and based upon the comparison, combiner unit 804 can select the appropriate resonance power receiver to provide power to a circuit. In one embodiment, the resonance receiver deemed to be most effective in its interaction with the NFMR magnetic field (based upon an amount of real power received, for example) can be selected. The effectiveness of the interaction with the NFMR magnetic field can be based upon an amount of induced magnetic flux in one or the other resonance receivers. It should be noted that the sensing and selecting can be ongoing and performed in real time. In this way, the multiple resonance receivers can be placed in close physical proximity to each other resulting in an effective magnetic coupling coefficient κeff>0.
As shown in
In some cases, the ability of desktop computer 1102 to provide power directly to mouse 1108, for example, can be reduced due to any number of factors. Such factors can include, for example, the addition of other devices into region R that require power from the NFMR power supply, obstacles interfering with the direct power channel formed between the NFMR and mouse 1106, and so on. In this case, keyboard 1104 can act as a re-resonator such that a portion of the power delivered to keyboard 1104 from the NFMR power supply can be passed on by way of a re-resonator transmission unit (not shown) in keyboard 1104. In this way, any power loss experienced by mouse 1106 can be ameliorated by the power received from keyboard 1104. This arrangement can be transitory or can last for as long as mouse 1106 is not able to receive adequate power directly from the NFMR power supply. In other cases, the locating of portable media player 1108 within region R can reduce the amount of power available to keyboard 1104 and mouse 1106. In this case, if a battery in keyboard 1106 is fully charged (or additional charge is not necessary) then keyboard 1106 can decouple a charging circuit while still maintaining a re-resonator circuit providing power to mouse 1106.
In some embodiments, dongle 1110 can be connected to desktop computer 1102 (by way of a USB port or cable, for example). So connected, dongle 1110 can, in turn, act as a range extender for the NFMR power supply. In this way, dongle 1110 can extend a range that power can be provided by the NFMR power supply included in desktop computer 1102. In some cases, dongle 1110 can re-resonate power already received from the NFMR power supply while in other cases, dongle 1110 can include its own NFMR power supply. By having its own NFMR power supply, dongle 1110 can provide additional power wirelessly to those devices within virtual charging region 1100 separate from the power provided by the NFMR power supply included in desktop 1102. It should be noted that in some embodiments, the housing of desktop computer 1102 (or a portion thereof) can be used as a resonator as part of the NFMR power supply.
Computing system 1200 also includes a user input device 1208 that allows a user of computing system 1200 to interact with computing system 1200. For example, the user input device 1208 can take a variety of forms, such as a button, keypad, dial, etc. Still further, the computing system 1200 includes data bus 1210 can facilitate data transfer between at least the file system 1204, the cache 1206, the processor 1202, and the CODEC 1212.
In one embodiment, computing system 1200 serves to store a plurality of media items (e.g., songs) in the file system 1204. When a user desires to have the media player play a particular media item, a list of available media items is displayed on the display 1210. Then, using the user input device 1208, a user can select one of the available media items. The processor 1202, upon receiving a selection of a particular media item, supplies the media data (e.g., audio file) for the particular media item to a coder/decoder (CODEC) 1212. The CODEC 1212 then produces audio output signals for audio jack 1214 to output to an external circuit. For example, headphones or earphones that connect to computing system 1200 would be considered an example of the external circuit. In another embodiment, a computer-readable medium is provided that includes computer program instructions.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application claims priority to and the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/491,844, filed May 31, 2011, entitled MAGNETICALLY DE-COUPLED MULTIPLE RESONATING COILS IN A TIGHTLY SPACED ARRAY, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61491844 | May 2011 | US |