The present invention relates to an arrangement for the combustion of granular, solid fuel, for example wood-flour pellets, chips or the like, comprising a preferably horizontal combustion chamber, a dispensing unit for feeding the fuel into the combustion chamber via a fuel feed pipe, air inlets with blower for the delivery of primary air (P) to the combustion chamber via at least one air duct or air chamber in order to produce a flow of air through the combustion chamber and the fuel for a primary combustion of the fuel to combustion gases, and for the delivery of secondary air (S) to a secondary combustion chamber via a secondary air distributor in order to produce a secondary combustion of the combustion gases formed in the primary combustion, and a common outlet for the primary air (P), the combustion gases and the secondary air (S) from the secondary combustion chamber to a boiler space in a boiler for transmitting the heat from the said primary and secondary combustion to the heat supply system of the boiler.
The invention also relates to a method of combustion comprising such a combustion arrangement.
Combustion arrangements, hereinafter also referred to as burners, for solid fuel of the aforementioned type are known in various embodiments. Common to burners is the fact that they are suitably intended for fitting to some type of more or less conventional boiler, which suitably has a water-based heat supply system comprising the usual radiators, either as a complement to or as an alternative to the ordinary oil burner.
Some examples of these or essentially similar burners are disclosed by the patent publications WO 94/17331, WO 97/49951, SE-B-450 734 and GB-A-2 079 910, in which solid fuel burners are shown, which are fitted to a boiler so that the front section of the burner is introduced into the hearth of the boiler through the outer casing of the boiler. The said burners comprise a combustion chamber in which the solid and suitably granular fuel, in the form of pellets, for example, is rotated during introduction of the combustion air. Even larger solid fuel combustion plants are disclosed, for example, by the Swedish patent specification SE-C-63 193, which shows a furnace especially for the combustion of municipal refuse. The latter combustion arrangement also comprises a rotatable cylinder which functions as fuel grate.
In such combustion arrangements the fuel is therefore rotated with a simultaneous delivery of combustion air that contains the oxygen needed to bring about a primary combustion of the fuel. Fuel pellets normally consist of approximately 10% water and approximately 12% pure carbon, whilst the remainder of the pellets largely consists of various hydrocarbon compounds. The content of the pellets varies greatly, however. During the primary combustion hot combustion gases are formed on the one hand, together with ashes and other solid slag products on the other. The greater part, estimated at approximately 80 to 90%, of the ashes are entrained with the air flow through the burner as fly ash, which is precipitated out of the combustion gases outside the burner and inside the actual boiler. It is desirable for 100% of all ashes to be precipitated outside the burner, which normally occurs if the melting point of the ashes exceeds the temperature range at which the burner is intended to function, for example if the melting point of the ashes exceeds an operating temperature normally in the order of 1100° C., and if the air flow is sufficient. It has proved difficult, however, to obtain complete combustion of the fuel to secondary combustion gases, that is to say to achieve a fuel gasification of 100%. In combustion at temperatures in excess of the melting point of the ashes the original light, powdery ashes are in fact converted to pieces of fused heavier material, so-called sintering, which are not as readily entrained with the combustion gases out of the burner. In the combustion of impure fuel with excessively high contents of certain substances having inferior or deteriorating combustion characteristics the sintering also occurs at lower temperatures than the 1100° C. quoted, which further aggravates the problem of sintering.
In the burners currently known a substantial proportion of the sinter is therefore precipitated right in the actual combustion chamber, so that an accumulation of ashes, unburned pellets and sinter slag is formed, which obstructs the air inlet openings needed for the flow of air through the fuel bed into the combustion chamber. The obstruction of the air inlet openings results in impaired and uneven combustion of the fuel, so that more air must be added. This makes the burner less efficient, since the combustion gases are diluted and since the extra air delivered also has a cooling effect. The accumulation of ashes, pellets and slag grows quite rapidly to a greater height, which in turn can mean that the position of the fuel bed is shifted to a position that is not conducive to functioning, whilst the risk of burn-back also increases dramatically, that is to say the centre of the fire is raised towards and into the fuel feed pipe. This makes the sintering both technically awkward and moreover dangerous.
