Combustion chamber shield for hot water heaters

Information

  • Patent Grant
  • 6698385
  • Patent Number
    6,698,385
  • Date Filed
    Wednesday, January 29, 2003
    21 years ago
  • Date Issued
    Tuesday, March 2, 2004
    20 years ago
Abstract
A shield for a combustion chamber of a hot water heater is described. The combustion chamber is a sealed or not combustion chamber and the metal heat shield encircles and is spaced about the burner and pilot which is located in the combustion chamber. The shield is also spaced from the skirt and a bottom wall of the combustion chamber. The shield is further provided with apertures to permit passage of air supplied by an air supply duct. The shield provides for heat concentration on a lower heat transfer wall of the inner casing containing the water to be heated. The shield also reduces heat loss through the skirt and the bottom end wall of the combustion housing.
Description




TECHNICAL FIELD




The present invention relates to a shield for a combustion chamber of a gas-fired hot water heater whereby to provide heat concentration in the combustion chamber and on a lower heat transfer wall of the inner casing and also to reduce heat loss through the skirt and the bottom end of the water heater.




BACKGROUND ART




With known gas-fired hot water heaters using combustion chambers, there is a substantial heat loss through the lower skirt of the housing which is disposed adjacent the combustion chamber of the water heater and through the lower end portion of the housing. With the new designs of sealed combustions, combustion air is supplied through a vertical duct which is in registry with a supply hole provided in the skirt and therefore the insulation in that area is reduced. Also, the insulation between the lower skirt and the outer casing is not sufficiently thick and this results in heat loss as sealed combustion chambers become very hot. Accordingly, there is excessive heat loss through the skirt and the lower region of the hot water heater housing and the performance or efficiency of the hot water heater is reduced. There is therefore a need to overcome this problem.




SUMMARY OF INVENTION




It is a feature of the present invention to provide a shield for the combustion chamber of a hot water heater which substantially overcomes the above-mentioned disadvantage of prior art water heaters of this type.




Another feature of the present invention is to provide a shield for the combustion chamber of a hot water heater and which shield reduces heat loss through the skirt and outer casing and the bottom end of the hot water heater housing by about 30 to 50 percent over previous designs.




According to a further broad aspect of the present invention there is provided a shield for the combustion chamber of a hot water heater wherein the heat in the sealed combustion chamber is concentrated on the lower transfer wall of the inner casing while at the same time reducing heat loss through the skirt and the bottom end wall of the housing.




According to above features, from a broad aspect, the present invention provides a shield for a combustion chamber of a hot water heater. The heater has an inner casing for the containment of water to be heated by a combustion chamber disposed under the inner casing. A burner and a pilot are provided in the combustion chamber. A flue pipe extends from the combustion chamber to evacuate combustion gases. An outer casing is secured spaced about the internal casing and insulated therefrom by a thermal insulating material. A support base is provided at a bottom end of the water heater. A skirt is provided about the combustion chamber and spaced internally from a lower end portion of the outer casing. Air passage means is provided to supply air to the combustion chamber. A heat shield, formed of metal, is secured in the combustion chamber and encircles and is spaced about the burner and pilot. The shield is spaced from the skirt. Air aperture means is provided in the shield to permit passage of combustion air supplied through the air passage means. The shield provides heat concentration in the combustion chamber and on a lower heat transfer wall of the internal casing and also reduces heat loss through the skirt and a bottom end of the combustion chamber.











BRIEF DESCRIPTION OF DRAWINGS




A preferred embodiment of the present invention will now be described with reference to the accompanying drawings in which:





FIG. 1

is a fragmented side view of a hot water heater having a sealed combustion chamber and illustrates a first example of the construction of the shield of the present invention; and





FIG. 2

is a view similar to

FIG. 1

but showing a further example of the construction of the shield of the present invention.











DESCRIPTION OF PREFERRED EMBODIMENTS




Referring to the drawings, and more particularly to

FIG. 1

, there is shown generally at


10


a lower portion of a hot water heater and which illustrates the basic component parts thereof and more particularly its lower combustion chamber


11


which is provided with the heat shield


12


of the present invention. As hereinshown, the hot water heater has an inner casing


13


which is of elongated cylindrical shape and provided with a central flue


14


extending therethrough and exhausting at a top end in a manner well known in the art. Water


15


to be heated is contained within the inner casing


13


and dispensed therefrom, as is also well known in the art.




The hot water heater as herein illustrated is a gas-fired hot water heater and its sealed combustion chamber


11


is provided with a burner


16


and a pilot


17


which is provided with an igniter


18


to kick-start the burners


16


. A control


19


controls the burner and is provided with a water temperature sensor


20


to effectuate this control. This is also well known in the art.




