The field is combustion chambers for internal combustion engines. In particular, the field includes constructions for opposed-piston engines in which a combustion chamber is defined between end surfaces of pistons disposed in opposition in the bore of a ported cylinder. More particularly, the field includes opposed-piston engines with combustion chamber constructions that produce a tumbling motion in charge air admitted into the cylinder between the piston end surfaces.
Per
Operation of an opposed-piston engine with one or more ported cylinders (cylinders with one or more of intake and exhaust ports formed therein) such as the cylinder 10 is well understood. In this regard, in response to combustion the opposed pistons move away from respective top dead center (TDC) positions where they are at their innermost positions in the cylinder 10. While moving from TDC, the pistons keep their associated ports closed until they approach respective bottom dead center (BDC) positions where they are at their outermost positions in the cylinder. The pistons may move in phase so that the intake and exhaust ports 14, 16 open and close in unison. Alternatively, one piston may lead the other in phase, in which case the intake and exhaust ports have different opening and closing times.
In many opposed piston constructions, a phase offset is introduced into the piston movements. As shown in
Turbulence is a desirable feature of charge air motion as fuel injection begins. Turbulence encourages the mixing of charge air with fuel for more complete and more uniform ignition than would otherwise occur. The geometries of the intake port openings and the cylinder of an opposed-piston engine provide a very effective platform for generation of a strong swirling motion of the charge air that promotes both removal of exhaust gasses (scavenging) and charge air turbulence. However, charge air motion that is dominated by swirl can produce undesirable effects during combustion. For example, during combustion in a cylindrical combustion chamber defined between flat piston end surfaces, swirl pushes the flame toward the cylinder bore, causing heat loss to the (relatively) cooler cylinder wall. The higher velocity vectors of swirl occur near the cylinder wall, which provides the worst scenario for heat losses: high temperature gas with velocity that transfers heat to the cylinder wall and lowers the thermal efficiency of the engine. The peripheries of the piston end surfaces also receive a relatively high heat load, which causes formation of a solid residue of oil coke that remains in the piston/cylinder interface when lubricating oil breaks down at high engine temperatures. Accordingly, in such opposed-piston engines, it is desirable to maintain charge air turbulence as injection starts while mitigating the undesirable effects produced by swirl.
In certain opposed-piston combustion chamber constructions, turbulence is produced by squish flow from the periphery of the combustion chamber in a radial direction of the cylinder toward the cylinder's axis. Squish flow is generated by movement of compressed air from a relatively high-pressure region at the peripheries of the piston end surfaces to a lower-pressure region generated by a bowl formed in at least one piston end surface. Squish flow promotes charge air turbulence in the combustion chamber. For example, U.S. Pat. No. 6,170,443 discloses a cylinder with a pair of opposed pistons having complementary end surface constructions. A circular concave depression formed in one end surface is symmetrical with respect to the axis of its piston and rises to a point in its center. The periphery of the opposing end surface has a convex shape in the center of which a semi-toroidal (half donut-shaped) trench is formed. As the pistons approach TDC, they define a generally toroidally-shaped combustion chamber centered on the longitudinal axis of the cylinder. The combustion chamber is surrounded by a circumferential squish band defined between the concave and convex surface shapes. As the pistons approach TDC, the squish band generates an inwardly-directed squish flow into the toroidal trench and creates “a swirl of high intensity near top dead center.” See the '443 patent at column 19, lines 25-27. Fuel is injected into the toridal combustion chamber in a radial direction of the bore.
Increasing the turbulence of charge air in the combustion chamber increases the effectiveness of air/fuel mixing. Domination of charge air motion by swirl or squish flow alone does achieve a certain level of turbulence. Nevertheless, it is desirable to create additional elements of charge air motion as injection commences in order to produce even more turbulence of the charge air, thereby to achieve better air/fuel mixing than can be obtained with swirl or squish alone.
An aspect of an invention completed in respect of the objective described above is to have the piston end surfaces define a combustion chamber that creates a charge air motion component in addition to swirl and squish.