Non-rotating combustion chambers increase the aforementioned problems since the static nature of the combustion chamber means that the slag formation all the time occurs in the same area of the combustion chamber and since the automatic discharge normally performed in rotating combustion chambers by means of likewise rotating, screw-shaped discharge flanges is absent. Stationary combustion chambers therefore either require more frequent cleaning or a specially arranged cleaning device, such as an ash rake. In many boilers there is a container in the form of a box inside the boiler, in which box the ashes land since the front part of the burner is nested in the actual boiler. The ashes in the box are emptied either manually or by extracting the ashes by means of a suction device. The ash box may be relatively large. Therefore, it can be emptied relatively infrequently without causing difficulties.
In rotating combustion chambers the accumulation of ashes and sinter slag is therefore fed towards the outlet from the burner by means of similarly rotating discharge flanges. The accumulation also contains unburned pellets and other solid, not yet fully combusted products, however, which still have a substantial energy content. In order to also utilise the energy content of these products, the combustion chamber is therefore often designed with a convex longitudinal section by giving the walls of the combustion chamber a design diverging towards the front, open end of the burner. Alternatively, the burner may be provided with one or more edge flanges, which prevent the said products passing through the burner unburned. The patent publication WO 97/49951, for example, shows a burner having both an inner edge flange, which partially closes the outlet opening of the combustion chamber to a secondary combustion chamber arranged immediately outside this combustion chamber, and an outer annular edge flange, which partially closes the outlet opening of the secondary combustion chamber. In order to achieve combustion of the residual products in the secondary combustion chamber, there are secondary air inlet openings for secondary air arranged in the inner edge flange.
Since the partially closed construction of the burner not only prevents unburned residual products passing through the burner, but also impedes the flow of fly ash out of the combustion chamber, there is a greater risk that slag products will be formed inside the said combustion chamber and secondary combustion chamber at excessively high combustion temperatures. The secondary combustion chamber, moreover, entirely lacks any discharge flanges.
It will be appreciated therefore that one problem for solid fuel burners is the formation of sinter inside the actual combustion chamber and any secondary combustion chamber. It will furthermore be realised that in combustion arrangements with non-rotating combustion chamber without any automatic discharge of the slag products formed, in burners with combustion chambers having a convex longitudinal section or an outlet opening for the combustion gases which is smaller than the combustion chamber and/or the secondary combustion chamber itself the aforementioned problems increase very markedly.
There is therefore a desire for the burner to function over a longer period of time without special manual or automated burner cleaning measures. Instead, measures must be taken in the design of the burner in order to eliminate or at least substantially reduce the said sintering or to get the sintering of the ashes to occur at a safe distance outside the burner. Merely increasing the air flow by means of a larger blower, for example, in order to blow the ashes away might have undesirable effects on the fuel consumption, the efficiency and the temperature that are required in order to achieve an optimum operating cost.
A further problem is that the burner, and in the case of a rotating burner its bearing, may be damaged by excessively high temperatures. The specification GB-A-2 079 910 identifies this problem and states that the double-walled burner shown in the said specification has two purposes; firstly to deliver air to the combustion chamber and secondly to provide thermal insulation, that is to say air cooling of the combustion chamber bearings. The specification omits secondary combustion chambers.
In the case of existing burner design constructions, extensive and time-consuming work must be carried out in order to replace or repair a combustion chamber or secondary combustion chamber that has been burnt through. The main reason for the inside walls of combustion chambers and secondary combustion chambers becoming deformed and holes appearing in these is thought to be due to the fact that the flame jet generated by the burning combustion gases and the air delivered by the blower occurs at too short a distance from the said inside walls. One desire therefore is to be able to shift or definably limit the centre of combustion and hence the “volume” of the flame jet, that is to say the axial and radial temperature distribution of the flame jet from the said centre.
It will naturally be appreciated that even such a burner, that is to say a burner with a flame jet that can be controlled in the aforementioned way, has a limited life span, following which the combustion arrangement must dismantled so that combustion parts of the combustion arrangement, including at least the combustion chamber and secondary combustion chamber, must be replaced. Such replacement is costly and time-consuming since new parts still cannot be installed efficiently enough and since the replaced parts in the known design constructions represent an unnecessarily large part of the combustion arrangement.
