This invention relates generally to an apparatus for reducing nitric oxide (NOx) emissions in gas turbine combustion system. More specifically this invention relates to the apparatus and methodology for assembling the reduced NOx combustion system.
Combustion liners are commonly used in gas turbine engines to provide a protected environment for compressed air and fuel to mix and react in order to generate the hot gases necessary to drive a turbine. Due to the extreme exposure to elevated temperatures, combustion liners are typically coated with a thermal barrier coating (TBC) to reduce effects of high temperatures on the base metal of the combustion liner. Thermal barrier coating is typically comprised of a metallic bond coat and a ceramic top coat. Over time, exposure to elevated temperatures causes the TBC to erode and therefore necessitates inspection of the combustion liner and repair and replacement of worn liner elements, Including the thermal barrier coating. Typically, combustion liners can undergo multiple inspection and repair cycles at regular intervals before replacement of the combustion liner is required.
In some combustion liners additional hardware is present that must be removed before overhaul and maintenance function can be performed on a combustion liner. Examples include supports for fuel injectors or internal combustion chamber walls. More specifically, a two-stage combustion liner known in the art of gas turbine combustors used for power generation, includes a venturi that separates a first combustion chamber from a second combustion chamber. This venturi must be removed in order to repair and overhaul the surrounding combustion liner. An example of a prior art venturis installed within two-stage combustion liners are shown in
While two stage combustion systems are well known in the field of combustion technology, enhancements have been made to further reduce NOx emissions over prior art combustors. Early two stage combustors contained combustion liners with venturis similar to that disclosed in FIG. 1 and described in U.S. Pat. No. 5,117,636, where compressed air is employed to cool venturi walls 32 and exits passageway 44 in the downstream direction. Further development of two stage combustion technology led to a counter-flow venturi technology, as disclosed in U.S. Pat. No. 6,446,438 and shown in
An improved combustion liner configuration is disclosed incorporating a unique assembly methodology for a combustion liner containing a venturi that utilizes venturi cooling air in the combustion process that allows for improved inspection and repair techniques. The combustion liner includes an upper liner, a lower liner, a cap assembly, and a venturi assembly. The cap assembly is fixed to the upper liner at a first upper end and the venturi assembly is inserted into the upper liner from a second upper end. The upper liner with cap assembly and venturi assembly is then inserted into a first lower end of the lower liner. A plurality of pins are inserted through the lower liner, upper liner, and venturi assembly in order to fix the venturi within the combustion liner. Providing the assembly point for the combustion liner proximate the venturi assembly allows for easier insertion and removal of the venturi assembly into the combustion liner as well as easier access to the combustion liner for inspection and repair of the thermal barrier coating.
The present invention is shown in detail in
Referring back to
Gas turbine combustor 60 also includes an upper liner 75 and a lower liner 76, as shown in FIG. 3. Upper liner 75 is generally annular in shape and has a first upper end 77, a second upper end 78, a first upper diameter UD1, and a second upper diameter UD2, with first upper diameter UD1 and second upper diameter UD2 proximate second upper end 78 and defining a second thickness T2 therebetween. Upper liner 75 also contains a plurality of second holes 79 spaced circumferentially about upper liner 75 such that they are in fluid communication with first holes 71 and a second passageway 80 radially outward of upper liner 75. Upper liner 75 further includes a venturi land 75a which acts as both a stop and a seal for venturi assembly 63, as shown in FIG. 5. Lower liner 76 is also generally annular in shape and has a first lower end 81 and a second lower end 82 as shown in FIG. 3. Referring back to
Referring back to
Venturi assembly 63 is assembled to upper liner 75 and lower liner 76 in an easily removable manner by a plurality of retaining pins 86, typically at least six retaining pins, circumferentially spaced about combustor 60. First, venturi assembly 63 is inserted into upper liner 75 at second upper end 78 until first venturi end 64 contacts venturi land 75a and stops. Venturi assembly 63 with first outer band 66A is sized to be radially within upper liner 75 such that second band diameter BD2 is slightly less than first upper diameter UD1. Upper liner 75, which now contains venturi assembly 63, is then inserted into lower liner 76 at first lower end 81. This is possible since upper liner 75 which is sized to be radially within lower liner 76 has a second upper diameter UD2 slightly less than first lower diameter LD1. Venturi assembly 63, upper liner 75, and lower liner 76 are adjusted axially and circumferentially as necessary until retaining pins 86 can be inserted to secure the three components together. The plurality of retaining pins 86 pass through lower liner 76, upper liner 75, and first outer band 66A in order to adequately secure venturi assembly 63 to combustor 60 and secure lower liner 76 to upper liner 75. Venturi assembly 63 is positioned axially such that first venturi end 64 is in contact with upper liner 75 to form a seal to ensure that cooling air in first passageway 70 passes into second passageway 80. In addition, lower liner 76 may be intermittently welded to upper liner 75 proximate retaining pins 86 should additional structural support or sealing be required.
Providing a gas turbine combustor with above described structural configuration and assembly sequence allows for easy removal of the venturi assembly since the venturi assembly regions having tight tolerance dimensions will not have to pass along the majority of the combustor liner length in order for the venturi assembly to be installed or removed, as was required in the prior art. Furthermore, for combustors having a relatively long length, as in the preferred embodiment, splitting the combustor allows for easier inspection, repair, and overhaul tasks to be performed. This is especially true when liner sections require removal and reapplication of thermal barrier coating, which is typically performed by equipment with robotic arms that have limited mobility and reach.
Number | Name | Date | Kind |
---|---|---|---|
5117636 | Bechtel, II et al. | Jun 1992 | A |
6427446 | Kraft et al. | Aug 2002 | B1 |
6446438 | Kraft et al. | Sep 2002 | B1 |
6484509 | Kraft et al. | Nov 2002 | B2 |
20030233832 | Martling et al. | Dec 2003 | A1 |
20030233833 | Martling et al. | Dec 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040112058 A1 | Jun 2004 | US |