An outer casing or shroud


21


is secured spaced about the inner casing


13


and an insulated material


22


such as identified by the trade mark Green Foam, registered trade mark of Giant Factories Inc., is injected in this space whereby to provide good insulation between the outer wall


13


′ of the inner casing and the outer casing


21


which is usually a thin metal sheet cylinder.




The hot water heater is supported elevated from a support surface


23


by a support base


24


which is provided with vent holes


25


to provide air circulation under the bottom wall


26


of the housing which is in communication with the combustion chamber


11


which is hereinshown as a sealed combustion chamber, although not essential. Accordingly, it is desirable to have air circulation under this bottom wall. It is further pointed out that the entire hot water heater


10


may be supported elevated by other means such as a platform


23


′ as shown in

FIG. 2

, depending on the location of the air intake ports which supplies air for combustion. If the air intake is low, then it is preferable that the combustion chamber be elevated as high as possible from the ground surface


23


in the event that ignitable gas fumes may circulate over the ground surface


23


, whereby to provide added security. The combustion chamber


11


may be a non-sealed combustion chamber wherein air is supplied thereto through the vent holes


25


in the support base


24


. Accordingly, the vertical duct


28


, as will be described later would not be required. As well, the bottom wall


26


would not be required or would have air openings therein.




A skirt


27


is disposed about the sealed combustion chamber


11


and spaced internally from a lower end portion


21


′ of the outer casing


21


. Combustion air is supplied to the sealed combustion chamber by suitable means, and as herein shown by an elongated vertical duct


28


, which is secured at a lower end


29


to the combustion chamber


11


. The vertical duct


28


has a top inlet end


30


which is provided with aperture means, herein louvered openings


31


to admit air into the vertical duct to supply the combustion chamber. The inlet end


31


is elevated to reduce the risk of explosive gases entering the combustion chamber.




The present invention provides the heat shield


12


in the combustion chamber


11


. As shown in the embodiment of

FIG. 1

, this heat shield


12


is a cup-shaped cylinder shield having a circular flat bottom wall


36


and a cylindrical side wall


37


secured to the outer periphery of the bottom wall


36


and projecting thereabove. The cylinder shield has an open top end


38


facing the heat transfer wall


13


″ of the inner casing


13


. This heat transfer wall


13


″ is usually a concave dome-shaped wall with the flue


14


disposed centrally at the apex thereof. Spacing brackets


39


maintain the shield side wall


37


spaced from the skirt


27


and the bottom wall


36


spaced from the bottom wall


26


of the combustion chamber whereby to provide an air space


40


about the shield. The vertical duct


28


provides fresh combustion air in this space


40


to supply the burner. Air is drawn within the space


40


by the hot flame of the burner which creates a draft within the space about the shield


12


of the burner drawing air through the holes


41


and about the side walls


37


of the shield as well as over the top edge. This helps to cool the skirt


27


and the bottom wall


26


. For example, the skirt


27


without the shield attained temperatures of about 350° F. and with the shield this has been reduced to 150° F.




As can be seen, the shield


12


is provided with a plurality of apertures or holes


41


in at least a bottom wall


36


. Additional holes


41


may also be provided in the cylindrical side wall


37


. As an alternative, a single large through-bore


42


may be provided centrally in the shield bottom wall


36


in line with the burner


16


which is supported elevated at the center inside the heat shield


12


. This shield


12


provides heat concentration in the combustion chamber


11


and on the lower heat transfer wall


13


′ of the inner casing and reduces heat loss through the skirt


27


and the bottom end wall


26


of the combustion chamber.




Referring now to

FIG. 2

, there is shown a further example of the construction of the heat shield, herein identified by reference numeral


12


′. As can be seen, this shield


12


′ is a bowl-like shield and therefore has the shape of an inverted dome which defines a concave inner surface


45


which faces the open top end


46


of the shield, and a convex outer surface


47


which is disposed spaced from the sealed bottom wall


26


of the combustion chamber and the skirt


27


. The open top end


46


faces the heat transfer wall


13


″ of the inner casing and disposed concentrically below this heat transfer wall whereby heat radiation from the concave inner surface is concentrated on the heat transfer wall


13


″ to achieve better heat exchange between the inner casing and the combustion chamber.




