The present invention relates to a combustion chamber structure for an internal combustion engine.
JP 2008-303798 A discloses an internal combustion engine configured to enable ignition without requiring high ignition energy in performing dilution combustion by providing one of two spark plugs at a position where the flow velocity of a tumble flow is high and providing the other one at a position close to the vortex center of the tumble flow.
However, the above-described internal combustion engine does not have a structure based on the characteristics of the tumble flow, and thus has a problem that the dilution combustion strength decreases due to variations in the flow velocity or the flow direction of the tumble flow.
The present invention has been made in view of such a technical problem. It is an object of the present invention to provide a combustion chamber structure for an internal combustion engine capable of suppressing flow variations in a tumble flow.
According to one aspect of the present invention, a combustion chamber structure for an internal combustion engine includes a recessed portion formed in a pent roof of a cylinder head on an upstream side of a tumble flow with respect to a spark plug.
Hereinafter, the structure of a combustion chamber 101 of an internal combustion engine 100 according to a first embodiment of the present invention is described with reference to the accompanying drawings.
The internal combustion engine 100 is provided with a cylinder block 10, a piston 20 provided in a cylinder 11 formed in the cylinder block 10, a cylinder head 30 provided above the cylinder block 10 and closing the cylinder 11, and a spark plug 40 and an injector 50 provided in the cylinder head 30 as illustrated in
The cylinder head 30 has a pent roof surface 31 configuring the upper surface of the combustion chamber 101. As illustrated in
Between the two intake ports 32 in the roof surface 31a, a recessed portion 34 recessed upward with the roof surface 31a as the reference plane (dotted line) is formed as illustrated in
As illustrated in
In this embodiment, the spark plug 40 is provided slightly on the roof surface 31b side relative to a center portion of the combustion chamber 101.
In an operation of the internal combustion engine 100, a tumble flow is generated in the combustion chamber 101 as indicated by the dashed arrow in
The internal combustion engine 100 has the recessed portion 34 formed in the pent roof surface 31 as described above. Therefore, the tumble flow flowing along the pent roof surface 31 is concentrated to the recessed portion 34 and rectified, and then the rectified flow is directed toward the spark plug 40. Thus, the flow velocity or the flow direction of the tumble flow directed toward the spark plug 40 is stabilized.
More specifically, this embodiment can suppress flow variations in the tumble flow directed toward the spark plug 40, and therefore can realize stable ignition and combustion even under dilution combustion, such as in a lean combustion region or during the execution of control of EGR (Exhaust Gas Recirculation). Thus, the combustion strength under the dilution combustion is improved. As a result, the fuel consumption is improved and the generation of an environmentally harmful substance (NOx) is also suppressed.
Moreover, in this embodiment, the injector 50 is provided in the recessed portion 34, and therefore the recessed portion 34 also functions as a relief portion of fuel sprayed from the injector 50. Therefore, even when the recessed portion 34 is provided in the pent roof surface 31, the injector 50 can be easily disposed. The injector 50 may be provided at positions other than the recessed portion 34.
Then, the recessed portion 34 is described in more detail with reference to
The recessed portion 34 has an inclined surface 34b inclined from a bottom portion 34a of the recessed portion 34 toward the spark plug 40 on the spark plug 40 side as illustrated in
Thus, the tumble flow concentrated to the recessed portion 34 is rectified to flow along the inclined surface 34b to be a flow directed toward the spark plug 40. Therefore, the uniformity of the tumble flow directed toward the spark plug 40 is improved.
Moreover, as indicated by the chain double-dashed line extending from the inclined surface 34b, an ignition portion of the spark plug 40 is located on the extension of the inclined surface 34b.
Thus, the ignition portion is located at the destination toward which the rectified tumble flow is directed, and therefore a discharge channel generated in the ignition portion can be stably extended.
As indicated by an angle θ, the inclined surface 34b is inclined downward toward the tip side of the spark plug 40 relative to a plane orthogonal to the axis of the spark plug 40 (hereinafter referred to as an orthogonal plane).
This can prevent the contact of the discharge channel with the upper surface (roof surface 31b) of the combustion chamber 101 on the downstream side of the tumble flow with respect to the spark plug 40, so that stable ignition can be realized.
Then, the maximum height position of the combustion chamber 101 is described with reference to
In this embodiment, the maximum height position of the combustion chamber 101 is located on the upstream side of the tumble flow with respect to the spark plug 40 as illustrated in
Due to the fact that the maximum height position of the combustion chamber 101 is located on the upstream side of the tumble flow with respect to the spark plug 40, the tumble flow center is located closer to the intake side relative to the spark plug 40. When the tumble flow center is present on the upstream side of the tumble flow relative to the spark plug 40, the flow direction of the tumble flow with respect to the spark plug 40 can be directed downward relative to the horizontal and the flow rectified in the recessed portion 34 is directed toward the spark plug 40. Therefore, the flow directed toward the spark plug 40 can be stabilized.
As described above, the structure of the combustion chamber 101 of this embodiment has the recessed portion 34 formed in the pent roof surface 31 of the cylinder head 30 on the upstream side of the tumble flow with respect to the spark plug 40.