An object of the present invention is to provide an arrangement for the combustion of granular, solid fuel, which arrangement substantially reduces or completely eliminates the aforementioned problems, it being possible to make better use of the favourable effects of the solid fuel burner than hitherto, whilst simplifying the design of the burner, making it cheaper to manufacture and substantially easier to keep clean and maintain.
The combustion arrangement according to the invention is characterised in that the secondary air distributor also comprises a fan for producing an air and combustion gas vortex inside the secondary combustion chamber and on out through the outlet to the boiler space.
According to further aspects of an arrangement according to the invention:
The combustion method involving a combustion arrangement according to the invention is characterised in that the fan creates an outwardly directed air and combustion gas vortex, which shifts a substantial part of the secondary combustion (S) and the centre of secondary combustion to a specific distance from the combustion chamber outlet and preferably outside and at a distance from the combustion part of the combustion arrangement.
According to further aspects of a method according to the invention:
The combustion arrangement according to the invention ensures that any unburned fuel residues are discharged from the combustion chamber, together with the combustion gases formed by the primary combustion in the combustion chamber, into the secondary combustion chamber, from whence these residues and gases are also blown very powerfully out of the combustion arrangement and over to the boiler space of the boiler. Simultaneously with this blown discharge, the said residues are also very efficiently gasified into further combustion gases and fly ash in the secondary combustion chamber and in the flame jet, also referred to as the cyclone, which is created there. The said fly ash and the slag products normally formed in the hottest part of the fire fall down into the boiler ash container, which prevents the fly ash formed in the combustion being converted to sinter deposits inside the actual burner. Owing to the cyclone effect, the major part of the secondary combustion therefore takes place outside the burner and at a distance from the walls of the secondary combustion chamber, so that the hottest part of the fire is shifted away from the wall of the secondary combustion chamber, so that this is exposed to a lower temperature, thereby countering unanticipated damage and additional wear. The combustion arrangement according to the invention represents a very simple design construction having few parts. The burner is primarily intended to replace an oil burner in a conventional oil-fired boiler. The combustion arrangement according to the invention is small, easy to manage and very efficient, making the burner both inexpensive to manufacture and also very reliable. The risk of burn-back is also virtually eliminated. According to certain aspects of the invention, a combustion arrangement is moreover obtained which is easier and very much cheaper to service and repair. The physical characteristics of the flame jet, such as its axial and radial extent (volume), position and direction, and its temperature distribution within the said volume can be predetermined through the design of the secondary air distributor.
The invention will be described in more detail below with reference to the drawings attached, in which:
a–c show diagrammatic perspective views of selected parts of the combustion arrangement according to
Referring to
The fuel feed device 11 further comprises a screw conveyor 13 with drive motor 14, the screw conveyor 13 being rotatably arranged inside a fuel feed pipe 15 for automatic dispensing of the fuel from the down-pipe or down-hose 10 of the dispensing unit 3 and on into a combustion chamber 16, which in the embodiment shown is arranged essentially horizontally. The fuel feed pipe 15, which opens out at the centre of rotation of the combustion chamber 16, has a circular cross-section and also functions as axis of rotation of the rotating parts of the combustion arrangement 1. A drive motor 17 for the rotation of these parts is shown in diagrammatic form in
The combustion arrangement 1 further comprises at least one blower 18 having at least one air outlet 19, 20 for the delivery of air to the combustion part 21 of the combustion arrangement 1, which is arranged inside the boiler space 12 of the boiler 2, via one or more air inlet pipes 22, 23 and from the air inlet pipes 22, 23 on via a plurality of essentially elongate air ducts, essentially separated from and parallel to one another, or via one or more air chambers 24, 25, essentially surrounding the fuel feed pipe 15 and the combustion chamber 16, for the delivery of primary air () to the combustion chamber 16 and secondary air (S) to a secondary combustion chamber 26 arranged downstream of the combustion chamber 16, that is to say furthest away from the combustion part 21 of the combustion arrangement 1, see
The connection 28, see
The blower 18, which in the embodiment shown in
The embodiments of the combustion part 21 of the combustion arrangement 1 shown in
In the first embodiment, see
The fuel feed pipe 15, the combustion chamber 16, the secondary combustion chamber 26, the air inlet pipe 22 and the air chamber 24 preferably have an essentially circular cross-section, see