Another aspect of an invention completed in respect of the objective described above is to have the piston end surfaces define a combustion chamber that interacts with squish and swirl to produce one or more tumbling components in charge air motion in the combustion chamber.
Preferably, the tumbling motion is a rotating movement of charge air that is transverse to and circulates across the longitudinal axis of the cylinder. Preferably, the tumbling motion is a circulation of charge air that circulates around a diameter of the cylinder bore.
In a preferred construction, a combustion chamber defined between the opposing end surfaces is bordered by a squish zone that defines at least one squish flow path that is skewed with respect to the cylinder bore. Preferably, the combustion chamber is defined by a bowl formed in at least one piston end surface. In some instances, the bowl is clam-shell-shaped. In other instances the bowl has the shape of an elongated tapered cylinder. In some aspects, the bowl has an elongated ellipsoidal shape.
In another preferred construction, a combustion chamber is defined by the end surfaces of the opposed pistons at TDC, in which one piston end surface has a circumferential area centered on the longitudinal axis of the piston, and a bowl within the circumferential area and the other piston end surface is flat. Preferably, the combustion chamber is clam-shell-shaped.
In another preferred construction, a combustion chamber is defined between end surfaces of the opposed pistons, in which each piston end surface has a circumferential area centered on the longitudinal axis of the piston, and a bowl within the circumferential area that defines a concave surface with a first portion curving inwardly from a plane containing the circumferential contact area toward the interior of the piston and a second portion curving outwardly from the interior of the piston through the plane containing the circumferential contact area. Preferably, the combustion chamber has the shape of an elongated ellipsoid.
In still another preferred construction, a method is provided for operating an internal combustion engine including at least one cylinder with longitudinally-separated exhaust and intake ports, and a pair of pistons disposed in opposition for reciprocating in a bore of the cylinder, by forming a combustion chamber having an elongated ellipsoidal shape between the end surfaces of the pistons as the pistons move toward respective TDC positions, generating squish flows of charge air having a direction that is skewed with respect to a major axis of the combustion chamber, generating at least one tumbling motion of charge air in the combustion chamber in response to the squish flow and swirling charge air, and injecting fuel into the combustion chamber.
In the combustion chamber constructions to be described, an internal combustion engine includes at least one cylinder with longitudinally-separated exhaust and intake ports; see, for example, the cylinder 10 illustrated in
During operation of the internal combustion engine, as the pistons approach TDC, one or more squish zones direct flows of compressed air (called “squish flows”) into the combustion chamber in at least one direction that is skewed with respect to a diametrical direction of the bore. This process is referred to as “generating squish”. The portions of the end surfaces that generate squish are referred to as squish surfaces, and channels defined between the squish surfaces are referred to as squish channels. Squish flow is deflected or redirected by one or more curved surfaces in a combustion chamber cavity into at least one tumble motion that circulates in the cavity.
In the following descriptions, “fuel” is any fuel that can be used in an opposed-piston engine. The fuel may be a relatively homogeneous composition, or a blend. For example, the fuel may be diesel fuel or any other fuel ignitable by compression ignition. Further, the descriptions contemplate ignition resulting from compression of an air/fuel mixture; however it may be desirable to provide additional mechanisms, such as glow plugs, to assist compression ignition. The descriptions contemplate injection of fuel into a compressed gas in a combustion chamber when opposed pistons are at or near TDC locations. The gas is preferably pressurized ambient air; however, it may include other components such as exhaust gases or other diluents. In any such case, the gas is referred to as “charge air.”
First Combustion Chamber Construction:
In
With further reference to
Second Combustion Chamber Construction:
In the second construction, an injection port is positioned along the periphery of the combustion chamber, and is oriented generally transversely to a combustion chamber major axis, allowing for a wide spray arrangement that can be produced by an injector nozzle with a large number of holes. Preferably, the injection port is oriented at least generally radially or perpendicularly to the major axis.
