None.
The present invention involves the provision of a burner device for gaseous fuel supplied under pressure. The device includes a cylindrical rotor chamber, a rotary element rotatably mounted within the rotor chamber, and a combustion chamber. The rotor chamber includes an inlet port in communication with a source of pressurized gas and an outlet port in communication with the combustion chamber. The rotor chamber can be formed from a sidewall having inner and outer surfaces. The rotary element has at least two radially extending, circumferentially spaced wings or interrupters forming cavities therebetween within the rotor chamber. The wings can have end faces with indentions formed therein. The rotary element has a diameter that is substantially equal to the diameter of the rotor chamber sidewall's inner surface. The combustion chamber is suitable for containing combustion of gas therein and includes an inlet port in communication with the rotor chamber's outlet and an outlet port for discharging exhaust created by the combustion of the gas.
Another embodiment of the present invention is directed to a device for generating a controlled pulsating flame in a combustion burner. The device includes a chamber with a cylindrical sidewall having an inlet port, an outlet port, and a rotor rotatably mounted within the chamber. The rotor has wings that form cavities therebetween. The cavities are configured for receiving pressurized gas from the chamber's inlet port and transferring the pressurized gas to the chamber's outlet port. The gas entering the chamber causes the rotor to rotate.
Other and further objects of the invention, together with the features of novelty appurtenant thereto, will appear in the course of the following description.
In the accompanying drawings, which form a part of the specification and are to be read in conjunction therewith in which like reference numerals are used to indicate like or similar parts in the various views:
The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.
Reference numeral 10 designates generally a combustion burner device that includes a rotary element 14, whose rotation not only creates a series of controlled intermittent or pulsating explosions to generate heat output, but also causes mechanical mixture of gas with air so as to enhance the completeness of combustion. The device 10, which may be constructed from materials such as steel, stainless steel, aluminized steel, aluminum, brass, copper, can be used in connection with a wide variety of devices and appliances that require heat, including for example, furnaces, water heaters, boilers, gas stoves, gas ovens, clothes dryers, gas fireplaces, and the like. Further, the burner 10 can be adapted to operate on a variety of types of pressurized gases including, natural gas, propane, methane, butane and combinations thereof.
As illustrated in
The rotor chamber 12 may be constructed of a cylindrical sidewall 20, which has an inner surface 22 and an outer surface 24, and two end plates or caps 42. As shown in the figures, the end plates 42 are attached to the sidewall using screws or bolts 88 that pass through apertures 48 in the plates 42 and are received by threaded holes 28 located in the ends 26 of the sidewall 20. Alternatively, the end plates 42 can also be attached by other methods known to one of ordinary skill in the art. The sidewall 20 has an inlet port 34 that may be threaded, thereby enabling the device 10 to be connected to a line (not shown) supplying pressurized gas. The line supplying pressurized gas can be inline with a gas flow control valve, which may be manually or automatically controlled.
The rotor 14 is housed and rotatably mounted within the rotor chamber 12. The rotor 14 includes a center hub portion 79 and a plurality of radially extending, circumferentially spaced interrupters or wings 80. The rotor 14 has a diameter DR that corresponds to the diameter DS of the inner surface 22 of the sidewall 20. Likewise, the end faces 81 of the interrupters 80 each have a radius RR that corresponds to the radius RS of the inner surface 22 of the sidewall 20. The clearance between the end face 81 of each interrupter 80 and the inner face 22 of the sidewall 20 is maintained so that the movement of the rotor 14 is frictionless, but at the same time, leakage of gas passing around the interrupter 80 is controlled. The amount of clearance depends upon particular design specifications, such as surface character and/or finish, but can be in the range of about 0.001 to 0.02 inch. In one embodiment, the rotor 14 includes seals (not shown) to sweep the inner surface 22 of the sidewall 20.
The rotor 14 can be mounted within the rotor chamber 12 in a number of ways. In the embodiment shown, the rotor 14 rotates about a shaft 74 that has chamfered ends 76 which correspond to and are received by tapered holes 50 located in the center of an inside surface 44 of the end caps 42. As shown, the rotor includes an aperture 78 through which the shaft 74 runs. The rotor 14 can also be mounted within rotor chamber 12 through use of ball or roller bearings, polymer plain bearings or by any other method known to one of ordinary skill in the art.
The rotation of the rotor 14 is in response to and by way of reaction to the issuance of gas under pressure through the inlet port 34. In other words, the gas flowing through the rotor chamber 12 causes the rotor 14 to turn. Depending upon the amount and pressure of the gas flowing through the rotor chamber 12, the rotor 14 may turn between about 60 and 600 rounds per minute, or alternatively between about 240 and 360 rounds per minute. The rotor 14 has a mass enabling it to have a moment of inertia (rotational inertia) sufficient to maintain a generally steady speed of rotation.
As shown in
As best seen in
As shown in
The outlet port 38 is in communication with an inlet port 68 of the combustion chamber 16. As demonstrated in
The combustion chamber 16 may be constructed of a sidewall 58, which has an inner surface 60 and an outer surface 62, and two end plates or caps 73. The end plates 42 may be attached to the sidewall using screws or bolts 88 that pass through apertures 48 in the end plates 42 and are received by threaded holes 66 located in the ends 64 of the sidewall 58. Alternatively, the end plates 73 can be attached by other methods known to one of ordinary skill in the art. The combustion chamber 16 also includes an outlet port 72 through which the exhaust and pressure created by the combustion are released. The combustion chamber 16 and its outlet port 72 can be in communication, in any desired manner, with the combustion space of a furnace or the like, wherein the gaseous mixture is burned.
At some point prior to the combustion of the gas, the gas is inducted with air in order to create an admixture having a desired air-gas ratio. In one embodiment, the induction of air occurs upstream of the rotor chamber 12 through an adjustable air inlet. When the air-gas admixture reaches the rotor chamber 12, the spinning rotor 14 further mixes the air and gas for enhancing the completeness of combustion. The rotor 14 can also create a disruptive condition within the air-gas admixture leading to an increased turbulence in flow, which can also lead to an increase in the completeness of combustion. In an alternative embodiment, the induction of air occurs in the combustion chamber 16, which includes an inlet for inducting the air.
From the foregoing, it may be seen that the combustion burner device of the present invention is particularly well suited for the proposed usages thereof. Furthermore, since certain changes may be made in the above invention without departing from the scope hereof, it is intended that all matter contained in the above description or shown in the accompanying drawing be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are to cover certain generic and specific features described herein.