The two double-walled drums 15, 16, 22, 24 of the combustion part 21 comprise air-tight outer walls 34, 35, 36, 37 and inner boundary walls 38, 39, 40, 41 which are arranged at a specific distance from the outer walls 34, 35, 36, 37 in order to form a continuous space between these essentially over the entire length of the combustion arrangement 1 up to the secondary combustion chamber 26. Together therefore, the walls 34, 35, 36, 37, 38, 39, 40, 41 form, from left to right in
The lower part of the combustion chamber 16 constitutes a rotatable hearth 44 for primary combustion, that is to say the gasification of the fuel, on which hearth 44 a fuel bed 45 rests with intermittent or continuous air through-flow 46. The outlet 27 of the combustion chamber 16 for discharge of the combustion gases through the secondary air distributor 26A into the secondary combustion chamber 26 also constitutes an outlet for any fly ash formed. In a rotating combustion chamber 16 with discharge flanges (not shown) the feasible but highly undesirable accumulation of ash and sinter slag will also be fed towards the outlet 27 of the combustion chamber 16 and on into the secondary combustion chamber 26 via the secondary air distributor 26A. The said accumulation contains solid combustion products not yet completely burned and possibly also a smaller quantity of unburned fuel.
In order to also utilise the energy content of these products, the combustion chamber 16 is provided with an annular edge flange, that is to say the said inner, front boundary wall 41, which prevents the said products, or at least the larger and heavier of these with a high energy content from passing through the combustion chamber 16 unburned. This inner edge flange 41 only partially closes the outlet opening 27 of the combustion chamber 16, however, so that a smaller quantity passes into the secondary air distributor 26A. This has an outer annular edge flange (that is to say the outer, front wall 37), which partially closes the outlet opening 47A of the secondary air distributor 26A to the secondary combustion chamber 26. In the embodiments shown, see
In order to bring about a secondary combustion of the remaining solid residue products and the combustion gases formed in the primary combustion, secondary air inlet openings 48 for the secondary air (S) are arranged between the outer and the inner edge flange 37, 41 around the entire circumference of the secondary air distributor 26A. The distribution of the primary air (P) and secondary air (S) blown in by means of the blower 18 suitably consists of approx. 30% primary air (P) through the combustion chamber 16 and approx. 70% secondary air (S) through the secondary air distributor 26A into secondary combustion chamber 26. The secondary air is led outside the combustion chamber 16 and then delivered radially inwards, i.e. towards the common axis of rotation 33. In the embodiment shown in
The secondary air distributor 26A comprises a fan 49 in order to simultaneously expel all solid and gaseous combustion products during the said secondary combustion, so that no residual products can obstruct the air inlet openings 48 from the air ducts or the air chambers 24 to the secondary air distributor 26A and in order to shift the centre of the secondary combustion, and hence the hottest part of the fire, away from the combustion chamber (16) and further into the secondary combustion chamber (26), so that a substantial part of the secondary combustion will also take place inside the boiler space 12 of the boiler 2 and outside and at a distance from the combustion part 21. The fan 49 comprises a plurality of fan blades 49B, which are arranged in the secondary air distributor 26A between the outer and the inner edge flange 37, 41 over the entire circumference of the secondary air distributor 26A. The rotation of the secondary air distributor 26A and hence of the fan 49, the location of the fan blades 49B in the air flow and the use of different angles α, β, see
Between inner and outer walls 37, 41 of the secondary air distributor 26A is a fixing device 54 in the form of holding blades 55 and fixing slots 56, for example, designed to facilitate fitting of the outer edge flange 37 to the inner edge flange 41, see
In the second embodiment, see
In order to achieve the aforementioned facility for dismantling a number of fasteners 61, 62, 63 are detachably arranged between radial and cylindrical inner boundary walls 39, 40 of the combustion chamber 16, and possibly also between the walls 35 and 36 between the air ducts for primary air and for secondary air 24, 25 in the second embodiment shown in
In the embodiment shown the detachable inset 68 comprises two separate parts 69, 70 that can be detached from one another. The first inset part 69 comprises the secondary combustion chamber 26 with the collar 66. The second inset part 70 comprises the secondary air distributor 26A and the inner boundary wall 40 of the combustion chamber 16. Other configurations may also exist, for example the outer edge flange 37 may instead be fixed to the secondary combustion chamber 26 and the first inset part 69 may, for example, also comprise the wall 36, that is to say the air duct 25. The spacers 57 are fixed, suitably by welded joints 64, to the walls 36, 65 in such a way that the inset 68 can be released. In the embodiment shown in
In the embodiments shown in the figures the function and use of the combustion arrangement 1 according to the invention are as follows.