The recessed portion 34 and the spark plug 40 are provided side by side in a direction parallel to the direction orthogonal to the engine crankshaft and the cylinder shaft.
Thus, the tumble flow flowing along the pent roof surface 31 is concentrated to the recessed portion 34 and rectified, and then the rectified flow is directed toward the spark plug 40. Therefore, the flow variations in the tumble flow directed toward the spark plug 40 can be suppressed.
Moreover, the injector 50 is provided in the recessed portion 34.
Thus, the recessed portion 34 functions as the relief portion of the fuel sprayed from the injector 50. Therefore, even when the recessed portion 34 is provided in the pent roof surface 31, the injector 50 can be easily disposed.
The tumble flow is the flow in the direction in which the intake flowing into the combustion chamber 101 flows along the wall surface of the cylinder 11 on the exhaust side, the top surface of the piston 20, and the wall surface of the cylinder 11 on the intake side in this order.
The recessed portion 34 is formed in the roof surface 31a on the intake side in the pent roof surface 31.
Thus, the tumble flow can be efficiently rectified.
The recessed portion 34 has the inclined surface 34b inclined toward the spark plug 40 on the spark plug 40 side.
Thus, the tumble flow concentrated to the recessed portion 34 is rectified to flow along the inclined surface 34b to be a flow directed toward the spark plug 40, and therefore the uniformity of the tumble flow directed toward the spark plug 40 is improved.
The inclined surface 34b is inclined downward toward the tip side of the spark plug 40 relative to the orthogonal plane.
Thus, the contact of the discharge channel with the upper surface (roof surface 31b) of the combustion chamber 101 on the downstream side of the tumble flow with respect to the spark plug 40 can be suppressed, so that stable ignition can be realized.
The ignition portion of the spark plug 40 is located on the extension of the inclined surface 34b.
Thus, the ignition portion is located at the destination toward which the rectified tumble flow is directed, and therefore the discharge channel generated in the ignition portion can be stably extended.
The maximum height position of the combustion chamber 101 is located on the upstream side of the tumble flow with respect to the spark plug 40.
The center of the tumble flow is located on the upstream side of the tumble flow with respect to the spark plug 40.
Due to the fact that the maximum height position of the combustion chamber 101 is located on the upstream side of the tumble flow with respect to the spark plug 40, the tumble flow center is located closer to the intake side relative to the spark plug 40. When the tumble flow center is present on the upstream side of the tumble flow relative to the spark plug 40, the flow direction of the tumble flow with respect to the spark plug 40 can be directed downward relative to the horizontal and the flow rectified in the recessed portion 34 is directed toward the spark plug 40, and therefore the flow directed toward the spark plug 40 can be stabilized.
Then, the structure of a combustion chamber 201 of an internal combustion engine 200 according to a second embodiment of the present invention is described with reference to
The internal combustion engine 200 is provided with a cylinder block 10, a piston 20 provided in a cylinder 11 formed in the cylinder block 10, a cylinder head 60 provided above the cylinder block 10 and closing the cylinder 11, and a spark plug 40 and an injector (not illustrated) provided in the cylinder head 60.
The cylinder head 60 has a pent roof surface 61 configuring the upper surface of the combustion chamber 201. The pent roof surface 61 is configured of a roof surface 61a on the intake side where two intake ports (not illustrated) are formed and a roof surface 61b on the exhaust side where two exhaust ports (not illustrated) are formed.
Between the two intake ports 32 in the roof surface 61a, a recessed portion 64 recessed upward with the roof surface 61a as the reference plane (dotted line) is formed.
In this embodiment, the spark plug 40 is located in a center portion of the combustion chamber 201 in the radial direction of the cylinder 11.
Therefore, as the structure of the combustion chamber 201 of the internal combustion engine 200, a side direct-injection injector or port injection can be adopted.
Moreover, the internal combustion engine 200 has the recessed portion 64 formed in the pent roof surface 61 as described above. Therefore, a tumble flow flowing along the pent roof surface 61 is concentrated to the recessed portion 64 and rectified, and then the rectified flow is directed toward the spark plug 40. Thus, the flow velocity or the flow direction of the tumble flow directed toward the spark plug 40 is stabilized.
As described above, according to the structure of the combustion chamber 201 of this embodiment, flow variations in the tumble flow directed toward the spark plug 40 can be suppressed and the side direct-injection injector or the port injection can be adopted.
Then, the structure of a combustion chamber 301 of an internal combustion engine 300 according to a third embodiment of the present invention is described with reference to
The internal combustion engine 300 is provided with a cylinder block 10, a piston 20 provided in a cylinder 11 formed in the cylinder block 10, a cylinder head 70 provided above the cylinder block 10 and closing the cylinder 11, and a spark plug 40 and an injector (not illustrated) provided in the cylinder head 70.
The cylinder head 70 has a pent roof surface 71 configuring the upper surface of the combustion chamber 301. The pent roof surface 71 is configured of a roof surface 71a on the intake side where two intake ports (not illustrated) are formed and a roof surface 71b on the exhaust side where two exhaust ports (not illustrated) are formed.