In
As per
The ridge 196 seen in
Referring now to
As seen in
Third Combustion Chamber Construction:
The end surface structure of each piston has a periphery surrounding a bowl defining a concave surface. The concave surface includes a first portion curving away from a plane containing the periphery surface toward the interior of the piston and a second portion curving away from the first portion and protruding outwardly in part from the plane. A convex surface opposite the bowl curves away from the periphery and protrudes outwardly from the plane. The convex surface meets the second portion of the concave surface to form a ridge therewith. Preferably, but not necessarily, the bowl has a semi-ellipsoidal shape. The end surface structure is provided on both pistons and the pistons are disposed in the bore of a ported cylinder with their end surfaces oriented to place complementary curved surfaces of the end surface structures in opposition in order to define a combustion chamber. Preferably, but not necessarily, the combustion chamber space defined between these two end surfaces is, or is very close to, an elongated ellipsoidal cylinder, providing a generally symmetrical geometry to reinforce and sustain the tumble motion. It is estimated that this combustion chamber structure provides a tumble ratio double that of the second construction. In the third construction, it is desirable that at least one injection port be positioned on the major axis of the combustion chamber.
The structures of the piston end surfaces that define the third construction are essentially identical to each other; accordingly, the piston 280 shown in
Referring now to
Interactions between the end surfaces 282 and charge air are illustrated in
With reference to
In some aspects, it is desirable to inject at least one spray of fuel into a combustion chamber having an elongated ellipsoidal shape. It is preferable, however, to inject a pair of opposing sprays of fuel into the turbulent charge air motion generated in the combustion chamber by swirl-plus-squish interactions, where the opposing sprays meet in the combustion chamber and form a cloud of fuel that is well mixed with the compressed charge air due to the turbulence. With reference to
The combustion chamber constructions illustrated and described hereinabove are intended to be utilized in opposed-piston combustion-ignition engines which impose swirl on the charge of air forced into the cylinder. Nevertheless, the combustion chamber construction can be utilized in those opposed-piston combustion-ignition engines that do not swirl the charge air.
The pistons and associated cylinder are manufactured by casting and/or machining metal materials. For example, the pistons may be constituted of a skirt assembled to a crown on which a piston end surface is formed. As a further example, but without excluding other materials, the crown may comprise a high carbon steel such as 41-40 or 43-40, and the skirt may be formed using 4032-T651 aluminum. In such cases, the cylinder preferably comprises a cast iron composition.
Although the invention has been described with reference to preferred constructions, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.
