Not applicable.
Not applicable.
Not applicable.
Not applicable.
The invention described in this patent provides more energy for a given amount of fuel (solid or liquid) (+/−50% more observed in certain cases compared with the traditional methods).
For this, we use metallic pieces embedded in the combustion area. The upper side of the metal parts is near the flames and thus is hot. The lower side of the same metal parts is at the air inlet and thus is cold. This difference of temperature inside the metal part creates an electric field in the part. The hot side is positive and the cola side is negative. The purpose is to better use, better regulate the production of ions and electrons naturally produced during the first step of combustion. The electrons are caught by the positive upper side of the parts and elected by Peak effect on the air inlet.
An aluminum cone wraps the flame. The cone attracts the electrons and push pushes the cations (carbon, hydrogen) to the bottom side away. At the level LC, the electrons are ejected from the cone on the entering oxygen (O−−). This O−− passes through the brick and arrives at the bottom of the flame. Separation is: electrons to the top and cations to the bottom where they collide the entering O−−.
The brick which supports the combustion is pierced by holes. Some of the holes are fit with metallic pieces (TM on the drawing). There top sides are near the flames thus hot and positive, thus attracting the electrons produced by the incandescent fuel. These electrons move to the cold bottom side where mare ejected on the entering oxygen.
A design for liquid fuel with a half cone but the principles are the same. Here, the aluminum wraps the brick and passes below the brick. At the cold side of the aluminum, where you find e− and O−− on the drawing, the electrons are ejected on the entering oxygen. The hot part of aluminum which is positive, is pulling the cations (C++++, H+) towards the arriving O—.
“TM” wrapping the brick and the flame. At the extremity of the plate (bottom side of the brick, the electrons are ejected on the entering O2 which becomes O−−.
Here, the metallic part is a bar “TM” passing through the flames (horizontally) and then, through the brick. At the bottom of the brick, the cold extremity of the bar, ejects the electrons caught near the flames.
A variant for liquid fuels with twin aluminum sheets wrapping the flames. Here, the caught electrons are ejected on the bottom sides of the brick.
This device is for gaseous fuels. The figure represents two tubes; one conducting the gas (G) with the metallic part at its center (TM on the drawing) and the second tube wrapping the first with the oxygen circulating in it. The electrons are caught near the flame and ejected at the entrance of the oxygen (see bottom of the drawing where e− is indicated). The two tubes are in non-conductive material of the electricity to avoid the loss of electrons.
Explanations of the text in the figures:
B: brick C: fuel (Carbon/hydrogen) CO2: carbon dioxide e−: electron F: flame G: gas H2O: water H: hydrogen L: liquid fuel O−−: oxygen ion O2: oxygen TM: metal LA, LB, LC (
At the beginning of the combustion, electrons and cations (carbon; hydrogen) are released from the base fuel. The atoms of oxygen in the surroundings catch the electrons, become oxygen anions thus negative and then are attracted by the positive cations (carbon; hydrogen). The shock gives the energy. The problem is that there could be recombinations between the cations and the electrons continuously produced. The effects of these recombinations are easy to understand: less shocks and less violent shocks because a shock between a C++ and an O− is less violent than a shock between a C++++ and an O−.
The power depends on the tension between the atoms. High voltage gives high energy during the shock.
So the idea was to separate the electrons and the cations (carbon; hydrogen) when they are just produced during the first step of the combustion.
For instance, if you put a metallic part near the combustion; this metallic piece is long enough to have one end near the flames (the hot end) and the other end at the entrance of the oxygen (the cold end). Naturally, the electrons from the hot side of the part will move to the cold side, creating a positive pole near the flames and thus attracting the electrons produced by the fuel in combustion. These electrons also move to the cold side of the metallic piece where they are ejected, by tip effect, on the entering oxygen. This oxygen (O2) becomes anion (O−−) and is injected in the combustion chamber. So the free average route of the O−− is greater before the shock. There are more shocks because there are less recombinations. So energy produced is greater. These are the principles of the invention.
All the drawings given in this patent are variants of the use of metallic pieces.
Number | Name | Date | Kind |
---|---|---|---|
1994443 | Bailey | Mar 1935 | A |
2604936 | Kaehni | Jul 1952 | A |
4025286 | Husselmann | May 1977 | A |
4493638 | Scammell | Jan 1985 | A |
4616994 | Tomlinson | Oct 1986 | A |
4934927 | Swiatosz | Jun 1990 | A |
5015173 | Fullemann | May 1991 | A |
5154597 | Fullemann | Oct 1992 | A |
20040018460 | Korwin | Jan 2004 | A1 |
20160123582 | Rangwala | May 2016 | A1 |
20170292699 | Lee | Oct 2017 | A1 |
20180149356 | Arava | May 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20190264907 A1 | Aug 2019 | US |