Between the two intake ports in the roof surface 71a, a recessed portion 74 recessed upward with the roof surface 71a as the reference plane (dotted line) is formed.
In this embodiment, in the recessed portion 74, a part of the cross-sectional shape is formed by an arc 74a. A curvature radius R of the arc 74a is set so that a diameter 2R of a circle including the arc 74a is larger than a height H of the combustion chamber 301 in a most compressed state and is smaller than a bore diameter D of the combustion chamber 301. In the recessed portion 74, the entire cross-sectional shape may be formed by an arc.
When the size of the curvature radius R of the arc 74a and the size of the curvature radius of a tumble flow are closer to each other, the tumble flow can be rectified while suppressing a pressure loss. Herein, the curvature radius of the tumble flow is geometrically set to a size between H/2 and D/2.
Therefore, by setting the curvature radius R of the arc 74a so that the diameter 2R of the circle including the arc 74a is larger than the height H and smaller than the bore diameter D, the tumble flow can be rectified while suppressing a pressure loss.
As described above, according to the structure of the combustion chamber 301 of this embodiment, flow variations in a tumble flow directed toward the spark plug 40 can be suppressed while suppressing a pressure loss.
As described above, the embodiments of the present invention are described. However, the embodiments merely exemplify some of application examples of the present invention and do not intend to limit the technical scope of the present invention to the specific configurations of the embodiments described above.
For example, the recessed portions 34, 64, and 74 are formed in the roof surfaces 31a, 61a, and 71a, respectively, on the intake side in the embodiments described above. However, depending on the position of the spark plug 40, the recessed portions may be formed in the roof surface on the exhaust side on the upstream side of the tumble flow with respect to the spark plug 40. Also in this case, the effect that a tumble flow flowing along the pent roof surface of the cylinder head is concentrated to the recessed portions and rectified, and then the rectified flow is directed toward the spark plug 40 can be obtained.
The configurations of the embodiments can be used in appropriate combinations.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2018/000681 | 4/10/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/197860 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3999532 | Kornhauser | Dec 1976 | A |
5127379 | Kobayashi | Jul 1992 | A |
5209200 | Ahern et al. | May 1993 | A |
5724937 | Bezner | Mar 1998 | A |
5813385 | Yamauchi | Sep 1998 | A |
5816215 | Yoshikawa | Oct 1998 | A |
5927244 | Yamauchi | Jul 1999 | A |
5960766 | Hellmich | Oct 1999 | A |
5960767 | Akimoto | Oct 1999 | A |
5996548 | Hellmich | Dec 1999 | A |
6152103 | Kudo | Nov 2000 | A |
6158409 | Gillespie | Dec 2000 | A |
6158410 | Piock | Dec 2000 | A |
6220215 | Morimoto | Apr 2001 | B1 |
6357402 | Kato | Mar 2002 | B1 |
6378486 | Spiegel | Apr 2002 | B1 |
6443122 | Denbratt | Sep 2002 | B1 |
6561153 | Uchida | May 2003 | B2 |
6629519 | Bertsch | Oct 2003 | B1 |
6651615 | Suzuki | Nov 2003 | B2 |
6892693 | Montgomery | May 2005 | B2 |
7086378 | Tanaka | Aug 2006 | B2 |
8074621 | Hata | Dec 2011 | B2 |
10156182 | Narahara | Dec 2018 | B2 |
10309322 | Hoshi | Jun 2019 | B2 |
10385802 | Nakaji | Aug 2019 | B2 |
10436134 | Hayashi | Oct 2019 | B2 |
20020014219 | Suzuki | Feb 2002 | A1 |
20020073958 | Wright | Jun 2002 | A1 |
20020134341 | Uchida | Sep 2002 | A1 |
20040154579 | Montgomery | Aug 2004 | A1 |
20050139191 | Tanaka | Jun 2005 | A1 |
20100065018 | Hata | Mar 2010 | A1 |
20170356330 | Narahara | Dec 2017 | A1 |
20180080407 | Nakaji | Mar 2018 | A1 |
20180298832 | Hoshi | Oct 2018 | A1 |
20180306135 | Hayashi | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
19962293 | Jun 2001 | DE |
10018777 | Oct 2001 | DE |
102018000285 | Jul 2019 | DE |
1 179 662 | Feb 2002 | EP |
2039614 | Aug 1980 | GB |
5-507981 | Nov 1993 | JP |
10131757 | May 1998 | JP |
10131758 | May 1998 | JP |
10220229 | Aug 1998 | JP |
10317974 | Dec 1998 | JP |
11-200867 | Jul 1999 | JP |
2008-303798 | Dec 2008 | JP |
2015-218621 | Dec 2015 | JP |
2015218621 | Dec 2015 | JP |
2016-121631 | Jul 2016 | JP |
2016121631 | Jul 2016 | JP |
Number | Date | Country | |
---|---|---|---|
20210115841 A1 | Apr 2021 | US |