This application is a continuation of U.S. patent application Ser. No. 13/066,589, filed Apr. 18, 2011, which will issue as U.S. Pat. No. 8,800,528 on Aug. 12, 2014, and which claims priority to U.S. provisional application for patent 61/343,308, filed Apr. 27, 2010, to U.S. provisional application for patent 61/395,845, filed May 18, 2010, and to U.S. provisional application for patent 61/401,598, filed Aug. 16, 2010.
Number | Name | Date | Kind |
---|---|---|---|
665475 | Schweitzer | Jan 1901 | A |
667298 | Cunningham | Feb 1901 | A |
673160 | Diesel | Apr 1901 | A |
1143408 | Kramer | Jun 1915 | A |
1207799 | Scheller | Dec 1916 | A |
1312604 | Wygodsky | Aug 1919 | A |
1423088 | Crossley et al. | Jul 1922 | A |
1464268 | Otto | Aug 1923 | A |
1486583 | Huskisson | Mar 1924 | A |
1515391 | Keller | Nov 1924 | A |
1523453 | Lane | Jan 1925 | A |
1582792 | Schultz | Apr 1926 | A |
1623704 | Lane | Apr 1927 | A |
1644954 | Shearer | Oct 1927 | A |
1662828 | Law | Mar 1928 | A |
1808664 | Koschka | Jun 1931 | A |
1837870 | Johnston | Dec 1931 | A |
1853562 | Herr | Apr 1932 | A |
1854190 | Herr | Apr 1932 | A |
1967630 | Rusberg | Jul 1934 | A |
1978194 | Gray | Oct 1934 | A |
2014672 | Schmaljohann | Sep 1935 | A |
2110116 | Heraclio | Mar 1938 | A |
2132083 | Pateras | Oct 1938 | A |
2173081 | Barkeij | Sep 1939 | A |
2196429 | Siciliano | Apr 1940 | A |
2337245 | Jacklin | Dec 1943 | A |
2354620 | Smith | Jul 1944 | A |
2393085 | Wuehr | Jan 1946 | A |
2396429 | Krygsman | Mar 1946 | A |
2440310 | Thege | Apr 1948 | A |
2463418 | Pescara | Mar 1949 | A |
2530884 | Laraque | Nov 1950 | A |
2565368 | Hammick | Aug 1951 | A |
2607328 | Jencick | Aug 1952 | A |
2646779 | Fiser | Jul 1953 | A |
2682862 | Camner | Jul 1954 | A |
2699156 | Karrow | Jan 1955 | A |
2731003 | Morris | Jan 1956 | A |
2748757 | Morris | Jun 1956 | A |
2805654 | Jacklin | Sep 1957 | A |
2853983 | Sawle | Sep 1958 | A |
3023743 | Schauer, Jr. | Mar 1962 | A |
3033184 | Jackson | May 1962 | A |
3117566 | Venediger | Jan 1964 | A |
3134373 | Schauer, Jr. | May 1964 | A |
3209736 | Witzky | Oct 1965 | A |
3411289 | Antonsen et al. | Nov 1968 | A |
4030471 | Ginkel | Jun 1977 | A |
4090479 | Kaye | May 1978 | A |
4248183 | Noguchi | Feb 1981 | A |
4257365 | Noguchi | Mar 1981 | A |
4452221 | Keating | Jun 1984 | A |
4491096 | Noguchi | Jan 1985 | A |
4574754 | Rhoades, Jr. | Mar 1986 | A |
4622927 | Wenker | Nov 1986 | A |
4791787 | Paul | Dec 1988 | A |
4872433 | Paul | Oct 1989 | A |
4905637 | Ott | Mar 1990 | A |
5042441 | Paul | Aug 1991 | A |
5081963 | Galbraith | Jan 1992 | A |
5083530 | Rassey | Jan 1992 | A |
5711269 | Oda | Jan 1998 | A |
6161518 | Nakakita et al. | Dec 2000 | A |
6170443 | Hofbauer | Jan 2001 | B1 |
6182619 | Spitzer | Feb 2001 | B1 |
6345601 | Miyajima et al. | Feb 2002 | B1 |
6443122 | Denbratt et al. | Sep 2002 | B1 |
6854440 | Cathcart et al. | Feb 2005 | B2 |
6874489 | Yonekawa et al. | Apr 2005 | B2 |
6928997 | Yu | Aug 2005 | B2 |
6997158 | Liu | Feb 2006 | B1 |
7210448 | Stanton et | May 2007 | B2 |
7284524 | Matas et al. | Oct 2007 | B2 |
7428889 | Salzgeber | Sep 2008 | B2 |
7438039 | Poola et al. | Oct 2008 | B2 |
7597084 | Vachon et al. | Oct 2009 | B2 |
8549854 | Dion et al. | Oct 2013 | B2 |
8800528 | Fuqua et al. | Aug 2014 | B2 |
8820294 | Fuqua et al. | Sep 2014 | B2 |
20050066929 | Liu | Mar 2005 | A1 |
20050150478 | Nomura | Jul 2005 | A1 |
20060124084 | Hofbauer et al. | Jun 2006 | A1 |
20060157003 | Lemke et al. | Jul 2006 | A1 |
20070272191 | Tsujimoto et al. | Nov 2007 | A1 |
20080006238 | Hofbauer et al. | Jan 2008 | A1 |
