Combustion by controled ionisation

Information

  • Patent Application
  • 20190264907
  • Publication Number
    20190264907
  • Date Filed
    February 26, 2018
    6 years ago
  • Date Published
    August 29, 2019
    5 years ago
  • Inventors
    • Beeck; Op De
Abstract
This invention is intended to produce more energy during the combustion of fuels (solid, liquid or gas). This is achieved by separating the electrons and the cations which are produced at the very beginning of the phenomenon of combustion.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

not applicable.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

not applicable.


REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX

not applicable.


BACKGROUND OF THE INVENTION

not applicable.


BRIEF SUMMARY OF THE INVENTION

The invention described in this patent provides more energy for a given amount of fuel (solid or, liquid) (+/−50% more observed in certain cases compared with the traditional methods).


For this, we use metallic pieces embedded in the combustion area which create an electric field. This last one can be reinforced by an additional electric field and or magnetic field. The purpose is to better use, better regulate the production of ions and electrons naturally produced during the first step of combustion.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1A and FIG. 1B:


An aluminum cone wraps the flame. The cone attracts the electrons and push the cations (carbon, hydrogen) to the bottom side away. At the level LC, the electrons are ejected from the cone on the entering oxygen (O−). This O-passes through the 20 brick and arrives at the bottom of the flame. Separation is: electrons to the top and cations to the bottom where they collide the entering O−.



FIG. 1A: side view of the device. The aluminum cone stands on a brick containing holes for the entering O−



FIG. 1B: bottom view of the device. The oxygen arrives at the bottom, catches the 25 electrons; becomes O—and goes to the burning carbon.



FIG. 2A and FIG. 2B


The brick which supports the combustion is pierced by holes. Some of the holes are fit with metallic pieces (TM on the drawing). There top sides are near the flames thus hot and positive, thus attracting the electrons produced by the incandescent fuel. These electrons move to the cold bottom side where they are ejected on the entering oxygen.



FIG. 2A: side view of the device. Here we see the metallic pieces which penetrates through the brick (from the combustion area to the bottom of the brick). These metallic pieces catch the electrons near the combustion area and reject them at the bottom where the oxygen enters. The entering oxygen catches the electrons before entering the brick.



FIG. 2B: bottom view of the device. In black the metallic ends near the holes for the entering O−.



FIG. 3A and FIG. 3B:


A design for liquid fuel with a half cone but the principles are the same. Here, the aluminum wraps the brick and passes below the brick. At the cold side of the aluminum, where you find e− and O—on the drawing, the electrons are ejected on the entering oxygen. The hot part of aluminum which is positive, is pulling the cations (C+++, H+) towards the arriving O−−.



FIG. 3A side view. Length direction of the brick. TM is the aluminum or metallic plate wrapping the brick. The top part of the TM plate is above the flame and catches the electrons emitted by the combustion. Under the flame is the liquid fuel.



FIG. 3B: side view. (Width direction of the brick). Here, we see the metallic piece “TM” wrapping the brick and the flame. At the extremity of the plate (bottom side of the brick, the electrons are ejected on the entering O2 which becomes O−−.



FIG. 4A, FIG. 4B and FIG. 4C:


Here, the metallic part is a bar “TM” passing through the flames (horizontally) and then, through the brick. At the bottom of the brick, the cold extremity of the bar, ejects the electrons caught near the flames.



FIG. 4A: side view. (Length direction of the brick).



FIG. 4B: top view.



FIG. 4C: side view. (Width direction of the brick). Here, we see the cold extremity of the bar where the electrons (e−) are ejected. Oxygen becomes O−− and goes up to the flames.



FIG. 5A, FIG. 5B, and FIG. 5C:


A variant for liquid fuels with twin aluminum sheets wrapping the flames. Here, the caught electrons are ejected on the bottom sides of the brick.



FIG. 5A: side view. (Length direction of the brick).



FIG. 5B: top view of the device.



FIG. 5C: side view. (Width direction of the brick). Here, we see the cold extremity of the plates where the electrons (e−) are ejected. Oxygen becomes O−− and goes up to the flames.



FIG. 6: sectional view; section passing by the axis.


This device is for gaseous fuels. The figure represents two tubes; one conducting the gas (G) with the metallic part at its center (TM on the drawing) and the second tube wrapping the first with the oxygen circulating in it. The electrons are caught near the flame and ejected at the entrance of the oxygen (see bottom of the drawing where e− is indicated). The two tubes are in not conductive material of the electricity to avoid the loss of electrons.





DRAWINGS
Explanations of the Text in the Figures



  • B: brick C: fuel (Carbon/hydrogen) CO2: carbon dioxide e−: electron F: flame G: gas H2O: water H: hydrogen L: liquid fuel O−: oxygen ion O2: oxygen TM: metal LA, LB, LC (FIG. 1A) levels Level LC: level where, by tip effect, the electrons are ejected on entering oxygen.



DETAILED DESCRIPTION OF THE INVENTION

At the beginning of the combustion, electrons and cations (carbon; hydrogen) are released from the base fuel. The atoms of oxygen in the surroundings catch the electrons, become anion oxygen thus negative and then are attracted by the cation positive (carbon; hydrogen). The shock gives the energy. The problem is that there could be recombination between the cations and the electrons 25 continuously produced. The effects of these recombination are easy to understand: less shocks and less violent shocks because a shock between a C++ and an O− is less violent than a shock between a C++++ and an O−. The power depends on the tension between the atoms. High voltage gives high energy during the shock.


So the idea was to separate the electrons and the cations (carbon; hydrogen) when they are just produced during the first step of the combustion.


To do that, we can use an electric voltage or a magnetic field.


For instance, if you put a metallic part near the combustion; this metallic piece is long enough to have one end near the flames (the hot end) and the other end at the entrance of the oxygen (the cold end). Naturally, the electrons from the hot side of the part will move to the cold side, creating a positive pole near the flames and thus attracting the electrons produced by the fuel in combustion. These electrons also move to the cold side of the metallic piece where there are ejected, by tip effect, on the entering oxygen. This oxygen (O2) becomes anion (O−) and is injected in the combustion chamber. So the free average route of the O−− is greater before the shock. There are more shocks because there are less recombination. So energy produced is greater. These are the principles of the invention.


We can use a voltage or a magnetic field in place of the metallic pieces to have the same effect.


All the drawings given in this patent are variants of the use of metallic pieces.

Claims
  • 1: Separation of cations and electrons produced at the first step of combustion to avoid or decrease recombination of them which will conduct to a lower production of energy. FIG. 1a gives an example to reach this goal. Any variant of the latter is a part of a unit of invention. Production of energy comes from the shocks between cations (carbon, hydrogen) and the anions oxygen.The electrons captured are then combined with the oxygen to form anions which are reinput in the combustion area to induce the shocks. By this way, the shocks between cations and anions are higher in number because there are less recombination (due to the separation) and the shocks are also more violent because the free average route before the shock is longer. This gives more energy produced for the same amount of fuel.
  • 2: The separation of cations and electrons is done by introducing metallic pieces in the combustion area. The hot part of the metallic pieces is near the flames and the cold part is in contact with the entering oxygen.The hot part of the metal is a positive pole which attracts the electrons produced during the first step of combustion. This positive pole also push away the cations (carbon or hydrogen) also produced at the first step of combustion. This is the principle of this separation.
  • 3: Another way to separate cations and electrons is to use an electric field or a magnetic field produced by an electric tension or an electric current.
  • 4: Any practical variant of the principles and/or figures described in this invention. This forms the same unit of invention.