The heat shield


12


′ is also provided with apertures


48


all around the inverted dome-shaped shield or alternatively a single large aperture


49


may be disposed at the apex of the dome and concentrically aligned with the burner


16


, similar to the aperture


42


in the previous embodiment of the shield as above-described. The dome shield


12


′ is secured by the spacing brackets


39


′ similar to the embodiment of FIG.


1


. As can be seen with this embodiment, the air space


50


surrounding the shield is much larger and this inverted dome-shape shield design enhances the heat concentration on the transfer wall and the reduction of heat loss through the skirt


27


and bottom end wall


26


of the sealed combustion housing. These shields are preferably, but not exclusively, formed of steel material capable of resisting the high temperature heat of the combustion chamber.




It is within the ambit of the present invention to cover any obvious modifications of the examples of the preferred embodiment described herein, provided such modifications fall within the scope of the appended claims.



Claims
  • 1. A shield for gas-fired a combustion chamber of a hot water heater, said hot water heater having an inner casing for the containment of water to be heated by a combustion chamber disposed under said inner casing, a burner and pilot in said combustion chamber, a flue pipe extending from said combustion chamber to evacuate combustion gases, an outer casing secured spaced about said internal casing and insulated therefrom by a thermal insulating material, a support base at a bottom end of said water heater, a skirt about said combustion chamber spaced internally from a lower end portion of said outer casing, air passage means to supply air to said combustion chamber, and a heat shield formed of metal in said combustion chamber encircling and spaced under and to the sides of said burner and pilot, said shield being spaced from said skirt, air aperture means in said shield and disposed under and to the sides of said burner and pilot to permit passage of air supplied through said air passage means; said shield providing heat concentration in said combustion chamber and on a lower heat transfer wall of said inner casing, and reducing heat loss through said skirt and a bottom end of said combustion chamber.
  • 2. A shield as claimed in claim 1 wherein said combustion chamber is a sealed combustion chamber, said passage means being an air channel means, said shield being spaced also from a bottom end wall of said combustion chamber.
  • 3. A shield as claimed in claim 2 wherein said bottom end wall is supported elevated by said support base, said support base having vent holes to circulate air against said bottom end wall.
  • 4. A shield as claimed in claim 3 wherein said channel means is a vertical duct connected at a lower end to an air supply space about said shield between said sealed bottom wall and said skirt, said vertical duct having a top inlet end spaced a predetermined distance from said support base to admit fresh air in said duct to supply said air supply space and burner.
  • 5. A shield as claimed in claim 2 wherein said aperture means is one or more apertures formed in said heat shield.
  • 6. A shield as claimed in claim 5 wherein said shield is a cup-shaped cylinder shield having a circular bottom wall, a cylindrical side wall secured to a periphery of said bottom wall and projecting thereabove, and an open top end facing said heat transfer wall of said inner casing.
  • 7. A shield as claimed in claim 6 wherein said cylinder shield is secured by support means to position said cylinder shield spaced from said sealed bottom wall and said skirt to provide an air supply space about said shield, said channel means communicating with said air supply space.
  • 8. A shield as claimed in claim 7 wherein said air aperture means is constituted by a single large central aperture formed in said circular bottom wall, said burner being supported above said central aperture and concentrically spaced from said circular side wall.
  • 9. A shield as claimed in claim 7 wherein said air aperture means is constituted by a plurality of holes provided in said circular bottom wall and said cylindrical side wall.
  • 10. A shield as claimed in claim 5 wherein said shield is an inverted dome-shaped shield defining a concave inner surface facing an open top end thereof and a convex outer surface disposed spaced from said sealed bottom wall and said skirt, said open top end facing said heat transfer wall of said inner casing.
  • 11. A shield as claimed in claim 10 wherein said heat transfer wall of said inner casing is a concave wall, said shield being secured concentrically below said heat transfer wall whereby heat radiation from said concave inner surface will be concentrated on said heat transfer wall.
  • 12. A shield as claimed in claim 11 wherein said air aperture means is constituted by a single large central aperture formed in said inverted dome-shaped shield at an apex thereof, said burner being supported above said central aperture.
  • 13. A shield as claimed in claim 11 wherein said air aperture means is constituted by a plurality of holes provided in said inverted dome-shaped shield.
  • 14. A shield as claimed in claim 1 wherein said passage means is constituted by apertures formed in a support base of said hot water heater.
US Referenced Citations (5)
Number Name Date Kind
2240283 Breese Apr 1941 A
2506336 Bock May 1950 A
2515919 Weyenberg et al. Jul 1950 A
2617391 Raymond Nov 1952 A
6237544 Croxford et al. May 2001 B1
Foreign Referenced Citations (1)
Number Date Country
60134147 Jul 1985 JP