The fuel, the primary air (P) and secondary air (S) are essentially delivered to the combustion part 21 in the known way and this will therefore not be described in more detail here.
A defined quantity of fuel is fed into the combustion chamber 16 by the fuel feed device 11 and forms a preferably slowly or intermittently rotating fuel bed 45. Primary air (P) from the blower 18 is fed into the combustion chamber 16 via the air ducts or the air chamber 24 and on out through the air inlet openings 43. Secondary air (S) from the blower 18 is delivered to the secondary combustion chamber 26 via secondary air inlet openings 48 of the secondary air distributor 26A, either via the same air ducts or air chamber 24 (according to the embodiment shown in
The rotation of the combustion chamber 16 mixes the fuel and the primary air (P) efficiently, the majority of the fuel being gasified through primary combustion primarily to combustion gases, a fly ash fraction and a smaller quantity of slag. The continued rotation causes any unburned residues of the fuel and the slag to be discharged from the combustion chamber 16, whilst the combustion gases formed by primary combustion in the combustion chamber 16 and the fly ash are carried out through the outlet 27 from the combustion chamber 16 through the secondary air distributor 26A into the secondary combustion chamber 26 by the air flow made up of the primary air (P) and the secondary air (S).
The preferably intensive blown expulsion of secondary air (S) through secondary air inlet openings 48 and the location, number and shape of the fan blades 49B create a powerful air vortex 50 (which is also boosted if the secondary air distributor 26A rotates), which is directed radially inwards towards the common axis of rotation 33 and which also forcibly blows these residues and gases out of the secondary combustion chamber 26 and over to the boiler space 12 of the boiler 2, where the fly ash is precipitated in the ash container of the boiler 2. At the same time the said residues are also very efficiently gasified into further combustion gases and fly ash. A smaller part may be gasified in the secondary air distributor 26A, whilst the majority of the combustible substances still remaining are gasified in the air vortex 50 outside the secondary air distributor 26A in the form of a concentrated flame jet, in which the combustion gases are also burnt, generating heat, which prevents the fly ash formed in the combustion being converted to sinter deposits inside the actual combustion arrangement 1.
The invention is not limited to the embodiment shown but can be modified in various ways within the scope of the claims.
The aforementioned dispensing unit 3, fuel feed device 11 and the fuel conveyor (not shown) may therefore also comprise a plurality of separate fuel stores 4 and/or screw conveyors 7, 13 for feeding different fuels, just as further types of known fuel conveying device other than the screw conveyors 7, 13 can naturally also be used in a combustion arrangement 1 according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
0101457 | Apr 2001 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE02/00824 | 4/26/2002 | WO | 00 | 10/24/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/088597 | 11/7/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1819555 | Herschell | Aug 1931 | A |
4565137 | Wright | Jan 1986 | A |
4597342 | Green et al. | Jul 1986 | A |
4630554 | Sayler et al. | Dec 1986 | A |
5680822 | Hallberg | Oct 1997 | A |
Number | Date | Country |
---|---|---|
2 671 166 | Dec 1990 | FR |
2198519 | Jun 1988 | GB |
2 079 910 | Jul 1990 | GB |
450 734 | Dec 1982 | SE |
WO 9417331 | Jan 1994 | WO |
WO 9749951 | Jun 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20040134397 A1 | Jul 2004 | US |