20080115771 | Elsbett | May 2008 | A1 |
20080127947 | Hofbauer et al. | Jun 2008 | A1 |
20090139476 | Hofbauer | Jun 2009 | A1 |
20090139485 | Pontoppidan | Jun 2009 | A1 |
20090159022 | Chu | Jun 2009 | A1 |
20100006061 | Shibata et al. | Jan 2010 | A1 |
20100107868 | Scharp et al. | May 2010 | A1 |
20100108044 | Liu | May 2010 | A1 |
20100224162 | Hofbauer | Sep 2010 | A1 |
20100282219 | Alonso | Nov 2010 | A1 |
20110041684 | Kortas et al. | Feb 2011 | A1 |
20110067671 | Laimboeck | Mar 2011 | A1 |
20110114038 | Lemke | May 2011 | A1 |
20110271932 | Fuqua | Nov 2011 | A1 |
20120073526 | Dion | Mar 2012 | A1 |
20120073541 | Fuqua | Mar 2012 | A1 |
20120080007 | Herold | Apr 2012 | A1 |
20120125298 | Lemke et al. | May 2012 | A1 |
20120192831 | Tusinean | Aug 2012 | A1 |
20120234285 | Venugopal et al. | Sep 2012 | A1 |
20120285418 | Elsbett et al. | Nov 2012 | A1 |
20130014718 | Shen | Jan 2013 | A1 |
20130025556 | Hofbauer | Jan 2013 | A1 |
20130036999 | Levy | Feb 2013 | A1 |
20130104848 | Klyza et al. | May 2013 | A1 |
20130112175 | Wahl | May 2013 | A1 |
20130146021 | Hofbauer | Jun 2013 | A1 |
20130213342 | Burton et al. | Aug 2013 | A1 |
20140014063 | Redon | Jan 2014 | A1 |
20140083396 | Burton | Mar 2014 | A1 |
20140090625 | Dion | Apr 2014 | A1 |
20150033736 | Kalebjian et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
388676 | May 1932 | BE |
4335515 | Apr 1995 | DE |
19651175 | Jun 1998 | DE |
10141888 | Apr 2003 | DE |
102004010361 | Dec 2004 | DE |
102006055251 | May 2008 | DE |
102008055911 | May 2010 | DE |
50349 | Mar 1940 | FR |
191409948 | Apr 1915 | GB |
320439 | Oct 1929 | GB |
320439 | Oct 1929 | GB |
531366 | Jan 1941 | GB |
540658 | Oct 1941 | GB |
552758 | Apr 1943 | GB |
562343 | Jun 1944 | GB |
2493260 | Jan 2013 | GB |
52004909 | Jan 1977 | JP |
2009-138718 | Jun 2009 | JP |
1216394 | Mar 1986 | SU |
WO-9958830 | Nov 1999 | WO |
WO-0125618 | Apr 2001 | WO |
WO-0248524 | Jun 2002 | WO |
WO-2006105390 | Oct 2006 | WO |
WO-2007006469 | Jan 2007 | WO |
WO-2009061873 | May 2009 | WO |
WO-2011061191 | May 2011 | WO |
WO-2011139332 | Nov 2011 | WO |
WO-2012023970 | Feb 2012 | WO |
WO-2012023975 | Feb 2012 | WO |
WO-2012158756 | Nov 2013 | WO |
Entry |
---|
Hofbauer, P., SAE Publication 2005-01-1548, “Opposed Piston Opposed Cylinder (opoc) Engine for Military Ground Vehicles,” Apr. 2005. |
Franke, M., SAE Publication 2006-01-0277, “Opposed Piston Opposed Cylinder (opoc) 450 Engine: Performance Development by CAE Simulations and Testing,” M. Franke, et al, Apr. 2006. |
Hirsch, N.R., et al, SAE Publication 2006-01-0926, “Advanced Opposed Piston Two-stroke Diesel Demonstrator,” Apr. 2006. |
Pirault, J-P., et al, Opposed Piston Engines: Evolution, Use, and Future Applications, 2010, pp. 231-245. |
International Search Report/Written Opinion for PCT/US2011/000692, mailed Aug. 18, 2011. |
International Search Report/Written Opinion for PCT/US2011/001436, mailed Nov. 3, 2011. |
International Search Report/Written Opinion for PCT/US2012/038061, mailed May 16, 2012. |
International Search Report/Written Opinion for PCT/US2014/026670, mailed Jul. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20150013649 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61343308 | Apr 2010 | US | |
61395845 | May 2010 | US | |
61401598 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13066589 | Apr 2011 | US |
Child | 14456865 | US |